2024 20th International Conference on Network and Service Management (CNSM)

P4-MTAGG - a Framework for Multi-Tenant P4
Network Devices

Fabian Brisch*, Andreas Kassler*T, Sandor Laki* and Peter Hudoba¥
*Institute of Applied Computer Science, Deggendorf Institute of Technology, Deggendorf, Germany
TComputer Science Department, Karlstads Universitet, Karlstad, Sweden
iFaculty of Informatics, ELTE Eotvos Lorand University, Budapest, Hungary

Email: *fabian.brisch@th-deg.de,andreas.kassler@th-deg.de Tandreas kassler@kau.se, flakis@inf.elte.hu,
ipeter.hudoba@inf.elte.hu,

Abstract—The current P4 programmability model assumes
that a P4 programmable device is owned and controlled by a
single tenant. However, in typical NFV scenarios, support for
multiple tenants is desirable. When each tenant may want to
deploy their own P4 pipeline offering different network functions
(NF), supporting multiple co-existing tenant pipelines on a single
platform is difficult because it requires pipeline merging, control
plane support, and resource management of the platform. In this
paper, we present P4-MTAGG, a novel framework for flexibly
deploying multiple P4 programmable NFs on a programmable
match-action pipeline while supporting multiple tenants. P4-
MTAGG consists of i) novel compiler-add-ons for automatic
merging multiple P4-pipelines, ii) p4runtime-proxy to allow for
control plane access of the aggregated pipelines together with
policy-based resource management for the P4 target, and iii)
orchestrator to automate the provisioning of a network node
utilizing aggregation either in a simulated or real hardware
environment. In this demo, we show how P4-MTAGG aggregates
multiple NFs of varying complexity in Mininet. The user can
orchestrate the aggregation process through a GUIL The per-
tenant traffic is routed through the set of NFs using segment
routing. Through the GUI, the user can instruct the p4runtime-
proxy to enforce per-tenant bandwidth limits, which configure
the per-tenant available resources in the data plane.

I. INTRODUCTION

Software Defined Networking (SDN) and Network Function
Virtualization (NFV) have emerged as an important paradigm
for making networks more flexible and programmable. How-
ever, deploying network functions (NF) on commodity infras-
tructure limits the performance of the data plane. Recently,
P4 has emerged as an important concept that enables data
plane programmability supporting both software and hardware
targets. Indeed, P4 has the promise to provide fast packet
processing performance when deployed on hardware targets
such as switching ASICs (e.g., Tofino) or FPGA-based packet
processors while at the same time providing flexibility of
software-based definition of networking functions. P4-based
NFs can be implemented with less code compared to when
implemented in a traditional programming language and can
be deployed on multiple targets having different hardware
capabilities (e.g. on a smartNIC, FPGA or on a CPU-based
host).

However, the current P4 programmability model assumes
that the hardware target is under the control of a single entity.

978-3-903176-66-9 ©2024 IFIP

Although some targets provide support of several parallel
pipelines, the current approach is to deploy these pipelines
all under the same administrative control. While each pipeline
may implement its own NF, still such approach supports only
a single tenant. However, in cloud-based scenarios, the support
of multiple tenants on a single common infrastructure is imper-
ative. Consequently, multiple tenants can only be served with
the same functionality [4]However, different tenants may have
the need to deploy different NFs as they want to implement
different networking features or protocol versions.

Supporting multiple tenants in a single programmable target
poses multiple challenges, including i) how to merge the
individual tenants’ NFs so that they can be deployed on the
target (as the target typically has less pipelines than number
of NFs of all tenants that should be deployed), ii) how to
provide control plane access to individual tenants, as the
merged NFs typically only expose a single control plane
interface that all tenants must share and iii) how to manage
the target resources between tenants, such as memory (e.g.,
TCAM entries, SRAM) processing power (e.g., processed
packets per second) or control plane load (e.g., number of
installed/updated rules per second).

Some recent works tackled similar issues. For example,
wP4 [5] proposes a novel programming language/framework
based on the P4-standard that focuses on modularity and
interoperability of different functions. However, support of
different tenants is not provided.Placement of NFs and its
impact on performance and resource consumption has been
discussed in [3]. While it assumes that a host is capable of
deploying multiple NFs, the process to support this has not
been solved. Supporting multiple tenants on a single platform
with implications on the control interface has been discussed
in [1], but is limited to fixed-function multi-tenancy. Lemur [6]
allows to merge multiple NFs but does not consider multiple
tenants and resource sharing policies.

We propose PA-MTAGG, which is a framework to dynami-
cally aggregate/merge and deploy different P4 programmable
tenant pipelines composed of multiple NFs. P4A-MTAGG con-
sists of i) a Meta-Compile stage (MTAGG-CP) in order to
merge different tenant NFs specified in P4 language to synthe-
size a single aggregated pipeline that supports the functionality

2024 20th International Conference on Network and Service Management (CNSM)

of the different tenant NFs, ii) a control-plane proxy (MTAGG-
Proxy) which translates P4-Runtime requests for aggregated
pipelines and enforces per-tenant resource allocation policies
and iii) a central orchestrator automating the aggregation and
deployment functionality. During the aggregation stage, P4-
MTAGG merges individual NFs parsers, tables and processing
logic and wires the individual NFs together using segment
routing. It adds additional resource management functionality
in the data plane by adding per tenant meters that are exposed
to the control plane proxy to enable rate-limiting per tenant
packet processing according to the resource sharing policies.
Our demonstration illustrates the capabilities of our framework
to aggregate NFs from different tenants implemented in P4
and deploy them on P4-capable targets with a single click on
a GUL In the demo, the users can interact with the aggregated
NFs from individual tenants through the control-plane proxy.
Finally, we demonstrate the capabilities of our framework to
enforce per tenant resource allocation policies by limiting the
allocated rate for each NF while the GUI will show the per
tenant packet throughput.

II. P4-MTAGG FRAMEWORK

The proposed framework consists of three key elements, the
Meta-Compiler (MTAGG-CP), control plane proxy (MTAGG-
PROXY) and the orchestrator (MTAGG-ORCH) (see Fig. 1).
Running the framework requires a configuration describing
tenants, NFs and resources available for NF deployment. The
configuration consists of a set of P4 pipelines of all NFs
with given SRv6-segment IDs [2] to be used for packet
identification. The configuration further provides the MTAGG-
ORCH with information about available targets to run the NFs.

NF Control Planes

PART messages
v

Redis
Persistency
— layer
:

Tenant configuration
Tenant/NF identification

MTAGG Proxy
Resource allocation

pppppp

Fig. 1. P4-MTAGG framework components

A. MTAGG-CP

The Meta-Compiler combines multiple P4-pipelines while
preserving individual functionality and injecting additional
functionality into the aggregated pipeline for resource manage-
ment and monitoring. The Meta-Compiler i) merges individual
parsers into a single one capable to parse packets as defined in
all source pipelines, ii) combines the match-action stages from
all pipelines, dealing with possible naming collisions and iii)
adds additional tables and parser states to identify incoming

packets based on SRv6-header and segment IDs provided in
the configuration and apply the correct NF, collect statistics
about per tenant NF packet processing rates and resource (e.g.,
bandwidth, memory) usage and apply rate-limiting to each NF
as configured by the proxy.

The P4-MTAGG compiler extension is based on the T4P4S
compiler, utilizing HLIR-16 for internal P4-representation and
manipulation. The compiler extension takes multiple .p4 files
as input and outputs, in conjunction with the t4p4s compiler
output, an additional .p4 file of the aggregated pipeline as well
as p4runtime-information for use in the proxy/other compilers
for different hardware targets.

B. MTAGG-PROXY

The communication between the P4 target running the NF
data plane and the corresponding control plane occurs through
a gRPC-based P4Runtime interface. This way, the NF’s control
plane can access the data plane objects (e.g., tables, counters,
registers). After aggregation, the resulting P4 code contains
all the data plane objects of the aggregated NFs. As a result,
the P4 target running it opens a single P4Runtime interface
through which all the data plane objects of the aggregated NFs
would be available. MTAGG-PROXY is introduced to isolate
the access of various control planes to the data plane objects.
The proxy launches independent PARuntime servers for each
tenant and NF to control and isolate the control plane access
to the data plane objects. Through the proxy, the control plane
of each NF and tenant can manage the NF data plane as if it
were running on the P4 target alone without aggregation. It
receives gRPC-based PARuntime messages from the individual
control planes, translates the data plane object identifiers of
the individual P4 program to the identifiers in the aggregated
program, and sends the translated P4Runtime message to the
P4 target running the aggregated data plane via gRPC. The
reply messages are translated back similarly. The configuration
needed for mapping the identifiers is created in aggregation
time by MTAGG-CP.

The proxy has a configuration interface that allows the
setting of resource handling policies for both control (rule
insert/update operations per second, table entries, registers,
meters, and counters - per tenant) and data planes (allowed
packets and bytes per tenant processing rate). These policies
are used to configure the per-tenant rate limiters (i.e., meters)
in the synthesized aggregated data plane code and regulate the
control plane message rates for each tenant and NF.

C. MTAGG-ORCH

Meta-Compiler and Proxy are controlled by the Orchestra-
tor. It reads the framework config, executes the aggregation
process and handles deployment of network functions. The
Orchestrator also configures the proxy with addresses and
ports of the aggregated program. The demo controller is
implemented in python and can be configured with a set of
network-functions as well as P4 targets. It displays the state
of the configured functions and P4 targets in a web-based
GUI. We currently support the following P4 targets: BMv2

2024 20th International Conference on Network and Service Management (CNSM)

NF1 NF2 NF3 Aggregation
Nr. of parsed headers (ex. eth,ipv6) 0 5 10 >ONF; j+2
Nr. of tables 1 6 11 > NF; j+1
Hash-calculations 0 1 5 > NF; ;j+0

TABLE I

COMPLEXITY OF NETWORK FUNCTIONS

switches in Mininet, Intel Tofino, Intel DPDK (through t4p4s)
and Netronome Agilo SmartNIC.

III. DEMONSTRATION

A. Demonstration Setup

B
PART
P4 Target =] P4 Target [} ,hub” switch <
1 1 iy
(] [m]
Mininet

Fig. 2. Figure of setup

In this demo, we demonstrate the proposed framework
in a Mininet-based emulated network. Figure 2 depicts the
demo setup, which consists of a central programmable switch
handling traffic distribution and metering as well as several
P4 programmable targets for running aggregated data plane
programs. The central switch is responsible for steering the
generated traffic to the target where the NF of the given tenant
is deployed. In the demo, we will showcase the aggregation
functionality using three NFs designed to have significantly
different resource demands. They vary in the number of
headers parsed, number of match-action tables and hashing
functions applied (see Table I).

B. Demo scenarios

We use a web interface and a GUI to show the current state
of the targets (see Figure 3). On the top left, current state of P4
targets and their deployed NFs can be seen, while table entries
for each NF as well as their current processing latency can be
seen on the bottom. The network topology and throughput of
all connections are visualized on the right.

pakespersecond setprs

Fig. 3. Demonstrator User Interface

a) Aggregation and Provisioning: In this scenario, we
demonstrate the orchestrator’s capability to dynamically de-
ploy pipelines in an aggregated (as well as non-aggregated)
state. Conference Attendees can inspect and change the current
deployment via a web-interface, which will start a reconfigura-
tion process of the target, running the aggregation framework,
deploying the new pipeline and populating table entries, if
necessary.

b) Aggregated Operation: In this scenario, we demon-
strate traffic steering within an aggregation-capable P4 target.
Traffic is steered through the central switch, which also moni-
tors target-state and allows packets to pass through various net-
work functions in sequence. Conference Attendees can view
real-time packet flow statistics and observe adjustments made
in the central switch when (aggregated) NFs are deployed onto
targets.

c) Fairness: In this scenario, we demonstrate per-tenant
resource allocation and the effects on throughput and latency.
Conference Attendees can change the traffic volume sent to
the different network functions and observe the impact on
packet loss. Conference Attendees can change per-NF meters
to control packet flow.

ACKNOWLEDGEMENTS

Parts of this work has been supported by the Bavarian
State Ministry of Education and Culture, Science and Art
through the High-Tech Agenda (HTA) and the Knowledge
Foundation of Sweden (KKS) through project DRIVE. The
research leading to these results has also received funding
from the European Commission thought the HORIZON 6G
SNS JU DESIRE6G (G.A. 101096466). S. Laki also thanks
the support of National Research, Development and Innovation
Office - NKFIH, FK_21 138949.

REFERENCES

[1] Buck Chung, Chien-Chao Tseng, Jim Hao Chen, and Joe Mambretti.
PAMT: Multi-Tenant Support Prototype for International P4 Testbed. In
2019 ACM/IEEE Symposium on Architectures for Networking and Com-
munications Systems (ANCS), pages 1-2, Cambridge, United Kingdom,
September 2019. IEEE.

C. Filsfils, P. Camarillo, J. Leddy, D. Voyer, S. Matsushima, and Z. Li.
Segment Routing over IPv6 (SRv6) Network Programming. Technical
Report RFC8986, RFC Editor, February 2021.

Hasanin Harkous, Bassel Aboul Hosn, Mu He, Michael Jarschel, Rastin
Pries, and Wolfgang Kellerer. Performance-Aware Orchestration of
P4-Based Heterogeneous Cloud Environments. IEEE Transactions on
Network and Service Management, 20(4):4765-4778, December 2023.
[4] Mu He, Arsany Basta, Andreas Blenk, Nemanja Deric, and Wolfgang
Kellerer. P4NFV: An NFV Architecture with Flexible Data Plane
Reconfiguration. In 2018 14th International Conference on Network
and Service Management (CNSM), pages 90-98, November 2018. ISSN:
2165-963X.

Hardik Soni, Myriana Rifai, Praveen Kumar, Ryan Doenges, and Nate
Foster. Composing Dataplane Programs with P4. In Proceedings of
the Annual conference of the ACM Special Interest Group on Data
Communication on the applications, technologies, architectures, and
protocols for computer communication, pages 329-343, Virtual Event
USA, July 2020. ACM.

Jane Yen, Jianfeng Wang, Sucha Supittayapornpong, Marcos A. M.
Vieira, Ramesh Govindan, and Barath Raghavan. Meeting SLOs in cross-
platform NFV. In Proceedings of the 16th International Conference
on emerging Networking EXperiments and Technologies, pages 509-523,
Barcelona Spain, November 2020. ACM.

[2

—

3

—

[5

—_

[6

[t

