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Abstract— With the increasing complexity of mobile 

communication networks like 5G/6G networks, characterized by 

the diversity of network devices, technologies, and applications, 

advanced network management solutions are needed to ensure 

real-time network optimization with risk-free decision making 

operations (e.g., safe network reconfiguration). To achieve this 

objective, a Network Digital Twin (NDT) paradigm represents an 

attractive perspective, enabling the manipulation of the virtual 

counterpart of a real communication network. Nonetheless, 

generating a Digital Twin of a complex network, comprising 

thousands of heterogeneous devices and highly dynamic network 

characteristics (resource usage, network topology, link quality, 

etc.) poses a serious scalability problem. This paper aims at 

addressing the scalability problem for the generation of a Digital 

Twin of a complex network like a 5G/6G network. In particular, 

the paper proposes a sampling approach in conjunction with a 

structured network information representation, as well as zoom-

in/out operations to enable a modular generation of the NDT. 

Keywords—Network sampling, network management, Digital 

Twin 

I. INTRODUCTION 

Mobile communication networks are experiencing a 
paradigm shift thanks to the recent advances in 5G and future 
6G networks, characterized by an exponential growth of 
communication network capacities and features, including 
network heterogeneity, large bandwidth, ultra-low latency, and 
decentralized decision-making operations. In the same vein, new 
generations of network applications have emerged, such as 
immersive applications, V2X, and smart factory. The 
deployment of such applications is accelerated by the increasing 
integration and adoption of IoT devices and Artificial 
Intelligence (AI) services in today’s mobile communication 
networks. Nonetheless, this mobile communication network 
ecosystem typically operates in a highly dynamic environment, 
characterized by frequent network topology changes as well as 
unpredictable network resource consumption patterns. 

To ensure supervision, or more generally, management, 
whether fine-grained or synthetic, of such communication 
networks, various network management services like SNMP, 
CMIP, LwM2M, CoMI, and SDN can be used, alone or 
combined [1]. Furthermore, such services can adopt recent 

advances in automated network management, including the 
usage of Machine Learning (ML) techniques in order to 
accommodate the ever increasing complexly of mobile 
communication networks [1][2].   

However, network management services do not intrinsically 
guarantee risk-free (or error-free) (re)configuration of complex 
mobile communication networks like 5G/6G networks. This is 
particularly true when it comes to performing real-time 
optimization of the communication network, network tests in 
operational mode (what-if analysis) [3][4][5], or proceeding 
with real-time network upgrade or extension. In such scenarios, 
any improper network (re)configuration (e.g., misconfiguration 
of routes and underestimation of allocated resources) would 
result in various operational risks such as network service 
disruptions and degraded performance. This issue, though, 
typically incurs additional costs for implementing failure 
recovery strategies and operations. 

To prevent this problem, several recent research initiatives 
have explored the adoption of the Digital Twin concept to the 
communication networks. This approach is commonly referred 
to as Network Digital Twin (NDT) [4]-[7]. The NDT is a Digital 
Twin of the real (or physical) network, where a digital copy of 
the real network can be manipulated without risk, which makes 
it possible in particular to visualize or predict the state of the real 
network if this or that network configuration is to be applied. 

Despite the attractive perspective of deploying an NDT 
solution to facilitate the supervision of complex communication 
networks and streamline their effective management, ensuring 
this objective in a scalable fashion is not straightforward. 
Indeed, frequent NDT synchronizations with the real 
communication network poses a scalability problem when 
dealing with complex networks (e.g. too large number of 
network entities, highly dynamic topologies, large volume of 
information per node or per network link), especially when each 
network information is to be reported on the NDT’s side. 

This paper aims to address the scalability challenges in 
designing a Digital Twin for complex communication networks 
like 5G and future 6G networks. In particular, the paper 
proposes a network sampling concept in conjunction with a 
structured network information representation, as well as zoom-
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in/out operations, in order to ensure efficient adoption of NDTs 
in emerging mobile communication networks. The rest of the 
paper is organized as follows. Section II discusses various 
solutions for supporting NDT in emerging mobile 
communication networks. Section III describes the network 
information structure, the network sampling concept, and the 
zoom-in/out modes. Section IV exploits the concepts described 
in section III to present an incremental sampling scheme, used 
to generate the full NDT of the real communication network. 
Section 0 presents preliminary evaluation results of the 
information overhead associated to the proposed sampling 
solution. Finally, section 0 concludes the paper and discusses 
future research directions.   

II. STATE-OF-THE ART 

Mobile communication networks typically experience 
frequent topology changes, caused by various factors, including 
the presence of error-prone wireless channels, user behavior 
(e.g., mobility and network connection habits), routing 
protocols, and resource allocation services. Furthermore, such 
communication networks may be subject to various coexisting 
traffic patterns, ranging from (predictable) periodic reporting 
and control events (e.g. protocol-specific, telemetry, 
command/control applications) to streaming applications (e.g., 
audio/video, immersive environments, etc.), and encompassing 
event-driven data traffic (e.g., ambient applications, alert 
applications, etc.). Virtualizing such a complex communication 
network ecosystem to expose its real-time Digital Twin is 
inherently challenging, especially that the network states (e.g., 
topology, resource usage, etc.) are perpetually changing, hence 
the need for a scalable approach to efficiently support Digital 
Twins for mobile communication networks.   

Various research initiatives have explored the adoption of 
Digital Twins for mobile communication networks like 5G and 
6G (e.g., [5][6]-[8]). However, to our knowledge, few papers 
have considered the scalability problem, even though the 
question of modular implementation has been pointed out by a 
number of authors (e.g., [8]). In the Digital Twin literature, the 
authors in [10], were among the first to consider the scalability 
problem in implementing Digital Twins. However, their work 
focused on the smart manufacturing domain (Digital Twins of 
machines, production cells, and entire manufacturing facilities), 
where the communication component is viewed as a means for 
generating a Digital Twin, rather than as a target component of 
the Digital Twin itself. The authors addressed the scalability 
problem for data acquisition and proposed a stepwise method 
that breaks down the implementation into distinct, manageable 
steps, allowing teams to follow a defined pathway from 
recognizing devices to establishing communication and 
integrating data. 

In [11], the authors present a Digital Twin system for 
mobile networks. The proposed system considers three key 
elements from the mobile network: mobile users, base stations, 
and wireless environments. For each element, a virtual version 
is generated and configured with real-world data by modeling 
its principles and parameters. These virtual elements are 
assembled to form the whole Digital Twin system. The paper 
addresses the scalability problem using four concepts: 1) 
generative models like GANs (Generative Adversarial 

Networks) and VAEs (Variational Autoencoders) to simulate 
the behavior of millions of mobile users and network 
components, 2) Parallel Processing techniques to handle 
simulations of a large number of mobile users simultaneously, 
3) Modular Digital Twin creation for the virtualized elements, 
and 4) real-time adjustment of the Digital Twin based on 
simulation. 

A methodology for creating Mobile Network Digital Twins 
(MNDT) for 5G networks was proposed in [12] by modeling 
physical network elements and their interactions. Network 
elements include physical devices, communication links, 
operating environment (e.g., traffic patterns and user behavior), 
and various 5G-specific network functions. To address the 
scalability problem, the methodology emphasizes automated 
data acquisition and modeling, using agents that collect 
network information (topology and network parameters) and 
operational data (current status and performance metrics of 
devices) from the physical network.  

In sum, the reviewed solutions addressed the NDT 
scalability problem using network modeling along with network 
agents, which facilitate automated data acquisition and self-
optimization operations. Building on such concepts, our solution 
takes a step further by addressing the information overhead 
problem related to maintaining up-to-date information on the 
NDT's side, challenge that has not been sufficiently explored in 
the state of the art.    

In this paper, we propose a novel scheme for improving the 
data acquisition process and, incidentally, streamlining network 
modeling operations. To this aim, we propose a network 
sampling scheme. This scheme enables both selective and 
incremental data acquisition from the real communication 
network. Upon each network sampling phase, a zoom-in/out 
operation over the real communication network is performed, 
depending on whether more (zoom-in) or less (zoom-out) details 
need to be exposed for a specific segment (sample) of the real 
communication network. This zoom-in/out scheme is facilitated 
thanks to network information categorization (device and link) 
and structuring (objectresource(s)). Each object being a 
device or a link. The main advantage of the proposed solution is 
that it proceeds with a modular NDT generation, where each 
sampling phase targets a part of the communication network. In 
this paper, modularity is expressed both horizontally (size of the 
network sample, i.e., the number of objects composing the 
sample (i.e., devices and links)) and vertically (number of 
captured resources for each object of the sample). This solution 
is particularly useful when there is a need for saving network 
resources (bandwidth, memory, CPU, energy), while managing 
effectively the communication network (i.e. collect only the 
relevant network parameters). Additionally, this modular NDT 
generation also enables an incremental generation of the 
complete NDT, if necessary. 

III. SOLUTION DESCRIPTION 

 For the sake of simplicity and clarity, figure 1 presents a 
simplified view of the NDT system in the context of a mobile 
communication network. This figure is consistent with the NDT 
reference architecture specified by the IETF and ITU-T, and 
which we discussed in a previous paper [18]. Within the NDT 
system, there is a key component called NDT manager, which is 
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responsible for generating and updating the NDT associated to 
the real communication network or a part of it, called a sample. 
As explained in the next section, the NDT manager views each 
network sample as a set of objects. Figure 1 also shows that the 
NDT manager interacts with three functional components: the 
NDT prediction module (e.g., a Machine Learning agent [4]-
[9]), the NDT GUI (to display the NDT [9]), and the network 
management module (a conventional network management 
system like SNMP, CMIP, LwM2M, SDN, etc.) [1][2]. 

As shown in figure 1, our NDT solution requires a network 
management system to collect the network information needed 
for the generation of the NDT. Therefore, the NDT solution 
should interoperate with existing network management systems. 
In particular, the NDT should support existing network 
management protocols (such as SNMP, NETCONF, and 
RESTful APIs). To this aim, a modular plugin architecture can 
be adopted on the NDT’s interface with the network 
management system. With this modular plugin architecture, 
different network management protocols can be enabled/added 
or disabled/removed. Alternatively, an abstraction layer can be 
implemented on that NDT’s interface to translate various 
network management protocols (like SNMP, RESTful APIs, 
etc.) into a unified interface for the NDT. This allows the NDT 
to remain agnostic of the underlying protocol specifics. The 
details of this interoperability component is out of the scope of 
this paper. Nonetheless, the conclusion section, we point out 
some open issues and research directions relating to this topic. 

Fig. 1. High-level view of an NDT system for a mobile communication 
network 

A. Network information representation 

To facilitate the identification of the network entity at the 
NDT level, the network information will follow a hierarchical 
structure: SampleObjectResource, adhering to an Object-
Resource model similar to the one used in existing network data 
models, such as the LwM2M data model [13]. Other alternate 
models like FIWARE data models [14] can be used as well. 
Such a hierarchically structured representation of network 
information also aims to facilitate fine-grained supervision and 
configuration of the communication network at its NDT 
counterpart. In addition, a network object can be of two possible 
types: network device or network link.  

As shown in figure 2, a network sample can be composed 
of one or more network objects (devices and/or network links), 
each with zero, one or more associated resources. A network 

resource represents any type of information that can 
characterize a network object. For a network device like a 
router, the associated resource could be a network interface’s 
IP address, CPU usage ratio, a virtual resource, etc. For a 
network link, the resource could be the PHY communication 
technology, SNR, ratio of available bandwidth, types of 
transport protocols, a virtual resource, etc. 

Fig. 2. Hierarchical representation of network objects and associated 

resources 

Furthermore, we consider that, from the standpoint of a 
communication network, any external physical object (i.e., 
aside from a network object) that is effectively influencing, in 
one way or another, the behavior of the communication network 
(e.g., network user, building, vehicle, etc.) must have a 
signature on one or more network objects (device(s) and/or 
link(s)), where the signature could be expressed in the form of 
a resource value of the concerned network object(s). In light of 
this, any external object that does not impact the 
communication network will not have a signature in the set of 
objects captured on the NDT side. In this case, this external 
object will simply be ignored. 

B. Network sampling 

The choice of the network sample can be driven by different 
selection strategies. For instance, the selection may be random, 
or it may also be based on recent events that occurred in the 
network (e.g., hardware/software failures, abnormally low/high 
values of network parameters, etc.).  In addition, at each 
sampling phase, a zoom-in or zoom-out operation is performed 
in parallel.   

The objective behind a zoom-in mode is to focus on a fine-
grained representation of the sample that is being collected by 
the NDT manager (e.g., collect all the available resources of 
each of the objects of the sample). This way, a set of nodes and 
links can be dynamically selected based on certain criteria (e.g., 
high CPU usage, critical links, anomaly analysis, etc.) to 
monitor their performance metrics more closely. On the other 
hand, a zoom-out mode is useful when a high-level view of a 
specific sample of the entire network is needed for several 
reasons. For instance, it helps to free up resources at the NDT 
manager level, capture the list of current network nodes and 
links, and obtain a snapshot of high-level trends or patterns at 
the sample or network scale (e.g., total CPU usage, average 
traffic throughput, etc.). 

In the network sampling phase, the NDT manager generates 
a request (request_desc) to fill in a local structure called sample 
descriptor (desc_S). An example of a sample descriptor is 
provided in figure 3. This figure shows a simplified UML-alike 
view describing the object, the resource, and their associated 

 

 

Sample i

Network

Object 

1.1

Sample 1 ... Sample N... ...
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symbolic connection (‘1’ vs ‘*’). This symbolic connection 
shows that one object can have zero or many resources. Note 
that both the objects and resources can have different attributes 
than those exemplified in figure 3, potentially being either 
subsets or supersets of the illustrated attributes. 

Fig. 3. Example of a sample descriptor 

On the other hand, the request request_desc has a structured 
Expression field, enabling conditional collection of objects and 
associated resources for a given network sample. This can be 
achieved using a number of possible network management 
protocols like NETCONF [15], RESTCONF [16] with their 
YANG-based data model [17]. In addition, the request includes 
a flag (zoom_flag), which indicates whether the network sample 
is to be generated following a zoom-in or a zoom-out mode. A 
simplified description of the request is provided in figure 4, for 
illustrative purposes. The exact form of such a request is outside 
the scope of this paper. Figure 4 shows an example of an 
Expression field of request_desc for both zoom-in and zoom-
out modes using NETCONF requests. In the zoom-in mode, the 
NDT manager requests devices with CPU usage greater than 
80% along with their associated links, including all the 
resources of the selected devices and all the resources of their 
associated links. In zoom-out mode, only the devices with CPU 
usage greater than 80% and their associated links are requested. 

Fig. 4. Example of Expression field in zoom-in (left) and zoom-out (right) 

modes 

Figure 5 presents a high-level view of zoom-in and zoom-
out operations, which are triggered by event_A and event_B, 
respectively. Event_A could be, for exmaple, any event that 
requires network sampling in a zoom-in mode, like anomalies 
detected in specific network areas, and reported (e.g., by the 
network manager) to the NDT manager. Similarly, event_B 

could represent any event that justifies network sampling in a 
zoom-out mode, such as the end of event_A. In addtion, figure 
5 shows that the NDT manager interacts with a conventional 
network manager using various possible network management 
protocol messages like the NETCONF requests of figure 4. The 
request message (request_desc) in figure 5 is depicted in a 
concise format, summarizing the details of NETCONF request 
message, shown in figure 4. 

Fig. 5. Example of zoom-in and zoom-out operations 

IV. APPLICATION OF NETWORK SAMPLING FOR THE GENERATION 

OF THE NDT OF A FULL NETWORK 

This section explains the incremental network sampling 
procedure that enables the NDT manager to incrementally 
generate the NDT (i.e., real-time picture of a full 
communication network) using successive selective samplings 
in a zoom-in mode. 

A. Initial step – NDT initialization 

 To perform the incremental sampling, the NDT manager is 
initialized with the list of all the objects of the full network, i.e., 
all the network devices and all the associated network links. 
Although not critical, this initialization phase enable the NDT 
manager to get a high-level view of the actual status (a first 
glance) of the real communication network. The initial step 
consists in transmitting a request_desc query from the NDT 
manager to the network manager. This query includes an 
Expression field, asking for all the objects of the 
communication network (devices and links) and having a 
zoom_flag set to zoom-out.   

B. Incremental NDT generation 

The incremental NDT generation will take place through a 
set of successive network sampling operations, each initiated 
by a request_desc query, with a zoom_flag set to zoom-in mode. 
Each newly generated sample Si is chosen so that its sample 
descriptor desc_Si is different from the descriptor of any 
previous sample of the current incremental NDT generation 
procedure. This enables to ensure the convergence of the 
generation procedure towards the NDT of the complete 
communication network (cf. figure 6). 

  

 

Object

Attribut Description

+ Obj_ID Object identifier (e.g., IP 

address of the network device)

+ Obj_Type Object type (device or link)

+ Res_nb Total number of resources

associated to Obj_!D

+ Rel_obj Associated object (ID of the 

object (device or link) 

associated to Obj_ID).

* Resource

Attribut Description

+ Res_ID Identifier of resource

+ Res_type Type of resource (ex. CPU)

+ Res_value Value of resource (ex. CPU 

usage ratio)  

1
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Fig. 6. Incremental NDT generation – Illustrative figure 

In order to keep up to date all the already virtualized 
samples on the NDT’s side, the virtualized counterpart of each 
sample is regularly updated (e.g., on demand, upon the 
virtualization of a new network sample, or periodically) using 
predictive models, based, for instance, on Machine Learning 
(ML) algorithms. The detailed description of these prediction 
models will be addressed in a future work. Figure 7 shows a 6-
step procedure for NDT generation of a full physical network 
comprising four samples.  

Fig. 7. Abstract view of incremental NDT generation using a combined 

network sampling and sample prediction scheme. 

V. PERFORMANCE EVALUATION 

Recall that the primary objective of our solution is to help 
mitigate the overhead associated with keeping an up-to-date 
NDT representation despite the dynamism of the physical 
communication network. In this section, we present preliminary 
evaluation results of the information overhead when using 
network sampling operations to generate the sample’s NDT. 
The evaluation of the information overhead metric is crucial, 
given its strong connection to the scalability objectives our 
solution aims to achieve. Specifically, this metric offers an 
estimate (an order of magnitude) of the expected gains 
compared to a naive approach that involves collecting all 
network information. 

A. Traffic Model 

The simulation phase considers a traffic pattern following a 
Poisson distribution. For each time step, the number of traffic 
events, both on the node and on the link, is generated using the 
Poisson distribution. This way, each traffic event contributes to 
the CPU and memory usage of the nodes and the bandwidth 
usage of the links. The objective is to express a traffic model that 
determines the amount of traffic data processed by each node 
and the amount of data present in the communication link 
(network bandwidth usage). Higher traffic amount (higher λ 
values in the Poisson traffic model) can lead to more frequent 
updates in the network state (e.g., more frequent data processing 
and transmissions). A given value of λ means that, on average, 
there is λ traffic event per second, per node or link. Our 
simulation also considers three values of λ: 0.1, 1 and 10.  

In addition, in our simulation, we only consider traffic event-
driven data acquisition to generate the NDT. This enables to 
evaluate the “worst case” for network information overhead 
(i.e., aggressive mode). Therefore, on each traffic event, an NDT 
generation phase (full or partial) will take place. 

B. Network Model 

The performance evaluation considers a wireless 
communication network, comprising 100 nodes and a 
probabilistic creation of the link between nodes using a normal 
distribution with a link type-dependent mean and a standard 
deviation s of 0.05. This allows the link existence probability to 
vary probabilistically based on a normal distribution. The 
choice of parameters was made to ensure a reasonable and 
realistic representation of the network topology. The mean 
probability of creating a link between any two nodes is 0.1. This 
indicates that, on average, each possible link between nodes has 
a 10% chance of existing. This choice balances the network 
between being overly sparse and overly dense.  A standard 
deviation of 0.05 introduces variability in the link existence 
probability while keeping the values within a reasonable range. 
This variation helps in simulating real-world scenarios where 
network congestion, physical distance, or random failures. 

C. Information overhead in random network sampling 

In this section, the evaluation of the information overhead 
for network sampling will consider a sampling function that 
randomly selects 20 nodes from the network. 
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In addition, let �� and �� be the node-specific information 
size and link-specific information size, respectively. For a 16-
Byte device ID size, a 32-Byte link ID size, and a 10-byte 
resource field size, we get ��  = 46 bytes and ��  = 62 bytes. 
Also, on a zoom-in operation, it is assumed that one object ID 
and three associated resources are captured per object of 
interest (device or link).   

Also, let ��  be the number of sampled nodes and  �� be the 
number of links between the sampled nodes. 

As a result, the information overhead ��  for the selective 

sampling is provided hereafter:  

�� 	 
�� ∙ �� � �� ∙ ��
 

D. Information overhead in full network representation   

Let N be the number of nodes in the network and L be the 
number of links in the network Then, the information overhead 
�� for the full network representation can be expressed as: 

�� 	 
� ∙ �� � � ∙ ��
 

E. Simulation results  

Figures 8 and 9 show the network information overhead 
related to the NDT’s information acquisition, respectively in 
case of a naïve (full) information collection approach and a 
selective sampling approach. The results show that more 
frequent the traffic events, the higher the network information 
overhead. This can be justified by the fact that in our simulation, 
we correlate data acquisition to traffic events (λ) both in random 
sampling and in full network representation cases. In addition, 
theses preliminary results show the information overhead for 
data acquisition in case of full network representation is more 
than 16 times higher than that of selective sampling.   

It is worth mentioning, though, that when comparing 
selective (e.g., random) sampling to a full network 
representation, it is important to recognize the trade-offs 
between reducing overhead and potential information loss. 
Selective sampling can lower information collection and 
processing demands but may result in missing critical metrics or 
dynamic changes. However, a well-designed selective sampling 
strategy, tailored to specific monitoring objectives and informed 
by traffic patterns, can minimize these risks. Strategies like 
adaptive sampling or feedback mechanisms can help ensure that 
essential network segments are represented, reducing the 
chances of overlooking critical information while still 
optimizing resource use. Ultimately, full NDT generation using 
incremental sampling is, by essence, designed to mitigate this 
information loss problem, which can be expressed in terms of 
sample prediction accuracy.  

Fig. 8. Information overhead – Case of full NDT generation  

Fig. 9. Information overhead – Case of random sampling (20 nodes per 

sample)  

VI. CONCLUSION AND FUTURE DIRECTIONS 

This paper addressed the scalability problem in 
implementing a Network Digital Twin (NDT) for complex 
communication networks, characterized by highly dynamic 
network information, including various frequently changing 
parameters from both network devices and links. To maintain 
an up-to-date representation of the real communication 
network, this dynamic information needs to be continuously 
captured by the NDT. Consequently, a novel paradigm for 
network information representation and acquisition needs to be 
designed. To this end, we propose a network sampling scheme 
combined with a hierarchical representation of the network 
information to enable flexible, adaptive, and modular 
generation of the NDT. Our solution allows for a sliced 
representation of the communication network, both 
horizontally and vertically. This approach facilitates efficient 
network auditing by enabling either a large-scale, high-level 
view of the communication network segment (horizontal slice) 
or a small-scale, detailed view of the different communication 
layers within the network segment (vertical slice).   

In the next step, we plan to evaluate the performance of our 
solution based on more realistic scenarios in the 5G and future 
6G contexts, considering a number of critical features such as 
user mobility, various traffic offloading patterns, network 
slicing, massive machine-Type communications (mMTC), and 
massive MIMO (Multiple Input, Multiple Output) 
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technologies. Additionally, the following issues are worth 
exploring in future work: 

ML-based sample selection and prediction: the proposed 
sampling paradigm can be expanded to enable both sample 
selection based on relevant network events like node or link 
failures, traffic congestion, etc. To this aim, Machine Learning 
(ML) techniques for event prediction and sampling selection 
can be explored, with a particular focus on those that can handle 
temporal dependencies, adapt to real-time data, characterize 
potential inter-resource correlation, and learn from evolving 
patterns in the network (e.g., Recurrent Neural Networks 
(RNNs), Graph Neural Networks (GNNs), and Autoencoders). 

Inter-sample correlation: considering inter-sample 
correlation (e.g., correlation between two adjacent samples) is 
particularly important for predicting network samples on the 
NDT’s side. Federated Learning (FL) techniques can help 
aggregate learning from different samples of the real network, 
leading to a more accurate representation of each sample's NDT 
and, by extension, a more precise overall NDT representation. 
However, when dealing with inter-sample correlation in a 
distributed setting like FL, ensuring data synchronization 
across samples is critical to maintaining the effectiveness of the 
learned models. 

Accuracy-overhead tradeoff: one main challenge in 
implementing a scalable approach for NDT support in complex 
communication networks is to find the best tradeoff between 
the accuracy of the NDT representation and the intrinsic 
overhead of the NDT solution (i.e., bandwidth, memory, and 
CPU usage). One possible approach to address this problem is 
to split it into two sub-problems: instantaneous accuracy and 
average accuracy. Instantaneous accuracy could be more 
relevant whenever immediate decisions are made based on an 
NDT snapshot (e.g., evidence of an imminent event in the real 
network), while average accuracy is key for long-term analysis 
or long-term forecast of the real communication network. 

Optimized incremental sampling: another key focus of our 
future research is optimizing the incremental sampling 
approach, aiming to generate the NDT of the full real 
communication network in fewer iterations. A critical aspect of 
this optimization is addressing the issue of sample overlapping, 
which directly affects both the accuracy of the NDT and the 
number of iterations required for convergence. While 
overlapping samples can lead to redundancy and may increase 
the number of iterations, they also provide additional data 
points that improve accuracy and completeness of the network 
representation. This trade-off between speed and accuracy is 
central to improving the efficiency of our solution in generating 
the NDT of the full real communication network.  

Interoperability considerations for NDT deployment: 
ensuring interoperability between the NDT framework and 
various network management protocols presents significant 
technical challenges, particularly in integrating different data 
formats and semantic definitions. Additionally, variations in 

event-handling mechanisms can complicate real-time data 
exchange, resulting in latency issues and inconsistencies in 
reflecting network changes in the NDT. To overcome these 
challenges, a proactive design strategy focusing on 
standardized, flexible data models and event-handling 
frameworks can ensure seamless interoperability across diverse 
networks without sacrificing performance. 
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