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Abstract—The increasing complexity and frequency of cyber
attacks require Network Intrusion Detection Systems (NIDS) that
can adapt to evolving threats. Artificial intelligence (AI), particu-
larly machine learning (ML), has gained increasing popularity in
detecting sophisticated attacks. However, their potential lack of
interpretability remains a significant barrier to their widespread
adoption in practice, especially in security-sensitive areas. In
response, various explainable AI (XAI) methods have been
proposed to provide insights into the decision-making process.
This paper investigates whether these XAI methods, including
SHAP, LIME, Tree Interpreter, Saliency, Integrated Gradients,
and DeepLIFT, produce similar explanations when applied to
ML-NIDS. By analyzing consensus among these methods across
different datasets and ML models, we explore whether an
agreement exists that could simplify the practical adoption of
XAI in cybersecurity, as similar explanations would eliminate
the need for rigorous selection processes. Our findings reveal
varying degrees of consensus among the methods, suggesting that
while some align closely, others diverge significantly, highlighting
the need for careful selection and combination of XAI tools to
enhance trustworthiness in real-world applications.

Index Terms—Machine Learning, Intrusion Detection, Ex-
plainable AI

I. INTRODUCTION

The evolving data networks have transformed industries and

everyday life, enabling massive communication, automation,

and data exchange. This connectivity has increased the attack

surfaces and posed more opportunities for attackers to infiltrate

systems, leading to potential security breaches and financial

losses. In a recent study, the European Union Agency for

Cybersecurity (ENISA) reported substantial growth in cyber

attacks with respect to their variety, number of incidents, and

negative impacts [1]. Attackers increasingly leverage automa-

tion and artificial intelligence (AI) offensively [2] to enhance

and sustain their malicious operations, continually adapting

their malware to evade defense systems. Meanwhile, as ad-

versaries improve their tactics, legacy security mechanisms

alone, such as the signature-based methods (relying on known

pre-defined attack signatures), cannot resist these sophisticated

evolving threats, leaving systems vulnerable [3].

The advancement of AI and machine learning (ML) in

various security domains, such as malware detection [4],

advanced persistent threat (APT) detection [5], and network

intrusion detection systems (NIDS) [6], has demonstrated the

effectiveness of ML-based defenses in tackling evolving attack

variants. NIDS, particularly those integrated with ML, play

a crucial role in detection by learning underlying network

traffic characteristics and continuously monitoring it to identify

abnormal behavior. A large body of research is dedicated to

build effective ML-NIDS, addressing hardware embedding [7],

[8], scalability [9], hybrid approaches with signature-based

methods [10], and improving ML model generalization [11].
Despite the numerous advantages that ML-NIDS offer, the

explainability of AI models (XAI) remains challenging, caus-

ing security teams to be skeptical about adopting ML-NIDS

in operational environments [6], [12]. The black-box nature

of AI, combined with the lack of rational decision-making

transparency, not only makes it challenging for security teams

to understand detected suspicious events but also leaves AI-

powered defense mechanisms vulnerable to adversarial attacks

and information breaches [13], [14]. It is especially concerning

in cybersecurity, where the implications extend beyond a cost-

benefit analysis and could be expanded to serious issues, in

some cases, even human lives [13]. Therefore, understand-

ing how these ML algorithms make decisions is crucial for

building trust, a principle that is highlighted in the European

Union’s General Data Protection Regulation (GDPR), known

as the “right to explanation” for algorithmic decisions [15].
Thus, this paper is motivated by the observation that

many studies have focused on achieving superior detection

performance, but the explainability of these models is often

falling short. In this study, we explore various state-of-the-art

approaches to enhance the explainability of ML-NIDS outputs

under different scenarios. As stated by Warnecke et al. [16],

if all of these approaches generate similar explanations, any

suitable method may be selected for practical adoption, which

would eliminate the need for further selection criteria. Thus,

we specifically zero in on the consensus among these methods,

as this is a gap in current XAI research according to Krishna

et al. [17]. Our main contributions are:

• A comparison of six XAI methods based on varying

underlying AI/ML models, including traditional tree-

based models, as well as (deep) neural networks.

• A consensus analysis among all valid combinations of

explainers and models, in a ranked and unranked manner.

• Comprehensive qualitative and quantitative analyses, both
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local and global, were conducted to highlight the results

across three distinct datasets.

This paper is structured as follows: Section III provides

background information on intrusion detection and XAI, while

Section III describes related works. Section IV outlines the

proposed methodology for the consensus analyses and Sec-

tion V presents the obtained results. Finally, Section VI sum-

marizes the key findings and contributions of this study.

II. BACKGROUND

Intrusion Detection Systems. In the context of cyber-

security, an intrusion involves any action that compromises

the integrity, confidentiality, or availability of information or

systems [18]. To detect and prevent such intrusions, Intrusion

Detection Systems (IDS) and Intrusion Prevention Systems

(IPS) have been developed. They can be deployed either

directly on the host (HIDS), where they monitor local data,

or in the network (NIDS), where they capture and analyze

network traffic. For the latter, network traffic can be recorded

on varying granularities, i. e., on a per-packet or per-flow basis

(e. g., NetFlow/IPFIX). Due to the ever-evolving threat land-

scape [19], more and more attention has been paid to AI/ML-

based NIDS in the past years [6]. While these models often

achieve higher accuracies, their decision-making becomes less

interpretable. So, in security-sensitive areas like NIDS, such

black-box models may not actually be adopted in practice.

Consequently, trust-enhancing techniques need to be adopted,

especially regarding the European AI Act [20].

Explainable AI. Model explainability offers insights into

the decision-making process and thus can enhance needed

trust. This has led to the development of explainable AI

(XAI), which consists of directly interpretable in-hoc/white

box models like clustering, as well as post-hoc explainers. The

latter analyze pre-trained models and are used either for local

explanations of why the model makes a particular decision

for a particular input, or for global explanations that return

the overall important features [21]. Post-hoc explainers can be

further classified into model-specific and -agnostic methods,

as well as gradient- and perturbation-based approaches [22].

Perturbation-based explanation approaches are generally

model-agnostic and create variations of the input data to see

how the model’s output changes in order to identify impor-

tant features. Local Interpretable Model-agnostic Explanations

(LIME) [23] focuses on sparse linear models as an explanatory

model by learning the output of a model around a given

input by generating various perturbations. The resulting model

coefficients are then used as feature relevance values. Shapley

Additive exPlanations (SHAP) [24] are based on the concept

of Shapley values [25] from game theory, which was originally

a concept to distribute a payout to players. Here, this concept

attributes each feature a contribution to the model’s prediction

based on all possible subsets/combinations of features.

Gradient-based XAI approaches are explanatory methods

that use the gradients of the model’s output with respect to

the input features to understand which features are influencing

the prediction. Saliency maps [26] are generated by back-

propagating the gradient of the output class with respect to the

input through a trained Neural Network (NN). While originally

developed for image classification tasks and Convolutional

NNs (CNNs), Saliency maps can also be adapted for tabular

data and other NN architectures. Integrated Gradients (IG)

[27] considers the straightline path from an uninformative

baseline (e. g., a black image or zero vector) to the input and

computes the gradients for all points along the path. The single

gradients are then integrated to determine the contribution of

each input feature to the prediction. DeepLIFT [28] assigns

feature importance by comparing activations from the actual

input to a baseline and decomposes the output difference into

contributions from each feature. This process is performed

for each layer, with scores propagated forward through the

network to determine the final feature contributions.

In addition to the above approaches, the Tree Interpreter

(TI) [29] is a local model-specific explanation method for

Decision Trees (DTs) or Random Forests (RFs) that breaks

down predictions by calculating the impact of each split from

root to leaf. The sum of these contributions, along with the

average prediction, equals the final prediction.

III. RELATED WORK

Research on NIDS has already explored XAI approaches,

e. g., gradient-based methods were used to analyze important

features in order to generate adversarial examples that can

evade detection of current NIDS [30], whereas perturbation-

based methods were extensively used to determine the most

important features [21]. In this work, our goal is not to evaluate

the different XAI methods in such an isolated manner, but

rather to explore the consensus among them.

Warnecke et al. [16] evaluate six explanation methods for

four malware datasets (i. e., malicious PDFs, apps, and code)

using four Deep Learning (DL) models. Each DL model is

dataset-specific. The results show that explainers that have

insight on the model parameters like IG perform best. When

such explainers are not feasible, LIME is recommended. In

addition to other criteria, they also evaluate the consensus

among those models by analyzing the intersection of top

features and found that explanations differ and are therefore

not interchangeable. Bhusal et al. [31] provide similar insights.

In this work, we follow a similar approach by expanding this

methodology, as well as applying it in the context of flow-

based network traffic data. We explore both traditional ML

and DL models in our analyses in a dataset-agnostic way.

Arreche et al. [32] already apply the methodology of

Warnecke et al. on three NIDS datasets, but only evaluate the

explanations of SHAP and LIME for seven ML models. Their

results indicate that SHAP generally outperforms LIME which

contradicts the previous results. While their work already

includes some brief consensus evaluation on NIDS data among

other criteria, it is only focused on the two perturbation-

based approaches SHAP and LIME. In our work, we want

to examine the agreement of more, and potentially more

advanced, XAI approaches in more detail.
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TABLE I: Overview of utilized datasets.

Name Abbr. Granularity Size Feats.a #Attacks %Anomal.

CIDDS-01 CIDDS NetFlow 8 451 520 14 4 17.0%
CICIDS2017 CICIDS Flow 692 703 78 5 36.5%
Edge-IIoTset IIOT Alerts+Logs 2 219 201 95 14 27.2%

aafter encoding non-numerical features etc.

Tritscher et al. [22] examine that perturbation-based meth-

ods outperform gradient-based ones in explaining neural net-

work behavior on tabular synthetic and real-world NIDS data.

However, they also noted that the investigated explanatory

models struggle with accurately explaining complex, non-

linear models which indicates that the model choice depends

on the dataset. The authors analyzed quantitatively and quali-

tatively in a subsequent work [33], how well SHAP works for

three better functioning NIDS models. Hereby, they figured

out that SHAP can provide high-quality explanations, while

the choice of baseline has a high impact on the quality

of the selected features. However, the choice of baseline is

dependent on the model such that no overall preference could

be provided. For our work, we choose a similar selection of

XAI methods inspired by these two works. While the second

work includes a consensus analysis regarding SHAP and three

models, our work scales this up to a much broader range.

Hariharan et al. [34] compare global and local XAI tech-

niques for IDS. They suggest that combining both approaches

can balance detail with comprehensive understanding. They

include a brief consensus analysis by investigating only the

signs of the values for a single prediction (i. e., if a feature

has a positive or negative impact on the explanation). In our

work, we focus on the analyses in a quantitative manner and

examine the actual rankings of features, not only their sign.

While there exist some works that analyze the consensus

of XAI methods, our work extends on these works and inves-

tigates this challenge in a more detailed and comprehensive

way, thereby, ultimately tying all these works together. We

analyze five different ML models, including both shallow

and deep models, and six explainers, including model-specific

and model-agnostic explainers and also both perturbation-

and gradient-based methods, on three different NIDS datasets.

Additionally, we specifically focus on the consensus analyses.

IV. METHODOLOGY

NIDS Datasets. Table I depicts a summary of the three

NIDS datasets we utilize in this work. The first dataset is

the CIDDS-01 dataset [35]. It contains NetFlow data, which

is one of the most common formats in real-world traffic

monitoring. Thus, analyses based on such data are particularly

relevant for practical situations. The dataset consists of various

subsets which comprise different weeks and were measured at

different vantage points. Here, we utilize the first week of this

dataset. Besides benign traffic, the datasets contain records

of Ping, Portscan, Bruteforce, and Denial-of-Service (DoS)

attacks. Features include the standard NetFlow information,

such as number of packets and bytes, as well as TCP flags.

The second dataset is the CICIDS2017 dataset [36]. While

this dataset is also on a flow basis, the contained information

is much richer than the information contained in typical

Fig. 1: Consensus heatmaps of different feature selection.

TABLE II: Compatible ML models and XAI methods.
SHAP LIME TI IG DeepLIFT Saliency

DT � � � � � �
RF � � � � � �
LGBM � � � � � �
SLP � � � � � �
MLP � � � � � �

NetFlow records. Additional features include, for example,

various statistical moments about packet sizes and IATs. The

dataset comprises five days, which all represent different attack

scenarios. We utilize the Wednesday subset, which contains

five types of DoS and Distributed DoS (DDoS) attacks. We

choose this dataset, since as of today, it is one of the most

utilized datasets in current NIDS research [6].

The third dataset is the Edge-IIoTset [37]. We chose this

dataset since it is the most recent dataset and, in contrast

to the previous two datasets, it also contains extra features

extracted from alerts and log data. Features are derived from

various IoT/Industrial IoT (IIoT) protocols, such as TCP, UDP,

MQTT, MODBUS, and more. It contains 14 different attacks,

including various types of DDoS attacks, Portscan, and more.

XAI Workflow. Firstly, the datasets are each split into 70%

training and 30% test data and labels are binarized. Across all

three datasets, we exclude features like IP addresses and ports

to prevent overfitting on artifacts that attackers could spoof,

ensuring the model reflects real-world scenarios. Zero-variance

features are then filtered out, while the remaining features are

min-max scaled. Lastly, we select the top ten features for each

dataset, which directly impact the explanations. In the end,

explanations can only be built on top of features that have

been selected. The list of selected features and the full code

for training and explaining is available online1, which mainly

makes use of scikit-learn [38], Captum [39], and PyTorch [40].

Figure 1 depicts the intersection of the top ten chosen fea-

tures of four different selection methods, namely an impurity-

based feature importance, which utilizes an RF to calculate the

Mean Decrease in Impurity (MDI), Permutation Importance

(PI) that randomly shuffles a feature’s value and observes

the impact on the model performance (here: also an RF),

SelectKBest which utilizes an ANOVA-test, and lastly, a

clustering-based approach that groups correlated features and

chooses one representative out of each cluster. Each tile of the

heatmaps depicts to which degree the four methods choose

the same top ten features. For CIDDS, the shared features are

relatively high, since we choose ten features out of 14. For the

other two datasets, the differences are greater. In this work, we

will utilize the traditional, impurity-based feature importance,

since it also has the biggest overlap with the other methods.

1https://github.com/lsinfo3/cnsm2024-xai-nids-comparison
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TABLE III: Model performance for different ML models across the three datasets.

DT RF LGBM SLP MLP

Dataset F1macro F1micro F1macro F1micro F1macro F1micro F1macro F1micro F1macro F1micro

CIDDS 0.9939 0.9965 0.9939 0.9966 0.9939 0.9965 0.9932 0.9962 0.9933 0.9962
CICIDS 0.9863 0.9872 0.9864 0.9873 0.9876 0.9885 0.9621 0.9648 0.9750 0.9766
EdgeIIoT 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

TABLE IV: Most influential featuresa of explanations for all XAI methods for one random example of CIDDS.

DT RF LGBM SLP MLP

SHAP LIME TI SHAP LIME TI SHAP LIME SHAP LIME Sal. IG DLIFT SHAP LIME Sal. IG DLIFT

S S Dur. S S S S S S S Dur. S S F Tos Dur. F F
Dur. Tos S F Tos F Dur. F F Tos Tos F F S UDP Tos S S

P F Tos P Dur. Pkts F Tos Tos F Pkts Pkts Pkts Tos R Pkts Pkts Pkts
UDP P F Dur. P Dur. UDP Dur. Dur. UDP S A A P F R TCP A
Tos Dur. P Pkts UDP P Tos R P Dur. R TCP TCP UDP P UDP A TCP

aThe features A, S, F, P, R depict the TCP Flags ACK, SYN, FIN, PSH, RST, respectively; Tos = Type of service in the IP header, defines packet priority.

Since our goal is to not only compare the explanations

of different XAI methods but also the impact of varying

underlying models, we select a variety of ML models. Tree-

based models and NNs constitute the most popular ML models

in recent IDS literature [6]. Overall, we select five mod-

els; three tree-based ones (RF, DT, Light Gradient-Boosting

Machine (LGBM)), and two NNs, namely a simple Single-

Layer-Perceptron (SLP) and a Multi-Layer-Perceptron (MLP).

Table II illustrates the compatibility of these models with the

chosen explainers. In total, we select six explainers, namely

SHAP, LIME, Tree Interpreter (TI), Saliency, Integrated Gra-

dients (IG), and DeepLIFT, giving us a mixed selection of

gradient- and perturbation-based XAI methods. The table

shows that all five models are compatible with SHAP2 and

LIME. TI is only implemented for two of our models (RF,

DT). Lastly, IG, DeepLIFT, and Saliency only work for NNs.

Consensus Quantification. After selecting our ML models

and their corresponding explainers, the next step is to de-

termine how to calculate the consensus across the different

model+explainer combinations to measure their agreement or

disagreement. For this, we employ a sign, an unranked, and

a ranked quantification, as similar metrics have been found

useful by Krishna et al. [17] in other domains, such as finances,

images, and texts based on interviews with data scientists.

For the sign quantification, we simply look at the signs

(positive, negative, or zero) of assigned impact values for

all features, i. e., if the feature has a positive or negative

impact on the decision w.r.t. to the explanation for the targeted

class. Note that a negative impact does not mean that a

feature worsens the model’s performance or that this feature

is unimportant. This consensus should ideally be better than

a random assignment. Roughly 33% of all signs would match

when randomly guessing, since we also account for zeros.

For the unranked quantification, we look at the five most

influential features (out of the ten chosen features) for each

of the resulting explanations and calculate the intersection of

them without respect to the ranking of these top five features.

Ideally, this should be better than a random explanation, i. e.,

a random selection of features. In other words, assume that

we have a given explanation by one of the explainers. If we

now draw at random five features from the total number of

features, the expected random unordered consensus follows a

2Note that we use the Tree- and DeepExplainer here, which are actually
tailored to the specific models to efficiently approximate the SHAP values.

hypergeometric distribution. This distribution has an expected

value of nM
N , where n is the number of draws (five here), M is

the number of elements with the “correct” characteristic (in our

case also five, since we want to match the five features from

the given explanation), and N is the number of total elements

(number of total features for us). For example, analyzing the

consensus of the top five features out of ten total features with

a random feature selection has an expected consensus of 2.5

features. This serves as a baseline comparison, to quantify if

the degree of agreement of the different explanations is simply

due to random matching.

In the ranked quantification we now take the actual order

of the features in the explanations into account. Specifically,

we are interested in how many of the top features match in

order, e. g., only the first feature matches, the first two, and so

on. This also means that we are not interested if, e. g., only

the fourth feature matches if the ones before do not. Again,

we want to have a better consensus than a random ordering of

the features. Sticking with the example for ten total features,

the probability for zero matches is 9
10 , since must not draw

the top feature at random from the ten. The probability for

exactly one match is 1
10 · 89 , since we have a 1 in 10 chance to

randomly draw the top feature. Then we have to avoid drawing

the second most important feature to have exactly one match.

In general, the probabilities for having exactly k matches when

randomly drawing M features are defined as follows:

P (k) =

{
(N−k)!

N ! · N−k−1
N−k (if k < M )

(N−k)!
N ! (if k = M )

Note that the probability for M matches is missing the last

factor, since we only look at the top M features, and any

match that would happen afterward is irrelevant. Thus, the

expected random ranked consensus, i. e., the expected value

of the number of matches when M features are randomly

drawn is E[X] =
∑M

k=0 k ·P (k). In our case of comparing the

consensus of the five top features out of ten total features, the

expected random consensus is around 0.113 features, which

will serve as the baseline for the analyses below.

V. EVALUATION

Preliminary Performance Analysis. Before diving into the

XAI-related analyses, we first want to briefly examine the ac-

tual model performance. This ensures that the (dis)agreement

of the various combinations of models and explainers is not
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a byproduct of underperforming classifiers. For this, Table III

depicts the performance of all five chosen ML models on all

three datasets via the macro and micro F1-scores. All models

achieve high scores, most of them exceeding 98%, with the

exception of the NN-based models for the CICIDS dataset,

where the performance slightly drops, but still remains high,

nonetheless. Since we look at the macro F1, we also account

for the imbalances in the datasets.

Exemplary Local Qualitative Analysis. For our actual

XAI analysis, we follow a bottom-up approach, by first inves-

tigating a local explanation more qualitatively, before looking

into local and global explanations in a more quantitative man-

ner. To explain how the output of the different explainers looks

like (i. e., the most influential features), Table IV depicts the

explanations of why the models chose the predicted class for

all valid combinations of model+explainer and for a random

example from the test set of the CIDDS dataset. Cyan-colored

cells illustrate features that positively impact the decision,

while red-colored cells depict features that negatively impact

the decision. The vibrancy of the colors depicts the respective

feature’s overall influence w.r.t. to the most important feature,

i. e., darkred and darkcyan both have a decisive impact, while

lighter colors make less of a difference.

Overall, the table illustrates that – for this specific sample

– 11 out of 18 approaches agree at least that the SYN flag

is the topmost positively impactful feature. Starting with the

second most important feature, the opinions already diverge

w.r.t. to the relative strength of the impact, as well as the

overall ranking of features. This happens within the same

XAI method, as well as for the same model, especially for

the SLP and MLP. There are also some contradictions in

the feature’s signs, e. g., while LIME assigns the RST flag

a positive influence for MLP, it assigns the topmost negative

influence for LGBM. In summary, while there is a trend of

agreement regarding the top features, there are already some

notable disagreements visible, even within similar ML models.

Local Quantitative Analysis. Since we only investigated a

single exemplary explanation regarding the overall consensus,

we now shift our view to a more aggregated analysis. For

this, Figure 2 depicts three types of heatmaps over all 18

possible combinations of model+explainer, illustrating the

sign, unranked, and ranked consensus of for all three datasets

for 1k randomly selected samples from the test data. The more

vibrant the color, the higher the consensus.

For the sign consensus, the small stars mark an average

consensus of 50% to 75%, and the big stars mark an average

consensus of greater than 75% of all ten chosen features. The

baseline value (33%) is marked by small dots. For CIDDS,

we see a clear distinction between the permutation-based

methods and gradient-based methods. In these two groups,

the agreement of methods is high as indicated by the stars.

Between the groups, however, the consensus is often lower

than the baseline, meaning that the methods do not even agree

on a sign. For CICIDS, we see a similar trend. However,

in the group of permutation-based methods, we now see a

clearer trend of explainers with a similar model agreeing

more compared to others, e. g., SLP and MLP, and for almost

all cases the consensus is higher than the baseline. Lastly,

for IIOT, the consensus here is more intermixed among the

different methods. Looking at the actual explanations and their

impact, on this dataset already a few features are sufficient

for a good classification. This eases the overall agreement

of diverging methods since the remaining features are not

as important. Though, compared to the other datasets, there

are more gaps, as these remaining features potentially just get

assigned a value of ‘0’ in terms of impact for some methods,

while other methods at least assign a small contribution.

For the unranked consensus, the small stars mark an average

consensus between three and four features, the big stars mark

an average consensus of greater than four of the top five

features (out of ten chosen features). The baseline value (2.5)

is marked by small dots. For CIDDS, we see a similar trend

to the sign consensus, where there is a distinction between the

two general groups of explainers. For CICIDS, however, the

trend diverges now. We can only see a faint trend that similar

models (tree-based and NN-based) now agree more. For IIOT,

the overall consensus is higher, since the distinction between

normal and attack traffic is enabled by only a few features,

similar to the sign analysis. For all datasets, the unranked

consensus is mostly at least on par with random guessing.

For the ranked consensus, the small stars mark an average

consensus between 0.5 and one feature(s), and the big stars

mark an average consensus of greater than one of the top

five features (out of ten chosen features). The baseline value

(0.113) is marked by small dots. In general, the consensus

is overall lower compared to the unranked analysis, which is

expected, since this consensus is much harder to achieve. For

many methods, their explanations do not even match on the

most important feature, which is also showcased by the fact in

many cases the consensus is even worse than a random guess.

In summary, all three consensus analyses showed, that while

there are some trends towards agreement – especially between

perturbation- vs. gradient-based methods and when the same

underlying model is used – XAI approaches for NIDS are not

generally interchangeable, and even similar model+explainer

combinations struggle to consistently agree on the top one

feature only. For example, for IIOT and CICIDS, the DT and

RF barely even agree on the first feature. The trends where

approaches agree or not are also inconsistent, i. e., the gaps in

the consensus heatmaps are dependent on the dataset.

Global Quantitative Analysis. In addition to the local

analyses, we can sum up the absolute values of each instance to

get an overall score per method. While explainers are primarily

designed for individual explanations, this aggregated analysis

may offer insights on consensus at a global level (but may

overlook local nuances). Table V illustrates this for CIDDS

only for brevity’s sake, where a darker color depicts a high

impact feature (color gradient w.r.t. to top 1 feature). We see

a correlation between the amount of consensus and type of

explainer, i. e., IG and DeepLIFT agree, SHAP and LIME

agree (partially also with TI), and Saliency is a bit of an outlier.

Saliency assigns the flow duration the highest impact by far,
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(a) Sign consensus of all features. (b) Unranked consensus of top features. (c) Ranked consensus of top features.

Fig. 2: Comparison heatmaps of XAI consensus for the three different datasets.

TABLE V: Global analysisa for the CIDDS dataset.
SHAP LIME TI Saliency IG DeepLIFT

DT RF LGBM SLP MLP DT RF LGBM SLP MLP DT RF SLP MLP SLP MLP SLP MLP

S S S S UDP S S S S Tos S S Dur. Dur. TCP A TCP TCP
Dur. Dur. Dur. Tos Tos Tos Tos F F UDP Dur. Dur. Pkts Pkts A TCP A A

A F F UDP F F UDP R Tos R Tos Pkts Tos Tos S F S Tos
UDP Pkts A F P UDP Dur. Tos UDP F R F R UDP F Tos F F
Tos Tos Tos A A Pkts Pkts Dur. Dur. P Pkts Tos UDP R UDP S UDP S

aThe features A, S, F, P, R depict the TCP Flags ACK, SYN, FIN, PSH, RST, respectively; Tos = Type of service in the IP header, defines packet priority.

while other methods assign it a lower impact or do not consider

this for their top five at all. Interestingly, Saliency also does

not consider the rest of the features as important, which is

another reason for the disagreement between Saliency and the

other methods, since these features may potentially be more

random when looking at the top five. This global view directly

explains the heatmap trends on the basis of the actual features.

For CICIDS, the global insights shed some light onto why

the trends for the unranked analysis might be more faint, but

also more intermixed w.r.t. to perturbation- vs. gradient-based

methods, compared to CIDDS. The top features of all methods

are often related to the packet sizes. So, the explanations in

itself are actually quite similar among the methods. Some

methods choose the mean packet size, some the maximum,

and some only focus on one flow direction for their top 1.

Lastly, for IIOT, the global analysis reveals that many

top features are related to the MQTT protocol (name, flags,

or topic). Many methods even consider these features by

far the most important. This explains why the consensus is

generally higher here, as already briefly mentioned for the sign

consensus. Moreover, this also explains why the consensus is

divided into smaller groups, since it depends which one of the

features they rank as the top feature (and in some cases assign

the rest no/less importance), even though they are all suitable.

In summary, the global analysis reveals the reasoning behind

the trends of the heatmaps. It also shows that one potential

reason behind a lower consensus could be due to correlations

between features, making multiple explanations valid. Ulti-

mately, this highlights the need to not only carefully select

different XAI methods but also to keep the their input concise.
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VI. CONCLUSION

In this work, we explored the consensus among various

explainable AI (XAI) methods for Machine Learning (ML)-

based Network Intrusion Detection Systems (NIDS). Given the

variety of XAI techniques, such as SHAP, LIME, Tree Inter-

preter (TI), Saliency, Integrated Gradients (IG), and DeepLIFT,

an important question is whether these methods provide con-

sistent explanations for NIDS. If a strong consensus exists, it

could reduce the need for rigorous individual evaluations and

ease the practical adoption of ML-based NIDS.

Our findings indicate that not all XAI methods are in-

terchangeable for ML-NIDS. Depending on the dataset,

perturbation- and gradient-based methods diverged, while

in other cases the underlying model was more important.

The gaps in consensus are overall inconsistent and dataset-

dependent. Even similar models match in some cases not better

than random guesses, and many approaches do not even agree

on the top 1 feature consistently. Our analyses also revealed

that while explanations may diverge in terms of exact fea-

tures, they might choose related or correlated features instead,

making multiple explanations valid. For network monitoring

and NIDS specifically, this highlights the importance of not

overloading models with unnecessary information about the

network traffic, since the explainers can only work with what

they are given. Due to the found gaps in consensus, it seems

reasonable to not rely solely on a single explanation, e. g., by

utilizing multiple XAI approaches [41]. In this case, removing

correlations between features seems necessary to avoid hav-

ing different explainers present alternative but equally valid

explanations, which further reduces consensus. Alternatively,

we can soften the metrics by taking the weights of the features

into account, instead of just ordinal rankings [17].

In future work, we aim to explore multi-label classification,

as well as evaluating class-specific explanations to better un-

derstand how attacks vs. normal traffic are interpreted by XAI

methods, since in this work we looked at randomly selected

samples without respect to the classes. Instead of utilizing the

already preprocessed datsets, we also want to unify feature sets

among different datasets by extracting own custom features,

preferably on real-world/more realistic traffic. We also plan to

extend our work with a parameter study on alternative feature

selection methods and varying number of features, to quantify

how we can affect the consensus positively.
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