

Green Network Traffic Engineering Using

Segment Routing: an Experiment Report
Jacob Van Groningen

Department of Systems and Computer Engineering

Carleton University, Ottawa, Canada

jacobvangroningen@cmail.carleton.ca

Chung-Horng Lung

Department of Systems and Computer Engineering
Carleton University, Ottawa Canada

chlung@sce.carleton.ca

Abstract— With the ever-expanding network-based services,

environmental impact has become a concern, as the surge in

network traffic between devices has only intensified in increased

energy consumption. This paper aims to exploit Segment Routing

over IPv6 (SRv6) for energy efficiency purposes for data

forwarding. SRv6 is a traffic engineering mechanism that enables

data packet steering using segments in IPv6 headers. The main

idea of the paper is to use SRv6 with automatic rerouting of

network traffic based on the resource usage of network devices for

higher energy efficiency compared to the traditional IP forwarding

based on the shortest path first (SPF) algorithm. The method and

system outlined in this paper dynamically created network

topologies within Mininet and performed SRv6 using the ROSE

platform to route packets through the most energy-efficient paths,

all while actively collecting device usages, calculating dynamic

weights, computing energy-efficient paths, and rerouting the

traffic using SRv6. This paper successfully achieved the goal of

energy-aware traffic rerouting. The results showed that the

resource usage for SRv6 could be more than 70% lower than that

of the SPF-based forwarding, depending on the network topology.

Keywords—Green networking, segment routing, SRv6, software-

defined networking, Mininet, ROSE platform

I. INTRODUCTION

The number of network devices has increased dramatically
due to the huge volume of Internet traffic. Hence, the total
energy demand for network devices continues to grow
significantly. Energy-aware or green networking approaches
have been proposed. Green networking can be supported at
different layers, such as hardware, device, network, and
protocol. Further, green networking techniques have been
investigated for different types of networks, such as data center
networks, Ethernet, and backbone networks. Green networking
has gained more popularity in the literature [1].

Traditional network traffic engineering (TE) using the
Interior Gateway Protocol (IGP) centers on performance and
reliability by overprovisioning and exploiting redundancy. For
instance, in [6], the average link utilization for a specific
backbone network was around 10% and the link utilization was
over 50% only when there were failures in the network. Further,
a common objective for the traditional TE approaches is to
minimize the maximum link utilization (MLU) [7] for higher
performance and reliability. As a result, those TE approaches
consume more energy or generate a higher carbon footprint in
order to reduce MLU for performance and reliability purposes.

Various green TE approaches have been proposed [2-5,14-
17]. They share a common feature, i.e., reducing the overall
carbon footprint by turning off some ports, links, or even nodes,
or putting some of them to sleep mode, when the utilization is
low for the corresponding device. For the backbone networks,
that means efficient path computations and traffic rerouting are
moving away from the distributed Multiprotocol Label
Switching (MPLS) technique to software-defined networking
(SDN) that has a central controller to effectively monitor devices
and network telemetry and recompute data forwarding paths.
Segment Routing IPv6 (SRv6) [2-5] is based on the SDN
concept for routing and offers flexibility and programmability to
support TE. SRv6 has gained a great deal of attraction from
network operators recently.

SR-based green TE techniques have been proposed in the
literature, such as [8-10]. Those methods all share similarities in
putting underutilized resources into idle mode. However, they
were proposed for SR over MPLS (SR-MPLS), not SRv6. This
paper focuses on traffic path computations, reroutes, and data
forwarding for backbone networks using SDN and SRv6.
Further, there is a lack of experimental resource usage
measurements for SRv6-based green TE compared to regular
IGP-based data forwarding. Hence, the objective of the paper
aims to reduce the carbon footprint of a network while
maintaining the quality of service provided by the traditional TE.
The contribution of our paper is to conduct an experimental
evaluation of energy-aware traffic rerouting by monitoring
resource usage and subsequent dynamic weight calculation

using a testbed implementation with the SRv6 platform ROSE
[11]. We tested various network topologies and compared the
resource usage of methods with shortest path first (SPF) and
energy-aware rerouting using SRv6. The results showed that the
SRv6-based data forwarding results in lower energy
consumption than SPF-based data forwarding.

The rest of the paper is organized as follows: Section II
highlights related works. Section III describes the proposed
approach. Section IV presents the experiments and results.
Finally, Section V is the conclusions and future directions.

II. RELATED WORKS

A. SDN, Mininet, and Ryu Controller

SDN has attracted a great deal of attention since its

innovation. It is a new paradigm that separates the control logic

from the data plane to reduce the complexity of network

2024 20th International Conference on Network and Service Management (CNSM)

978-3-903176-66-9 ©2024 IFIP

operations. As a result, network devices have been simplified

and most control functionalities have been shifted to the central

controller. The central controller monitors the status of network

devices of the entire network, makes decisions for each device,

and sends instructions to target network devices for execution.

 One prominent example of an SDN controller is the Ryu

controller [12]. Ryu provides a flexible framework for building

SDN applications and network management solutions.

However, other controllers can also be used. Mininet [13] is a

popular network emulator that facilitates the creation of

customized networks for experiments and exploratory research.

B. SRv6

SR simplifies the control plane by using source routing to

replace complex Resource Reservation Protocol (RSVP) while

keeping efficient MPLS data plane forwarding. SR can be

realized using MPLS (SR-MPLS) or IPv6 (SRv6) [2-5]. Similar

to MPLS data forwarding, SR uses predefined labels or

segments for a traffic flow to follow the shortest path or an

explicit path. A segment can be either a 32-bit label for SR-

MPLS or a 128-bit IPv6 address for SRv6. This paper focuses

on SRv6, as it offers more flexibility and advantages. Further, a

stack of multiple SRv6 segments conceptually has higher

processing overhead, because each segment has 128 bits if

compression is not used. Hence, it is important to investigate

SRv6’s impact on the energy consumption for reroutes, as

rerouted paths usually are longer than the shortest paths.

The ROSE platform [11] for SRv6 is built upon the open

Linux ecosystem with the support of an industrial partner,

Cisco. It is easy to access and useful for exploratory research.

C. Green TE

Green TE has been investigated for different routing
protocols, i.e., traditional IGP [14], MPLS [15][16], and SR [2–
5][17]. SDN has also been used [9] and is assumed to be the
default architecture in many existing green TE techniques or SR
in general [2–5]. The authors in [10] presented important related
techniques that have been adopted for green TE approaches.

Our paper focuses on green TE using SRv6 and SDN for two
main reasons: (i) SRv6 supports explicit routing for traffic
steering with higher header overhead as explained earlier, but
without the complex MPLS operations at the control plane; and
(ii) SDN controller provides a global view of the network, which
reduces the complexity of distributed routing information
dissemination and simplifies path computations.

III. DESIGN OF GREEN TE USING SRV6

This section presents the design of green TE using SRv6. To

support green TE for rerouting traffic, resource usages need to

be continuously monitored, and dynamic link weights be

updated based on usages. The updated weights will then be used

for path computations and rerouting. There are different

methods for weight and path computations, but they are not the

focus of our paper. The main objective of the paper is to conduct

an experimental evaluation and comparison of resource usage

for IGP-based data forwarding using SPF and energy-aware

SRv6-based reroutes for data forwarding. Different methods for

path computations can be used for similar purposes.

����ℎ������	 = ��
������� + ������������� +
 ��
������� + ������������� �1	

�� !�" = #$%&��, $%&�� ≤)����*ℎ
0, $%&�� >)����*ℎ �2	

Equations (1) and (2) are used to calculate the link or edge

weights based on measured CPU and memory usage on each

side of a link for dynamic SR path computations for each

(source, destination) pair using a modified weighted Dijkstra

SPF algorithm. ��
������� and ��
������� represents the CPU

score for transmitting (tx) and receiving (rx) data packets

measured for a node on each side of a link, respectively.

Similarly, ������������� and ������������� denotes the

memory score for transmitting and receiving data packets for a

node on each side of an edge, respectively. The usage data

collected are sent to the controller for path computations.

LimitTh is a configurable threshold allowing for potential

traffic bursts. Cisco’s recommendation of 75% for reservable

resources was used as a reference. Hence, the value of LimitTh

is 70, i.e., a buffer of 30% CPU and memory capacities are

reserved to accommodate potential usage spikes and ensure

sufficient resource remains available during traffic spikes

caused high packet volumes. Maintaining LimitTh below a

certain level contributes to router stability in such scenarios.

Each link CPU and memory score of a node is calculated by

taking the modulo with LimitTh of 70. For instance, if the

CPU usage is at 65%, it would be 65. However, if the CPU or

memory usage on either endpoint of a link is over LimitTh, the

score for that link is set to 0, and the link will be considered

overloaded. If all links are overloaded, the one with the least

usage will be used for path computation. The purpose is to

reduce the likelihood of nodes having usages over LimitTh to

be used in the SPF calculations if an alternate path is available.

A simple method for the final weight calculations is used by

subtracting each metric score from 100. For instance, 100 – 65

= 35 is the final score for a metric. The total weight for the link

is then summed by taking these final four CPU and memory

scores for a node on each side of the link, they are then summed

to determine the smallest score for each link, which is then used

in SPF. The higher sum is the score for the link, except in the

instance of all links being over LimitTh. The links with higher

sum (lower utilization after subtraction from 100) are less

favored using SPF, as SPF chooses an edge with the lowest cost

first. These metrics are collected with the psutil (process and

systems utilities) system call at nodes on each side of the link.

The algorithm calculate_weight to compute link or

edge weights is depicted as follows. Currently, four metrics are

used for each endpoint of an edge, as shown in Equ. (1), hence

the combined edge score is 4 × (100 – each resource score).

Algorithm: calculate_weight

Purpose: Calculate weights for links/edges based on host

measurements. Higher weights indicate better feasibility for SR.

Inputs:

• self: Reference to the network object containing the function

• get_edges(): Function retrieves the network's edges

Outputs:

2024 20th International Conference on Network and Service Management (CNSM)

• Updates the weighted_edges Python dictionary with edge

weights for Segment Routing

Steps:

1. Initialize an empty dictionary weighted_edges for all edges.

2. Call get_edges() to get all edges and store them in edges.

3. Iterate through each edge in edges:

• Create a dictionary overloaded_endpoint_scores to

track overloaded endpoints (initially 0 for all endpoints).

• Create a dictionary edge_scores to store scores for each

endpoint in the edge (initially empty).

• Iterate through each endpoint endpoint connected to edge:

o Calculate scores for endpoint resource usage (memory,

CPU) using modulo with LimitTh.

o If endpoint memory or CPU usage exceeds LimitTh:

 Add the usage amount to
overloaded_endpoint_scores[endpoint].

 Set the corresponding score in

edge_scores[endpoint] to 0 (infeasible).

• Calculate a combined edge score for each endpoint:

edge_scores[endpoint] = 4 × (100 – each resource score).

• Set a flag endpoint_feasible to True if all resource

scores for the endpoint are positive (feasible).

4. Based on endpoint_feasible:

• If feasible:

o Create temporary weights for each endpoint on the edge:

weight = edge_score + 1.

o Update weighted_edges with these temporary weights.

• If not feasible:

o Find the endpoint with the lowest score (least overloaded).

o Create temporary weights for all endpoints on the edge with

a weight of 4 × 100 (highest score or infeasible).

o Set the weight for the least overloaded endpoint to its actual

edge score.

o Update weighted_edges with these temporary weights.

5. Use the nx.set_edge_attributes function (assumed to be

from the NetworkX library) to set the calculated edge

weights on the network graph self.G.

Note that CPU and memory usage data are used for link

weight calculations here, as both measurements can be obtained

quickly from the system calls. The proposed algorithm was

called while a packet was being routed. Since the metrics are

actively being evaluated, there may be potential changes from

the previous path calculations. An alternative approach would

be to call this algorithm after the metrics are evaluated and then

save that result for all packets being routed until the next

evaluation. The weight calculation can also be replaced with

another formula, for example, link bandwidth utilization if both

sides can be effectively measured. The purpose of the paper is

to show dynamic link weight calculations and subsequent SR

path computations and reroutes for proof-of-concept.

IV. EXPERIMENTAL SETUP AND RESULTS

A. Experiment Setup

To validate the design, several experiments were conducted

using different topologies and various tools. Specifically, four

topology types were evaluated: Linear, Tree, Mesh, and Web.

The tools used included the ROSE platform [11] for SRv6 path

creation and data forwarding, Mininet for network emulation,

Ryu for the SDN controller, NetworkX for network topologies

generation and a modified weighted SPF algorithm

implementation, InfluxDB for querying resource usage, and

Grafana for visualizing the results. TABLE I shows the

parameters for four different types of topologies

TABLE I. TOPOLOGY TYPES AND PARAMETERS FOR EXPERIMENTS

Topology Minimum Size Maximum Size

Linear 2 20

Tree 2 4

Mesh 2 20

Web 2 4

The size of each linear or mesh topology is directly

proportional to the size of the nodes, with the number of nodes

being 2×SIZE, while the size of the Web and Tree topologies

have a structure of SIZE nodes stemming off each node SIZE

layers deep from the central router, thus the number of nodes is:

. = ∑ 01234567849: (3)

To generate the traffic for the network, the hosts of the

network were iterated through each sending a single ICMP

packet at a time from that host to every other host continuously

during a 5-minute timespan. Each packet had a one-second

timeout, leading to a minimum packet density of 300. However,

with the ICMP request duration closer to one millisecond, the

actual packet density was about 300,000. The traditional SPF-

based routing was realized using the SimpleSwitch method

provided by Ryu, while the SR implementation was based on

the aforementioned weighted Dijksktra algorithm to compute

paths based on collected data and the calculated weights.

Various tools were used to automate topology generation

and evaluation using CustomTopo which is an interface for the

NetworkX Python library. Further, IPv6 addresses must be

assigned to hosts and the network must follow a specific format.

These IPv6 addresses are then added to the /etc/hosts file

using the Python-Hosts library. Following the addressing of

the hosts, they are configured for operation with the Free

Range Routing protocols Zebra and IS-IS using the

configure_hosts method to create configuration files for

each protocol and will start the protocols at each node. The

dynamic topology creation suite also can plot the network and

its shortest paths. The topology can be displayed circularly by

taking the network with NetworkX along with the Python

library PyGraphviz. Additionally, a shortest path can be

passed to the plot_topologies method to visualize the

shortest path, as shown in Fig. 1.

One strength of SR is its flexible forwarding compared to

the SPF-based method. As stated, the paper adopted a simple

dynamic weight calculation method based on CPU and memory

usage. The forwarding paths may be rerouted for energy-saving

purposes using SRv6. The dynamic topology creation suite not

only can plot the network topology but also show the paths.

Based on the results, there was little difference between

different sizes for the same type of topology. Hence, this paper

only shows the average values for each topology type in TABLE

II for SRv6 and traditional SPF routing.

2024 20th International Conference on Network and Service Management (CNSM)

Fig. 1. Web topology of size 3 (r1: root, child node degree: 3, mesh for the 2nd

and 3rd levels, the number of hosts for each leaf router: 3, each host is also an
edge node with two neighbors, and SPF path in red and SRv6 path in yellow).

The green SRv6-based solution monitored the resource

usage of each node every minute (for experiment purposes) and

then calculated the shortest path based on updated usage and

weights. The ingress node of a path performed rerouting using

SR, if needed. For instance, based on collected resource usage,

weight calculation, path computation at the controller, and

rerouting using SRv6, Fig. 1 shows the new computed path in

yellow h14, r5, r2, r3, r10, h29, h28, and h27 in contrast to

the static shortest path in red h14, r5, r2, r3, r9, and h27.

TABLE II. EXPERIMENT RESULTS

Topology
Operation

State
Average CPU

Usage (%)

Average Memory

Usage (%)

Linear
SRv6 80.13 55.57

SPF 74.39 50.61

Tree
SRv6 17.25 59.02

SPF 76.82 71.69

Mesh
SRv6 0.33 55.77

SPF 86.07 55.27

Web
SRv6 10.47 56.72

SPF 84.23 55.83

Average
SRv6 27.05 56.77

TR 80.38 58.35

As shown in TABLE II, the results for the Linear topology

are lower for the traditional SPF than that of SRv6. These

averages were calculated from data points collected during

testing, with the overall average being a weighted average based

on the different network sizes used. The memory usage results

for mesh and Web topologies do not reveal much difference.

However, the CPU usage outcomes for SRv6 are significantly

lower than those of SPF in Tree, Mesh, and Web topologies.

Energy consumption decreases as CPU utilization decreases. A

CPU consists of millions of transistors. Modern CPUs are

designed to be energy efficient, as most parts of the CPU are

switched off when the CPU is idle. For advanced CPUs, lower

CPU utilization will save even more energy [17]. Based on the

measured resource usage results, SRv6-based rerouting already

saves energy as the CPU utilization is mostly lower compared

to SPF routing. Further, it has the potential to save even more

energy if some links could be put into the energy-saving mode.

V. CONCLUSIONS AND FUTURE DIRECTIONS

Green TE is an important issue not only for network

operators but also for environmental concerns. This paper

presented a preliminary evaluation using SRv6 and SDN to

reduce energy consumption for underutilized devices. The main

contribution of the paper was an experimental validation and

feasibility investigation by monitoring resource usage, invoking

dynamic weight calculation, and performing energy-aware

rerouting with SRv6/SDN. Experiments were conducted using

various tools. The results showed that the SRv6-based green TE

method has the potential to save energy consumption.

Further research is needed to investigate detailed resource

usage on ROSE, Mininet, and real routers for SPF- and SRv6-

based forwarding and link utilization using practical network

traffic data, alternative weight calculation, and effective traffic

reroute policies. SRv6 features, such as SID compression [4]

and ECMP, warrant more research and evaluation.

REFERENCES

[1] GreenNet conference https://sites.google.com/view/greennet2024/home,
(accessed May 2024).

[2] C. Filsfils, et al., Segment Routing Part I, 2017.

[3] C. Filsfils, et al., Segment Routing Part II, 2019.

[4] Z. Li, Z. Hu, and C. Li, SRv6 Network Programming Ushering in a New
Era of IP Networks, CRC Press, 2021.

[5] P. L. Ventre et al., “Segment routing: A comprehensive survey of
research activities, standardization efforts, and implementation results,”
IEEE Commu. Surveys and Tutorials, pp. 182–221, Jan. 2021.

[6] A. Hassidim, D. Raz, M. Segalov, and A. Shaqed, “Network utilization:
the flow view”, Proc. of IEEE INFOCOM, 2013, pp. 1429–1437.

[7] B. Fortz, J. Rexford, M. Thorup, “Traffic engineering with traditional IP
routing protocol”, IEEE Commu. Magazine, 40(10), 2002, pp. 118–124.

[8] R. Carpa “Segment routing based traffic engineering for energy efficient
backbone networks,” Proc. of IEEE Int’l Conf. on Advanced Networks
and Telecommunications Systems, Dec 2014, pp. 1–6.

[9] C. Thaenchaikun et al., “Mitigate the load sharing of segment routing for
SDN green traffic engineering,” Proc. of Int’l Symp. on ISPACS, 2016.

[10] C.-H. Lung and H. Elbakoury, “Exploiting segment routing and SDN
features for green TE”, Proc. of IEEE 8th Conf. on Network
Softwarization, 2022, pp. 49–54.

[11] S. Salsano et al., “Netgroup/rose-SRV6-tutorial: SRV6 on a mininet
topology with IS-is routing and a Controller,”
https://netgroup.github.io/rose/ (accessed May 2024).

[12] “Ryu SDN Framework.” https://ryu-sdn.org/ (accessed March 29, 2024)

[13] “MiniNet: An instant virtual network on your laptop (or other PC).”
http://mininet.org/ (accessed March 29, 2024).

[14] N. Okonor et al, “Dynamic link sleeping reconfigurations for green
traffic engineering,” Int’l J. of Communication Systems, 30(9), 2017.

[15] G. Yan, J. Yang, Z. Li, “OSPF extensions for MPLS green traffic
engineering,” IETF draft-li-ospf-ext-green-te-01, 2014.

[16] M. Zhang, C. Yi, B. Liu, B. Zhang, “GreenTE: power-aware traffic
engineering,” Proc. of IEEE Int’l Conf. on Network Protocols, 2010.

[17] F. Lamharras et al., “Green traffic engineering: solution for reducing
energy consumption in SDN network with segment routing”, Journal of
Theoretical and Applied Information Technology, 2023, pp. 7266–7274.

[18] B. Z. M. Feng and C.-H. Lung, “A green computing based architecture
comparison and analysis”, Proc. of IEEE/ACM Int’l Conf. on Green
Computing and Communications, 2010, pp. 386–391.

2024 20th International Conference on Network and Service Management (CNSM)

