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Abstract—In this paper, we extend and evaluate the effec-
tiveness of ADVENT (Attack/Anomaly Detection in VANETS),
a machine learning-based system designed for early attack
detection and malicious node identification in Vehicular Ad
Hoc Networks (VANETs). ADVENT combines machine learning
with federated learning to detect the onset of attacks while
preserving user privacy. The system detects and reports malicious
nodes to neighboring vehicles, allowing proactive defense against
attacks. We focus on its robustness against various Distributed
Denial-of-Service (DDoS) attacks. Using the Vehicular Reference
Misbehavior Extension (VeReMi-Extension) dataset, we assess
ADVENT across five distinct types of (D)DoS attacks, each
representing diverse attack characteristics. Based on our findings,
we enhance ADVENT by refining its malicious node detection
step through a time slicing mechanism, improving both False
Positive Rate (FPR) and F1-score metrics. Our evaluation shows
that ADVENT consistently excels in detecting attack onsets and
identifying attackers, even under different attack types. The re-
sults emphasize its adaptability and effectiveness in strengthening
VANET security.

Index Terms—VANET, (D)DoS,Malicious Node detection, At-
tack Onset Detection, Robustness, Machine Learning, Federated
Learning.

I. INTRODUCTION

Despite advancements in malicious behavior systems tai-
lored for Vehicular Ad Hoc Networks (VANETS), there per-
sists a crucial need to evaluate their robustness against diverse
attack scenarios. Evaluating the performance of malicious
behavior detection systems against different types of attacks
is imperative for identifying vulnerabilities and enhancing the
overall security posture of VANETSs. In the literature, the Ve-
hicular Reference Misbehavior Extension (VeReMi-Extension)
dataset dataset serves as a comprehensive repository for
assessing the effectiveness of malicious behavior detection
systems in mitigating various types of (D)DoS attacks [10].
In our previous work [6], ADVENT (Attack/Anomaly Detec-
tion in VANETSs) has been proposed and successfully tested
against DoS attacks in various settings, i.e., different traffic
conditions, road layouts, and attacker density etc. ADVENT
uses a Machine Learning (ML)-based approach, in particular
Federated Learning (FL), for malicious behavior detection.
The results in [6] show ADVENT achieving an average F1-
score of 99.66% in detecting when an attack commences i.e.,
Attack Onset detection and subsequently an average F1-score
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of approximately 97.85% in identifying the malicious actors
(vehicles) i.e., Malicious Node detection.

While those results are promising, this paper introduces an
update to our Malicious Node detection component aimed
at effectively managing the False Positive Rate (FPR) and
improving the F1-Score. Additionally, we provide further
evaluations of ADVENT that demonstrate its robustness and
effectiveness in detecting any type of distributed attack that
affects the frequency of packet reception at each node. To
this end, we employ the VeReMi-Extension dataset. The types
of (D)DoS attacks in the VeReMi-Extension dataset include
DoS, DoS Random, DoS Random Sybil, DoS Disruptive, and
DoS Disruptive Sybil attacks. These attack types represent a
wide range of mechanisms that might be used by an attacker to
improve the effectiveness of the DoS attack or evade detection.
Showing that ADVENT can also detect these attack types
will demonstrate its effectiveness in countering different attack
vectors and the robustness of the proposed system. In doing
so, we aim to identify areas for enhancements and propose
further improvements to strengthen misbehavior detection
mechanisms in VANETSs. In summary, apart from the results
of the new evaluations with the VeReMi-extension dataset,
this paper introduces a novel enhancement to ADVENT: We
have enhanced our method to calculate thresholds for detecting
malicious node behavior more effectively. This improvement
allows us to manage normal traffic from long-time neighbors
effectively, resulting in an increased F1-Score and decreased
False Positive Rate (FPR). By “long-time neighbors,” we refer
to vehicles that have similar trajectories and thus spend a
longer time than average close to each other while in the
simulation. This results in them sending and receiving more
packets from each other than usual.

The rest of this paper is organized as follows. Section
IT summarizes the related work. Section III introduces the
methodology. Section IV details the evaluations and results.
Finally, conclusions are drawn, and the future work is dis-
cussed in Section V.

II. RELATED WORK

This section provides an overview of existing research
efforts and contributions in the field of VANET security
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mechanisms and attack detection techniques, particularly those
utilizing the VeReMi-Extension dataset for their evaluations.

Attar et al. [3] provide a comparative analysis of several
ML algorithms for detecting DDoS attacks in connected
vehicle environments using the VeReMi-Extension dataset.
The algorithms were assessed based on detection accuracy
and execution time. The results indicate that XGBoost is the
most effective ML algorithm, followed by Random Forest and
SVM. The study specifically focuses on differentiating normal
Cooperative Awareness Messages (CAM) from flooding CAM
attacks in a Vehicle-to-Infrastructure (V2I) setting. However,
they focus on attack detection without addressing malicious
node detection, the onset of attacks, or data privacy aspects.

Hasan et al. [8] propose a scheme that includes fuzzy logic-
based factors and a novel data-centric parameter for enhanced
trust computation accuracy in VANETs. Their scheme captures
all malicious vehicle behaviors and effectively handles content
tampering attacks. An inter-edge transfer mechanism ensures
seamless trust evaluation when vehicles switch between edge
servers, improving overall VANET performance. Validated
through simulations using OMNet++ their method simulates a
freeway VANET environment with vehicles and edge servers.
Evaluations using the VeReMi dataset and its extension show
their scheme detects 36% more malicious vehicles in DoS
attacks, compared to existing methods.

Asensio-Garriga et al. [2] address security challenges in
V2X environments using beyond-5G networks and multi-
access edge computing. They utilized the VeReMi-extension
dataset for evaluations, achieving F1 scores of 99.06% for DoS
attacks, 97.97% for DoS Disruptive attacks, 92.56% for DoS
Disruptive Sybil attacks, 99.77% for DoS Random attacks, and
94.46% for DoS Random Sybil attacks. While this provides a
framework for detecting DDoS attacks targeting V2X services,
they do not address the onset of attacks, detection of malicious
nodes or data privacy related issues.

The work of Attar et al. supports our decision to use XG-
Boost in ADVENT [6] for ML-based attack onset detection,
demonstrating its effectiveness compared to other supervised
algorithms. The work of Hasan et al. [8] addresses attack
onset detection and malicious node detection through different
approaches. Our system, however, functions as a complete and
robust solution, emphasizing real-time attack onset detection,
model optimization, and a new data preprocessing method
that enhances simplicity and effectiveness. In contrast to prior
work, the previously proposed ADVENT system not only
addresses attack detection and onset detection but also includes
a component for malicious node detection, ensuring data
privacy while keeping the system optimized.

These works collectively offer insights and methodologies
for enhancing the security framework of VANETS for depend-
able and secure vehicular communications. Table I provides a
comparison between our proposed system i.e., ADVENT and
the prior works highlighted in this section.
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Fig. 1. Attack/Anomaly Detection in Vehicular NeTworks (ADVENT)

III. METHODOLOGY

In this section, we provide an overview of our previously
proposed ADVENT system [6] and the datasets employed
along with the different types of DDoS attacks evaluated in
this work.

A. Overview of ADVENT

ADVENT [6] operates as a decentralized defense mecha-
nism employing a federated learning approach for Attack On-
set and Malicious Node Detection. Figure 1 offers an overview
of the ADVENT system, illustrating its primary components
and their interactions. ADVENT is effective both with or
without Roadside Units (RSUs), and can be used in scenarios
where cars communicate either with RSUs or directly with
the cloud server via communication links. ADVENT provides
comprehensive protection while preserving privacy [6]. Below
we describe the primary components, shown in Figure 1, of
ADVENT:

« Vehicles (Nodes): Each vehicle sends and receives pack-
ets to and from other vehicles, communicates with RSUs
(if applicable), and interacts with the cloud server to
update the model for attack onset detection. Vehicles
also receive the final list for malicious nodes from the
cloud server. For this study, we assume the vehicles are
trustworthy, and verifying the trustworthiness of nodes is
beyond the scope of this work.

o Cloud Server: The cloud server is the central component
responsible for aggregating the models received from the
vehicles. It updates the model weights and sends the
updated models back to the vehicles, ensuring all vehicles
use the same model for attack onset detection. After an
attack is detected by any vehicle, it sends its list of nodes
suspected to be involved in the attack to the cloud server
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TABLE I
COMPARATIVE ANALYSIS OF RECENT ATTACK DETECTION WORKS ON VANETS
Paper Authors VD | AD | DOA | MND | FE | SL | FL | DP | AM | OT | ID
Asensio-Garriga et al. [2] * *

Attar et al. [3] * * *
Hasan et al. [8] * * * * * * *

ADVENT [6] * * B * % * E3 * ¥ ¥ *

VD - VANET Dataset, AD - Attack Detection, DOA - Detecting the Onset of Attacks, MND - Malicious Node Detection, - Feature Engineering, SL -

Supervised Learning, FL - Federated Learning, DP - Data Privacy, AM - Aggregation Method, OT - Optimization Techniques, ID - Imbalanced Data Handling

that aggregates these lists into one final list to share with
all vehicles.

o Communication Links: Communication links are used
for data transfer between vehicles and a central server,
using technologies like cellular networks, low Earth orbit
satellites, or radio communications depending on the
situation. The system’s adaptability to different communi-
cation methods ensures it can function in various environ-
ments. Since no sensitive data that could be reconstructed
by attackers is shared, conventional communication secu-
rity measures are deemed sufficient for protection.

o Attack Onset Detection: This component is an early
warning system to flag suspicious activity enabling AD-
VENT to identify potential threats in near real-time,also
it can be extended to handle DOS attacks carried out with
short bursts of attack traffic.

« Malicious Node Detection: Upon flagging suspicious
activity, ADVENT swiftly pinpoints potential malevolent
vehicles (nodes) lurking within the network. Through
a meticulous evaluation of individual vehicle behavior
against pre-established benchmarks, it identifies anoma-
lies and designates them as Malicious Nodes.

o Federated Learning and Adaptation: The ADVENT
system utilizes federated learning for both attack onset
and malicious node detection processes. The aggregation
required for federated learning is carried out on the
cloud server and enables the adaptation of vehicles to
the changes in the VANETs.

o Time Slicing Method: This paper introduces a novel
Time Slicing method within the ADVENT framework.
The method is added to enhance the detection of mali-
cious nodes by analyzing network behavior over discrete
time intervals. Algorithm 1 describes the Time Slicing
algorithm. The central idea is to monitor each node within
these time slices and aggregate the results to make a final
determination on whether a node should be classified as
malicious.

ADVENT system underwent evaluations in [5], utilizing 24
simulated datasets [4] featuring varying ratios of one type of
(D)DoS attack across four distinct city maps. The results of
the evaluations showed ADVENT achieving an Fl-score of
99.66% in attack onset detection and subsequently identifying
malicious vehicles with an average F1-score of approximately
97.85%. These results are promising. Nonetheless, in this
paper, we evaluate the robustness of ADVENT using the

Algorithm 1 Time-Slicing-Based Malicious Node Detection
1: Input:
2: Nodes: List of network nodes

3: Time Interval (T): 120 seconds (2 minutes)

4

5

Slice Duration (x): 2 seconds
Threshold (y): # Suspicious detections required to
mark a node as malicious
6: Detection Function: As described in Section III-A
7: Output:
8: Malicious_Nodes: List of detected malicious nodes
9: Initialize:

10: Suspicious_Counts[N] = 0

11: Malicious_Nodes = []

12: Begin:

13: for time_slice in range(0, 120, 2) do

14:  for each node in Nodes do

15: Status = Detection_Function(node, time_slice)
16: if Status == “Suspicious” then

17: Suspicious_Counts[node] += 1

18: if Suspicious_Counts[node] >y then
19: if node not in Malicious_Nodes then
20: Malicious_Nodes.append(node)

21: end if

22: end if

23: end if

24:  end for

25: end for

26: Return Malicious_Nodes

VeReMi-Extension datasets which enables us to compare it
to the state-of-the-art from the literature with a spectrum of
(D)DoS attacks.

B. VeReMi-Extension Dataset

The dataset utilized in this work i.e., VeReMi-Extension
dataset, is generated using the Framework For Misbehavior
Detection (F2MD) [9]. F2MD is an extension of VEINS
[1]. VEINS is an open-source simulator for Inter-Vehicular
Communication based on OMNeT++ and SUMO [11], [13]. In
these datasets, the simulation scenarios are set in Luxembourg
City, with a subsection of the LuST network (Luxembourg
SUMO Traffic), covering an area of 1.61 km? and a peak
density of 67.4 Veh/km?. Sensor error models are incorporated
into the datasets to render the data more realistic, including po-
sition, velocity, acceleration, and heading errors. The VeReMi-
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Extension dataset comprises 39 publicly available subsets that
capture various types of misbehavior during rush hour and low
traffic periods, along with a complete test bench for simulating
an entire day. Based on Luxembourg network simulations
with a 30% attacker penetration rate, these datasets can be
replicated or expanded using the open-source F2MD tool on
GitHub. We have also tested the ADVENT with different
portions of attackers in our previous papers [5], [6].

Each type of attack, including DDoS, Data Replay, Disrup-
tive attacks, Eventual Stop, and Traffic Congestion Sybil, is
simulated at different times of day, resulting in two subsets
for each attack type: one for rush hour (7-9 AM) and one for
low traffic (2-4 PM), labeled with the suffixes 0709 and 1416,
respectively. These datasets are publicly available.

e (D)DoS These attacks flood VANETs with messages
exceeding permissible frequency limits set by IEEE or
ETSI, causing network congestion and disrupting critical
communications, which can compromise road safety and
traffic management.

o (D)DoS Disruptive Malicious vehicles flood the network
by replaying data from random neighbors, obstructing
genuine message broadcasts and complicating the differ-
entiation between legitimate and malicious communica-
tions.

o (D)DoS Disruptive Sybil These attacks combine disrup-
tive DoS tactics with Sybil deception, where attackers
replay data from neighboring vehicles while frequently
changing identities. This dual approach overwhelms the
network with fake messages, making detection and mit-
igation difficult, thus threatening VANET security and
reliability.

e (D)DoS Random A variant of DoS attacks where ma-
licious vehicles send messages with random values to
disrupt VANET operations. In Sybil mode, attackers
constantly change identities, further complicating the
identification of malicious activity.

o (D)DoS Random Sybil These attacks mix random flood-
ing with Sybil tactics, where attackers send random
messages while changing identities to evade detection.
This dual strategy exploits VANET vulnerabilities, posing
a significant threat to network reliability and security.

While all of the above are (D)DoS attacks, they exhibit distinct
characteristics and behaviors, making it essential to test each
type comprehensively with the ADVENT system. This ensures
a thorough assessment of its robustness and effectiveness in
safeguarding VANETS against various threats.

IV. EVALUATIONS AND RESULTS

In this section, the results of the evaluations focusing
on Attack Onset detection and Malicious Node detection
using ADVENT across various DDoS attack scenarios in
the VeReMi-Extension datasets are presented. In this context,
four key metrics are utilized to assess the performance of
the system: Detection Rate (DR), False Positive Rate (FPR),
False Negative Rate (FNR) and F1-score. These metrics are
widely recognized in the evaluation of ML models. To provide

clarity, each metric serves a distinct purpose: DR measures the
proportion of true positive instances correctly identified, FPR
quantifies the proportion of false alarms, FNR evaluates the
rate of false negatives, i.e., missed attacks, and the F1-score
offers a balanced assessment of precision (positive predictive
value) and recall (Sensitivity or True Positive Rate). The
calculation of these metrics involves specific formulas, where
True Positive (TP), True Negative (TN), False Negative (FN),
and False Positive (FP) denote various classification outcomes.
By employing these metrics, we ensure a comprehensive
evaluation of the effectiveness of ADVENT.

TP
DR = TP+ FN M
FP
FPR = FP+TN @
FN
FNE = TP+ FN )
F1 — score = 2x TP “4)

2xTP+ FP+ FN
A. Attack Onset Detection

This section discusses results from two different scenarios.
The first scenario, Centralized Training (CT-AOD), presents
results where the ML model is on a centralized server on the
cloud and all vehicles send all their data to this model for
attack detection purposes. In CT-AOD, 70% of each dataset
was used to train the detection model, while the remaining
30% was used to test the system on a per-vehicle basis. In
the second scenario, to respect the privacy of the vehicles,
their raw data are not shared with other nodes or the server.
Instead, FL-AOD allows each vehicle to train its model locally,
then to share the model parameters with the cloud server. The
server aggregates these parameters to create a global model,
which is then distributed back to the vehicles. In this case, both
the training and testing occur locally, but using FedXGBlIr
[12], the cloud server optimizes the final model for ensuring
privacy while maintaining efficiency. FeXGBIIr is a version
of XGBoost that incorporates Federated Learning. Both the
CT-AOD and FL-AOD methods represent viable options for
ADVENT’s Attack Onset detection. Both approaches were
evaluated in our prior evaluations of ADVENT [6] and are
used again for our evaluations in this work.

Figure 2 presents the detection rate for both the CT-AOD
and FL-AOD approaches. The results demonstrate that while
ADVENT enhances privacy using FL-AOD, its performance
is still comparable to the centralized approach, CT-AOD.
ADVENT achieves this without requiring all the data of
all the vehicles, whereas the CT-AOD requires all the data
from all the vehicles. Additionally, these results highlight the
consistency of ADVENT in detecting the onset of all attack
types studied in this research. This also shows that utilizing
data balancing techniques significantly improves efficiency.

Figure 3 presents the Fl-score results for all the attacks
in the VeReMi-Extension datasets. Similar to the detection
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rate (DR) results, the F1-score results demonstrate consistency,
showcasing the effectiveness and robustness of the ADVENT
system across different types of attacks evaluated. This con-
sistency highlights ADVENT system’s ability to effectively
and robustly detect and mitigate various attack types, further
emphasizing its robustness in securing VANETs.

Table II presents the False Positive Rate (FPR) and False
Negative Rate (FNR) for different attacks. The results demon-
strate a consistent performance across all attacks, with the FPR
for the FL-AOD being lower than that of the CT-AOD. This
indicates that the FL-AOD approach not only enhances privacy
but also reduces false positive rate more effectively compared
to the CT-AOD.

However, the results reveal an average of 1.5% higher FNR
for the FL-AOD system compared to the CT-AOD system.
This outcome is expected, as the FL-AOD models are trained
on local data rather than the entire dataset used by the CT-
AOD approach. In our prior work [6], we addressed the high
FNR caused by local training using Synthetic Minority Over-
sampling Technique (SMOTE) [7]. By employing SMOTE to
balance the data, we successfully reduced the FNR from an
average of 2.41% to 0.35% in the datasets.

Although we balance the dataset locally, this seems to in-

dicate a trade-off between enhanced privacy and FNR. Future
research will analyze this phenomenon in more detail.

TABLE II
ATTACK ONSET DETECTION: (FNR AND FPR)

ID Attack CTFNR FLFNR CTFPR FL FPR
1 DoS0709 451 5.10 2.54 1.39
1 DoS1416 4.57 6.98 1.41 0.76
2 DoSDis0709 4.47 5.15 2.61 1.48
2 DoSDis1416 4.26 6.58 1.41 0.78
3 DoSSyb0709 4.86 5.46 3.48 1.63
3 DoSSyb1416 442 6.98 2.08 0.95
4 DoSRan0709 4.32 5.36 2.71 1.46
4 DoSRanl416 4.73 6.83 1.41 0.82
5 DoSRanSyb07 4.77 5.19 3.47 1.62
5 DoSRanSyb14 4.97 6.96 1.94 0.88

B. Malicious Node Detection

In this section, we perform malicious node detection eval-
uations using two approaches: Node-Based, and Federated
Learning Technique (FLT) Based. In the Node-Based ap-
proach, we employ the Malicious Node identification method
on each node to detect malicious nodes (vehicles). On the other
hand, in the FLT-Based approach, we aggregate the results
from each node to create a global malicious node list on
the cloud server. As with the Attack Onset evaluations, both
the Node-Based and FLT-Based approaches represent possible
approaches that can be used by ADVENT for Malicious Node
Detection and were evaluated in our prior evaluations of
ADVENT [6]. They are used again for our evaluations in this
work. We tested the FLT-Based approach, each evaluation is
called using FLT-X-Y, with X and Y as previously discussed
in III-A. In previous work [4]-[6] a time slice concept was
not included in the ADVENT system; instead, a threshold
was calculated based on all packets received in the last two
minutes, once an attack onset was detected. It’s important to
note that each node could respond differently upon detecting
an attack onset. Some nodes might block traffic temporarily
before identifying the malicious nodes, allowing them to
mitigate potential issues during this 2 minutes detection period.

In this paper, we compare our new time-slicing approach
with the FLT-0-2 method, which indicates no time slicing is
used, as presented in [4]-[6]. We introduce FLT-2-2, FLT-2-5
and FLT-2-7, where the two-minute interval is divided into 2-
second slices to calculate the threshold in each slice. In this
case, if a node is detected as malicious in two time slices, its
ID is added to the malicious node list, culminating in the final
list. This proposed method prevents the misidentification of
normal neighboring vehicles traveling on the same road, who
might be sending a large number of messages over a prolonged
period, as malicious nodes.

Employing the concept of time slices enables ADVENT to
identify malicious behavior more accurately. In short, when
a car detects the onset of an attack, it initiates the malicious
node detection method based on the number of connections
received from each node in the last two minutes. This two-
minute interval is divided into 2-second slices. The car repeats
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Fig. 4. Malicious Node Detection: Detection Rate

the detection process for each slice and compiles a list of
suspected malicious nodes, which contains the ID of malicious
nodes and the number of times they are detected as malicious.
Then, it applies the threshold 2, filtering out all the nodes
reported less than 2 times as malicious to create the final list.
This threshold can be adjusted based on the network conditions
and parameters. However, we set it to 2, as it represents
the minimum number of reports required to classify a node
as malicious. At the end of this process, the car shares its
compiled list with the server. The server aggregates the lists
received from all nodes using the value of parameter Y, and
adds the nodes reported by more than Y nodes to its list. It then
reports this final aggregated list back to the vehicles. Vehicles
can then use this list to identify and respond to malicious
nodes.

Please note that we assume all nodes reporting to the cloud
server are reliable. Verifying the trustworthiness of each node
is beyond the scope of this paper.

Figure 4 demonstrates that using thresholds contribute to
sustained high detection rates, indicating the effectiveness of
continuous monitoring in identifying malicious nodes. Also,
this highlights the efficacy of a higher threshold in maintaining
consistently high detection rates.

Figure 5 illustrates different levels of efficacy among distinct
detection techniques and thresholds. Notably, FLT-2-7 (where
X=2 and Y=7) consistently achieves the highest F1-Score sur-
passing other methods across various iterations. This implies
that increasing the threshold for number of reports for each
suspected node enhances the capability to effectively identify
malicious nodes.

Figure 6 underscores the critical role of the chosen de-
tection method and the duration of the detection interval in
effectively mitigating malicious activities within the network.
Specifically, increasing the threshold (Y) used for number
of reports received for each suspected node demonstrates a
marked enhancement in the system’s ability to identify and
address potential threats.

Figure 7 shows the importance of selecting appropriate
detection methods and optimizing detection parameters (X
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and Y) to effectively identify and mitigate malicious activities
within the network. Increasing the Y factor raises the risk of
losing detection of malicious nodes that are attacking fewer
neighbors.
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TABLE III
ADVENT RESULTS IN CONTRAST WITH ASENSIO-GARRIGA ET AL. [2]

Attacks [2] ADVENT(07-09) | ADVENT(14-16)
DoS 99.06% 96.59% 96.03%
Disruptive 97.97% 95.7% 96.45%
Disruptive Sybil | 92.56% 96.2% 95.3%
Random 99.77% 97.84% 95.85%
Random Sybil 94.46% 96.2% 95.28%

V. CONCLUSION

In conclusion, the comprehensive evaluations conducted in
this paper demonstrate the robustness and efficacy of AD-
VENT in countering a range of (D)DoS attacks prevalent in
VANETs. By leveraging a combination of sophisticated de-
tection mechanisms and strategic server thresholds, ADVENT
proves to be highly effective in identifying and mitigating
malicious nodes within the network. Specifically, when em-
ploying malicious node detection at 2 seconds time slices and
utilizing the number of vehicle reporting thresholds set at 2, 5,
and 7 in the server, ADVENT exhibits consistent and robust
performance across different types of (D)DoS attacks.

These findings highlight the significance of the timely and
accurate detection ADVENT provides in fortifying VANETSs
against evolving security threats. By promptly identifying and
isolating malicious nodes, ADVENT contributes to the overall
robustness and security of vehicular communication networks,
thereby enhancing road safety and security in dynamic and
unpredictable environments.

Overall, the findings of this research show the role an ad-
vanced detection system like ADVENT can have in safeguard-
ing VANETS against potential disruptions and vulnerabilities.
Through its effective and robust performance and adaptive
capabilities, ADVENT emerges as a promising solution for
enhancing the security posture of vehicular communication
networks and ensuring secure exchange of critical informa-
tion among vehicles and infrastructure components. Table III
compares the results of ADVENT with those of Asensio-
Garriga et al. While Asensio-Garriga et al. did not clearly
specify whether their results pertain to rush hour times (07:00-
09:00) with higher traffic and more messages or to low traffic
times (14:00-16:00) with fewer vehicles and less message
transfer, we compare their results with our evaluations. Our
evaluations demonstrate that the proposed ADVENT system
is robust, effectively detecting both DoS family attacks and
Sybil attacks. Additionally, ADVENT performs well during
both rush hour and normal traffic times. It is also pertinent to
mention that unlike ADVENT, the work of Asensio-Garriga et
al. does not address detecting the onset of attacks, data privacy,
or malicious node detection. Based on our evaluations of
ADVENT to date, it has proven capable of detecting different
kinds of (D)DoS attacks. This demonstrates that ADVENT can
identify attacks with different characteristics.

We believe we can generalize that ADVENT’s attack onset
detection step is capable of identifying any VANET attack
that is distributed in nature and that affects the frequency of

packet reception at each node. Following this, the malicious
node detection step should effectively identify the malicious
nodes. In future research, we aim to explore this assumption
by testing the efficacy of ADVENT in detecting other VANET
attacks that posses these characteristics and are not necessarily
(D)DoS attacks. Such evaluations, if successful, will further
confirm the effectiveness of ADVENT in diverse scenarios.
Additionally, our future endeavors will focus on refining the
ADVENT system for model updates, prioritizing simplicity
and efficiency to maintain optimal performance.
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