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Abstract—The life cycle for a service provider (SP) to launch a
new service or tariff plan often requires months of planning and
testing. The SP has traditionally used OSS (Operation support
systems) and BSS (Business support systems) which are large,
non-standard systems providing life cycle management related
to launching new digital services (e.g. internet, voice, SMS, IoT)
and tariff plans. These OSS/BSS systems, being multi-vendor and
custom implementations, involve significant costs and a timeline
of months to a year to roll out the service. This problem worsens
with evolving technologies such as 5G. This paper addresses
the specific need for faster provisioning of 5G network services
and their corresponding tariff/billing plans, thus shortening the
duration for launch. To provision the network, a combination
of a deep neural network and a large language model (LLM)
is proposed in this work to automate the generation of network
configurations.

Index Terms—Artificial Intelligence, Network Automation and
Management, Large Language Models, Generative Al

I. INTRODUCTION

The mobile packet core network is a complex network
comprising multiple network functions that communicate with
each other to provide end-to-end service. Once a network
is commissioned by the network operator, default network
settings like peer node IP addresses, build information, and
various other system level configurations are provisioned
which constitute the base-level configuration of the network. A
typical digital service, for example, connection to the internet,
requires setting up network service configurations and policy
configurations like IP address pool, DNS server configurations,
PLMN identifier, QoS, and others [1], are administered on top
of the already complex base-level infrastructure and network
function configurations (together called Network Services and
Policies or NSPs), which can constitute 10,000 to 30,000 lines
of code [2], spread over different network functions. This
process is often manual, time-consuming, and error-prone. Our
goal in this paper is to leverage large language models or
LLMs to automate this process.

Once these complex network services and policy configura-
tions are set up, the tariff plan configurations are applied. Tariff
plans are specific offers to customers on new digital services
and billing options, such as prepaid or postpaid internet 5G
data plans or rates (for e.g. 100 GB/month), voice calls,
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roaming and other value-added services. The service provider
first provisions for the tariff plans in the core network, then
advertises the tariff plans in the market, allows customers to
choose from among the tariff plans, and associates customer
choices with the plans in the network.

The tariff plan and the NSPs collectively constitute the
network configuration. Once configured for a customer, that
customer can access the network and enjoy the entitled ser-
vices. Note that service providers often offer multiple tariff
plans, each requiring a possibly distinct configuration for
provisioning.

The following are challenges faced by network operators:

« Intricate and extensive configurations, often referred to
as “spaghetti configurations”, which can encompass up
to 30K lines of code, introduce significant uncertainty
in outcomes. This uncertainty comes from the multiple
interacting layers within the configuration, resulting in
situations where outcomes, such as the customer’s end-
of-month billed amount, remains indeterminate.

o Assessing the suitability of layers of interacting configu-
ration in meeting the quality of service needs during the
launch of new tariff plans and digital services.

e Dynamic nature of tariff plans due to incorporation of
new customer base, hosting of mega events, various
emergencies or exigencies in the area of operation.

« High susceptibility to human error in manual configura-
tions and outdated, lengthy manuals complicate under-
standing of inter-dependencies and optimisations.

These factors and challenges result in high total cost of
ownership, significant manual effort, and extensive time taken
to launch new digital services on the packet core network (5G
Network) and their associated tariff plans. The main objective
of this work is to build an automation engine using large
language models to address these challenges, in particular,

o Build an AI engine that translates a tariff plan into
network configuration.

« Include the Al engine in a pipeline that validates the gen-
erated network configuration minimises or eliminates the
need for human intervention during network provisioning,
and reduces the time to launch new tariff plans.
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II. RELATED WORK

Extraction of information from tariff plans is similar to
the workings of intent-based systems, a well-explored area in
intent-based networking [3], [4]. Use of Natural Language Pro-
cessing (NLP) techniques and LLMs to translate intents into
tasks is becoming a popular choice in autonomous networking,
such as a recent work [5] have demonstrated intent-to-policy
translation, then mapping policies to an API with key-value
pairs using LLMs. The proposed method in this work em-
ployed few-shot prompting with OpenAl APIs, evaluated on
execution time and the number of translated policies. Another
study by Ahlam et al., [6] showed the translation of high-
level intents to specific network configurations using LLMs
with few-shot prompting. However, these methods are prone
to model hallucinations. In our work, we experimented with
different approaches, including NLP and LLM fine-tuning [7],
which has shown to be an effective remedy for hallucinations
of LLM [8] compared to few-shot prompting. We evaluated
our models against both valid and invalid inputs, proposing an
input filtration technique to prevent possible misconfigurations
in the network.

III. PROPOSED SYSTEM DESIGN FOR TARIFF PLAN LAYER

Tariff plan variability: A tariff plan outlines the ser-
vices offered by a mobile network operator, including data
allowances, voice call minutes, SMS bundles, and pricing
structures. As part of this study, various tariff plans were
studied in 27+ customers, including across geographies. The
study found a high variability in these plans for the following
reasons: a) Market demands: Providers offer various plans for
different segments (consumer, enterprise, and IoT), leading
to variability. b) Audience segmentation: Targeted plans like
Gold (premium services) and Silver (limited services) create
variation. Student plans focus on data costs, while enterprise
plans emphasise voice calls. c) Regulatory variations: Geo-
graphic regulations affect plans. Some applications are blocked
in places like the Middle East and parts of India. US providers
have app-specific QoS rules. d) Technological innovation: New
technologies (e.g., 5G) and features (e.g., unlimited data)
change tariffs. e) Marketing strategies: Providers differentiate
with unique marketing. “Unlimited data” can vary greatly, e.g.,
50 GB before throttling or 50 Mbps capped speed.

Need for standardised API: This high variability of tariff
plans necessitates a standardised API to capture key features of
a tariff plan. As part of this work, the following five keywords
(entities) are identified, ‘dnn’, “data allowance”, “avg speed
data allowance”, “data speed video stream” and “FUP redi-
rection url” to quantify key features in a tariff plan. Keywords
improve the accuracy of data extraction from tariff plans by
providing a deeper understanding of the plan’s intent beyond
the literal wording. They facilitate automation within the API
by offering a standardised way to search for and interpret plan
details. This combination of precision and automation leads to
a more efficient and reliable process to translate diverse tariff
plans into consistent network configurations.

API structure: We arrived at a suitable configuration API

{

"bplan (string:The name of the configuration API
— template)": [

{

"name": "<string:Telecom Plan Name>",
"data": {

"name": "<string:Operator Name>",

"dnn": "<string:Data Network Name>",
"allowance": "<integer:Data Allowance>",
"allowance_unit": "<string:Allowance Unit
< GB)>",

"average_ speed limit_within_allowance":
— "<interger:Average Speed Limit Within
— Allowance>",
"average_speed_limit_unit_within_allowance":

— "<string:Average Speed Limit Unit (e.g.,

< MBps)>",

"final unit_action": "<string:Final Unit Action
[ (e.g., redirect)>",
"final unit_action_url":
— Action URL>",
"video_streaming": {
"name": "<string:Video Streaming Service Name>",
"speed": "<integer:Video Streaming Speed>",
"speed unit": "<string:Video Streaming Speed

— Unit (e.g., MBps)>"}}}1}

(e.g.,

"<string:Final Unit

Listing 1: Standardised Configuration API template. All keys
can be identified as key features of a tariff plan.

structure, described in Listing 1, closely following the stan-
dard REST-based API architecture defined by the TMForum
[9], [10]. The primary purpose of the configuration API is
to consume the extracted information from the tariff plan
as a payload and to connect it to the API-based network
provisioner (network orchestrator), as shown in Fig. 1. Subse-
quently, the network orchestrator maps the API into sections of
configurations and provisions these configurations across the
network functions. Fig. 1 shows blocks sequenced together
as a pipeline. The sequence in its entirety is executed by
an Al Processing Engine or simply Al-Engine, followed by
a Network Orchestration Engine. AI Engine executes the
following blocks -

i) BLOCK-1I: Is the INPUT block. Input being a textual
tariff plan. ii) BLOCK-2: Is the AI engine. Al engine takes
BLOCK-1 as input, processes and extracts keywords from the
same. The following information is captured from the tariff
plan under the five keywords, namely ‘dnn’, “data allowance”,
“avg speed data allowance”, “data speed video stream” and
“FUP redirection url”. iii) BLOCK-3: Is the OUTPUT block
which is output by the Al engine. The output consists of key-
value pairs that have been extracted from BLOCK-1 (INPUT).
iv) BLOCK-4: The OUTPUT consisting of key-value pairs is
mapped to parameters in a predefined standard API template,
as shown in Listing 1. BLOCK-4 is where the API in the form
of a REST-based-API is filled with values and handed over to
the Network Orchestration Engine by a post-processing step in
the Al Engine. v) Network Orchestration Engine: Al Engine
invokes the REST-based API (populated with values which had
been prepared in BLOCK-4) on the Network Orchestration
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Engine. Network Orchestration Engine takes the REST-based
API and its parameter values to determine from its internal
database the following: a) NF (Network functions) to apply
the configuration to and b) standard template APIs to invoke
on each network function. The network orchestration engine
then invokes various network function APIs on the respective
NFs. Hence, the REST-based API results in orchestration of
API for Policy Control Function, API for Session Management
Function, API for Charging Function, and others, with values
mapped from the REST API (that was filled by Al Engine).
In sections III-A to III-B we have explained in detail each
functional block of the proposed system.

A. Extraction of Keywords

1) BLOCK-2: In Fig. 1 this block expands the Al engine
to show how the input tariff plan text in BLOCK-1 is pro-
cessed, vectorised and the relevant data elements are extracted.
BLOCK-2A of Fig. 1 outlines the steps that take place to
convert the tariff plan text to individual tokens after performing
due text preprocessing such as removal of unnecessary special
characters, the uniform lower case text conversion and data
labelling (this is done specially in NER for entity linking).
Tokenised output from BLOCK-2A with input tariff plan in
BLOCK-1 is shown on the right of figure. After tokenisation,
the tariff plan is ready to be passed through the vector
embedding space in BLOCK-2B, where each of the tokens
is converted into individual vectors. Vectorised output from
BLOCK-2B is shown below the illustrated output of BLOCK-
2A. Now, the vectorised tariff plan is passed through BLOCK-
2C, which is the fine-tuned (trained LLM) or NER model layer
and responsible for finding the keywords or entities in the tariff
plan in the form of a dictionary (key-value pairs). Output from
BLOCK-2C is shown in BLOCK-3.

Training method and performance: We have experimented
the solution across three different approaches namely, a) NER
trained model, b) Fine-Tuned GPT-3.5-Turbo-16K model and,
¢) Fine-Tuned Llama2-7B model. BLOCK-2C consists of
trained models which are used to extract the desired keywords
from the tariff plan. We used the spaCy' pipeline for the
training of the NER model, GPT-3.5 fine-tuning APIs for GPT-
3.5-Turbo-16K fine-tuning, and a base Llama2-7B model for
fine-tuning Llama?2.

a) Dataset: Given the sparse nature of tariff plan data, we
observed 50 tariff plans from over 27 service providers and
generated 1,000 samples for training. High-quality and diverse
datasets are crucial for training NER models and fine-tuning
LLMs, but acquiring such datasets in the network management
domain is challenging due to the need for domain expertise,
data collection, annotation, and preprocessing. To address this,
LLMs like GPT-4 can generate synthetic datasets using prompt
engineering and few-shot learning techniques tailored to the
required scenarios. Before incorporating these synthetic tariff
plans into the model for training and avoid possible data
degradation, it is crucial to evaluate their quality. Using a
scoring method, such as the one proposed in [11], the quality

Thttps://spacy.io/

of the generated plans can be evaluated. Based on this score,
conclusions can be made to either regenerate the data further
post necessary changes or proceed with training the model
using the generated samples.

b) Model Training: For Named Entity Recognition (NER)
in tariff plans, we referred Entity Linking (EL) [12] which
has proven to be an effective way to extract information from
unstructured data. Each sample is labelled with five different
aforementioned categories or keywords, along with their re-
spective values and positions in the plan, forming the dataset.
During training, the entire tariff plan is tokenised, the model
then predicts probabilities for each token in the five categories.
This distribution of the predicted probabilities is compared
with the distribution of true labels (ground truth) for each
category or keyword and the maximum predicted probability
is used for this comparison. The difference in distribution
between predicted probabilities and true labels is calculated as
the loss, which is then used to update and improve the model
performance over time. This process ensures that the model
learns to recognise and categorise keywords accurately in tariff
plans. Similarly, to fine-tune the generative models (GPT-3.5
and Llama2), we used instruction led [13] supervised fine-
tuning on the training data. During training, each tariff plan is
tokenised, vectorised, and input into the model along with the
instruction prompt. The model then generates an output based
on the prompt and the tariff plan. This output is compared
to the ground truth, and cross-entropy loss is calculated for
each token’s position in the predicted output versus the ground
truth. This loss is used to fine-tune the generative models. For
training in the NER model with 3 epochs, the training loss was
close to 6%. However, for GPT-3.5 and Llama2, the training
loss was found to be close to 1% and 4% respectively (with the
instruction prompting). Further details on model parameters
are provided in Table III.

B. Configuration Generation and Validation

Once the entities are extracted as indicated by BLOCK-3
in Fig. 1, the predefined configuration API template in Listing
1 is filled by a post-processing step integrated into the Al
Engine. The output configuration API from the input tariff plan
in BLOCK-1 is shown in BLOCK-4. The network orchestrator
consumes this API and performs the necessary sanity checks
through various test cases to validate the configuration API.
Once the sanity checks pass, the network orchestrator config-
ures the network elements and sends feedback to the user, as
outlined in the bottom left of Fig. 1.

Configuration Validation: The following sanity checks need
to be performed before provisioning the configuration in a
live production environment and they involve: a) Checking the
configuration by a human operator before proceeding further
with network provisioning. b) Identifying the functional and
system level automation test suites that test the corresponding
services or features being enabled by the API on the packet
core and executing the test cases thus validating the success or
failure of the process. The mandatory criteria for passing being
100% of smoke test cases, and high priority cases. The sanity
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BLOCK-1: Tariff Plan

BLOCK-4: Filled API template to configurational API

Plan Name: AT&T_new

Price:$85 per month per connection

£

when you get 4 connections:

ing.

Mobile Hotspot: 50GB hotspot data per line per month.

Streaming: 4K UHD streaming availabl

Note:
The provided DNN is inter

After ext the data all

Mobile Phone: Unlimited talk, text, & high-speed data (20 MB allowance).

ActiveArmor: AT&T ActiveArmorSM advanced mobile security, including Public Wi-Fi Protection and Identity
International Use: Unlimited talk, text, & high-speed data in 19 Latin American countries at no extra cost.
Discounts: Signature Program members save up to $10/month per line through their work or organization.
com with a 20 MB data allowance.

The average speed within the allowance is 5 Mbps, with video streaming speeds up to 20 Mbps.
e (FUP), users will be redirected to www.redirect.com.

{
"yang-patch": {

"patch-id": "nso-123",

"edit": [

{

"edit-id": "editl2",

"operation": "create",

"target": "/nso-123:bplan=Telecom Plan",
"value": {

"bplan:nso-123": [

{

"name": "Telecom Plan",
"data": {

"name": "AT&T new",

"dnn": "internetdata.com",

"allowance":20 ,
"allowance unit": "MB",
" average_s;eed_limit_within_allowance ": 5,
"average_speed limit_unit within_allowance":
"MBps" ,
"final_unit_action":
"final unit_action_url":

"redirect",
"www . redirect. com" ,

BLOCK-2: Al Engine

"video_streaming": {
"name": "n,

"speed": 20,
"speed unit":
"impacted content":

"MBps",
"NA"}}}1}31}H})

BLOCK-2A: Text Processing

BLOCK:-28B: Text Vectorization

BLOCK-2C: Trained Output BLOCK-2A:
Model(NER/LLM) Tokenized tariff plan

-~
[1, 20743, 17178, 29947, 29945, 639,
4098, 639, 3957, 20841, ...,
(Tokenization Model (NER/LLM) 367, 6684, 287, 304, 7821, 29889,
e , 17886, 29889, 510, 23157]
lowercasing, stop-word i i . stored after - g v
removal, Stemming or | _,|Text Vectorization(n-{ ] Training and 5 Length of tokens: 218
lemmatization, Removing dimensional Vector) lidati o -
Python Web Ul digit/punctuation, Part of validation. 29
Speech Tagging, data £E
labelling) i3 Output BLOCK-2B: Vectorised|
o tariff plan from token:
o

[tensor([[[ ©.0018, -0.0038, 0.0010, ...,

-0.0090, ©0.0027, -0.0038],
[ 0.0084, 0.0233, -0.0079, ...,
lo.6266, ©.0052, ©.0276],

[ BLOCK-3: Extracted Keywords ]

[-0.0014, -0.0014, -0.0125, ...,

-0.0132, 0.0430, 0.0310],
...,1],device="cuda:@', dtype=torch.float16)

{"name":"AT&T new","dnn":"internetdata.com","allowance":20,"allowance unit":
"MB" , "average_speed limit within_allowance":5,"average_speed limit_unit
within_allowance":"MBps","final_unit_action":'"redirect","final unit_action_
url": "www.redirect.com" , "video_streaming_speed":20,"video_streaming speed_

lembedding shape:torch.Size([1, 218, 4096])

unit":"MBps"}

Configuration
feedback to User

<«—Configuration— @
( )
Feedback—> X/

Network
Orchestrator

Core Network Elements

<€

Configuration API

Fig. 1: Proposed system design to convert a tariff plan to desired configuration. BLOCK-1 to BLOCK-4 shows how a tariff
plan is converted into configuration API. The output at different stages is also shown in the figure.

testing is performed on a replica staging environment and
upon success the configurations are pushed by the Network
Orchestration Engine into the production environment.

IV. IMPLEMENTATION AND RESULTS

As discussed in Section III-Al, three different types of
models were implemented and evaluated via experiments.
The models extracted information from the tariff plan using
the NER technique [14] and using two fine-tuned generative
models [15], namely, GPT-3.5 [16] and Llama2 [17]. The
evaluation and training of the models are performed on Google
Collab labs with Nvidia T4 GPUs. The GPT-3.5 fine-tuned
model processed the tariff plan faster than the Llama2-7B
model because GPT-3.5 was hosted on OpenAlI’s server and
evaluated via API calls, while Llama2-7B required loading on
the Collab GPU for fine-tuning.

Input Filtration: Erroneous or garbage inputs can generate
misconfigurations of network elements and lead to malfunc-
tioning and security vulnerabilities. For example, in the case
of tariff plan illustrated in BLOCK-1 in Fig. 1, if the phrase
“video_streaming_speed” is replaced with the meaningless in-
put “APN name”, the model extracts “video_streaming_speed”
from the tariff plan as shown in the following section of invalid
tariff plan.

Section of invalid tariff plan

Input: The average speed within the allowance is 5 Mobps, with
APN name up to 20 Mbps.
Output: {"video_streaming_speed": 20, "unit": "Mbps"}

We therefore need an input filter for all types of models
(NER and LLMs) which will validate the input tariff plan as
meaningful or otherwise.
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TABLE I: Left-hand column of confusion matrices are for the
system without the input filter for the tariff plan. The right-
hand column matrices are with the input filter. Row (a) is for
NER, (b) is for GPT-3.5-Turbo-Fine-tuned Model, and (c) is
for Llama2-7B-Fine-tuned Model. The F1 scores are 1 for all
situations except (b) without input filter for which it is 0.962.

Predicted Predicted

(ONNC o) | (M

(a) Truth O | 25 0 Truth © | 2 0
(1) 0 25 [€)) 0 25

Predicted Predicted

[(ONNEY) O | @

(b) Truth © | 23 2 Truth © | 2 0
(1) 0 25 [€)) 0 25

Predicted Predicted

O | @ O | @

(¢) Truth O | 25 0 Truth © | 2 0
(1) 0 25 [€)) 0 25

Key Criteria for Input Filter: 1) Fine-tuned models are already
trained to extract entities from a given tariff plan. Now, further
adding complexity to classify a valid and invalid tariff plan
will add to the cost of training, as training LLMs is a costly
affair in terms of both money and time. Thus, there was
a requirement to have a separate text filter before the fine-
tuned model to filter out unwarranted inputs. ii) The input
filter should be able to differentiate clearly between a valid
and invalid tariff plan. Thus, and input filter is essentially a
model for text classification. iii) We tested several methods
for the input filter, such as shallow neural networks, naive
Bayes classifier, and deep neural networks. Only the deep
neural network confidently distinguished between valid and
invalid tariff plans, yielding satisfactory results. The input filter
is added before the model and when the output of the input
filter is positive, only then the tariff plan is passed into the
model for further processing. In our implementation, the input
filter is a deep neural network with four layers: 1 embedding
layer, 1 global average pooling layer, followed by two dense
layers. The total number of trained parameters for this model
is 783,233. A total of 5000 samples were used for training the
input filter model with an equal number of valid and invalid
tariff plans.

A. Validation of Implemented Models

To validate the NER model with and without input filters,
we created a dataset of 50 tariff plans, evenly split between
valid and invalid inputs. Each sample was augmented with
keywords and their corresponding values. For most invalid
samples, keyword values are set to 0, while a few have values
from invalid tariff plans. The model is expected to correctly
identify the nature of the plans considering the entire context:
prediction O for invalid tariff plans and predict 1 for valid tariff
plans. If the model predicts 1 (valid plan) when the ground
truth is O (invalid plan), it has made an error. If it predicts
0 (invalid plan) when the ground truth is 1 (valid plan), it
fails to extract at least one or more values correctly. Correct
predictions are when the model predicts O (invalid plan) for

TABLE II: Left-hand column of confusion matrices are for
system without the input filter for PLMN. Right-hand column
matrices are with the input filter. Row (a) is NER, (b) is GPT-
3.5-Turbo-Fine-tuned Model, and (c) is Llama2-7B-Turbo-
Fine-tuned Model. The F1 scores for left and right matrices
are (a) 0.51 and 0.74, (b) 0.79 and 0.95, and (c) 0.69 and 0.95.

Predicted Predicted

) | (D) (0) (1)
© [ 90 [ 110 © [ 200 [ 0

@ Truth — 95705 Truth ——=—e3 77
Predicted Predicted

(0) (1) (0) (1)
© [ 115 | 85 © [ 19 | 4

®) Truth: ———3 g7 Tuth 5183
Predicted Predicted

) | (D) (0) (1)
© 165 [ 135 © [ 198 | 2

(© Truth —3——5>—778 Truth — 18T 182

Fig. 2: F1 score comparison across models. The black columns
represent F1 scores without the input filter, while the gray
columns indicate scores with the input filter. Models from left
to right: dataset: Tariff Plan- A) NER, B) GPT-3.5 Turbo (Fine-
tuned), C) Llama2-7B (Fine-tuned); dataset: PLMN identifier-
D) NER, E) GPT-3.5 Turbo (Fine-tuned), F) Llama2-7B (Fine-
tuned).

L 00 1l 095 095
0.7p
0.74

8 0.6p
3
] 0.5
= 0.5

0 \ \ \ \ -

A B c D E F

Models (Without and With Input Filter)

ground truth O (invalid plan) and 1 (valid plan) for ground
truth 1 (valid plan), showing that it can correctly not only
identify invalid plans but can also extract values accurately
from valid ones. Table I-Row(a) presents the performance of
Named Entity Recognition (NER) model on 50 test tariff plans,
comparing the results with and without input filtration. All
invalid tariff plans are identified correctly and all valid tariff
plans are processed correctly, both with and without the input
filter. In the second implementation for fine-tuninig of GPT-3.5
model, GPT-3.5 FineTuningJob API [20] was used for model
fine-tuning with 3 epochs (keeping in mind the cost associated
with training). Once more, as delineated in Table I-Row(b), the
integration of a deep neural network layer for the filtration of
input text has mitigated the potential risk of misconfiguration
of network elements from incorrect input. Llama?2 fine-tuning
was achieved on top of Llama2-7B base model with supervised
fine-tuning [21], [22].

Compute Challenges and Mitigation: While fine-tuning
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TABLE III: Comparative F1 scores and model parameters for various approaches.

Model (F1 score)

Model Parameters

a) Tariff plan: GPT-3.5 fine-tuned (0.9615)

Fine-tuned with GPT-3.5-Turbo API. Learning rate multiplier=2, epoch=3, batch size=2, 3.68M
tokens trained.

b) Tariff plan: GPT-3.5 fine-tuned with Filter (1)

Fine-tuning parameters are the same as Tarift plan: GPT-3.5 fine-tuned. Input Filter: Activation
for all but the last dense layer = RELU, activation for the final layer = softmax, epochs = 145,
trained parameters = 0.75M.

c¢) Tariff plan: Llama2-7B fine-tuned with/without Filter
@)

Fine-tuned on Llama2-7B model. LoRA attention dimension=64, o for LoRA scaling=16,
Dropout probability for LoRA layers, Batch size per GPU for training=4, Batch size per GPU
for evaluation=4, Optimizer=Adam, Tokenizer=Auto, QLoRA quantisation type=4-bit, Learning
rate scheduler=constant. Trained parameters: 6.73B, epoch=1. Input Filter parameters same as
Tariff plan: GPT-3.5 fine-tuned with Input Filter.

d) Tariff plan: Spacy based NER With/without Filter (1)

Learning rate=1 X exp—°, $1=0.9, 82=0.999, optimizer=Adam [18], Embedding for tokeni-
sation= MultiHashedEmbedding [19], batch size=200. Input Filter parameters same as Tariff
plan: GPT-3.5 fine-tuned with Input Filter.

e) MCC-MNC: GPT-3.5 fine-tuned (0.7924)

Model parameters same as Tariff plan: GPT-3.5 fine-tuned. 1.21291M tokens trained.

f) MCC-MNC: GPT-3.5 fine-tuned with Filter (0.9512)

Model parameters same as Tariff plan: GPT-3.5 fine-tuned (Filter). 1.21291M tokens trained
for GPT-3.5 fine-tuned model and 0.26M parameters trained for input filter.

g) MCC-MNC: Llama2-7B fine-tuned (0.694)

Model parameters same as Tariff plan: Llama2-7B fine-tuned with/without Filter.

h) MCC-MNC: Llama2-7B fine-tuned with Input Filter
(0.948)

Model parameters same as MCC-MNC: Llama2-7B fine-tuned. Input Filter parameters same
as Tariff plan: GPT-3.5 fine-tuned with Input Filter.

1) MCC-MNC: NER Model (0.506)

Model parameters same as Tariff plan: Spacy based NER With/Without Filter.

j) MCC-MNC: NER Model with Input Filter (0.738)

Model parameters same as MCC-MNC: NER Model. Input Filter parameters same as Tariff

plan: GPT-3.5 fine-tuned with Input Filter.

the Llama2-7B model, we faced GPU constraints using the
standard Google Colab setup with Nvidia T4 GPUs and 20 GB
RAM, where the base model alone required 12 GB, leaving
insufficient memory for training and evaluation. To mitigate
these challenges, we limited training to a single epoch and
employed Low-Rank Adaptation (LoRA) and Quantised LoRA
(QLoRA) [23], [24] to optimise GPU utilization by reducing
the number of trainable parameters. LoRA uses low-rank
matrices for efficient weight updates, while QLoRA applies
4-bit quantisation to further decrease memory usage without
compromising performance. Specific hyperparameters with
respect to Llama2-7B fine-tuning included a LoRA attention
dimension of 64, a scaling o of 16, a dropout of 0.1, and a
batch size of 4 per GPU for both training and evaluation, with
the Adam optimizer and a constant learning rate scheduler.
Table I-Row(c) shows the evaluation results of a fine-tuned
Llama2 model on the tariff plan where all invalid tariff plans
are identified correctly and all valid tariff plans are processed
correctly, both with and without the input filter.
V. NEXT LAYER: MCC AND MNC

The next layer of configuration that sits below the tariff
plan layer contains parameters such as the public land mobile
identifier (PLMN ID) that identifies the entire mobile network
and contains MCC (Mobile Country Code) and MNC (Mobile
Network Code). These parameters are not specified in tariff
plans (example being the real life tariff plan depicted in
BLOCK-1 of Fig. 1). This parameter appears in the network
services and policies layer, and is captured via a questionnaire
from the network operator. It was observed that similar to
situation of tariff plans, even with context-led fine-tuning, the
fine-tuned LLM models exhibit erroneous processing in the
extraction of MCC and MNC from the input. Phrases such as
‘ipv6-prefix’ is erroneously considered as PLMN ID, leading
to extraction of MCC and MNC from the input prompt. The
following example illustrates the issue.

<s>[INST] <<SYS>> You are an AI model tasked with the job of extracting MCC

and MNC in the given format: [[MCC], [MNC]] from the given prompt. If no con-
-text of MCC or MNC is found, give response as "not a valid input". <</SYS>>
ipvé-prefix 272925 [/INST]

Output: Assistant: [[272, 925]]

To validate the models with and without input filters, we

created a dataset of 400 MCC and MNC samples, evenly
split between valid and invalid inputs. As discussed in Section
IV-A, the model is expected to correctly identify invalid inputs
(0s) and accurately extract MCC and MNC values from valid
samples (1s), with the stringent rule that the prediction is
deemed incorrect even if one extracted value is incorrect. Table
IT shows that the use of an input filter significantly improves
the models’ abilities to identify invalid inputs. Furthermore,
as shown in Table II-Row(b), the GPT-3.5-Turbo fine-tuned
model with an input filter has proven to be the best-performing
model.
Table III compares the performance and configuration details
of various models along with their F1 scores, a harmonic
mean of precision and recall [25]. Models with input fil-
ters consistently achieved higher F1 scores, demonstrating
improved accuracy in distinguishing valid and invalid tariff
plans, as illustrated in Fig. 2. For instance, the fine-tuned
GPT-3.5 model with an input filter attained a perfect F1 score
of 1 (Table ITI-Row(b)), compared to 0.962 without it (Table
[II-Row(a)). The Llama2-7B model also showed significant
improvements with input filter (Fig. 2-Column(F)). The table
outlines key parameters such as learning rate, epochs, batch
size, and configurations like LoRA scaling for Llama2-7B. Fig.
2 further emphasises the enhanced robustness of the pipeline
against invalid inputs, highlighting the critical role of input
filtration in optimising automated network configuration, with
fine-tuned GPT-3.5 with input filter emerging as most effective
across all approaches.
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VI. CONCLUSION AND FUTURE WORK

In this work, we proposed an LLM-based pipeline that
converts input tariff plans and other additional parameters like
PLMN identifier to related configuration and thus provision
complex networks, offering an advanced alternative to tradi-
tional non-Al OSS/BSS systems. The novelty of the method
compared to contemporary intent-based approaches is, that it
addresses robustness i.e. errors, hallucinations with the help
of an input filter (a deep neural network), and supervised
fine-tuning of large language models. The presented solution
tackles the complexities of mobile network configuration in
consumer and enterprise networks. The generation of accurate
configuration is essential, as misconfigurations could disrupt
critical services like voice and emergency communications.
Our method efficiently derives relevant keywords and values,
eliminates erroneous inputs, and maps them to well-defined
APIs, enabling a deterministic, reliable approach to network
configuration, making it viable for real-world deployment. For
future improvements, we aim to enhance model performance
using reinforcement learning through human feedback (RLHF)
[26], [27], which updates model weights by rewarding accurate
responses and penalizing errors. Additionally, we plan to em-
ploy Retrieval-Augmented Generation (RAG) to improve LLM
outputs by incorporating configuration guides as supplemen-
tary information. Upgrading base models to Llama-3 and GPT-
4 will further improve fine-tuning results. By studying usage
patterns, the Al engine could also tailor personalised tariff
plans to maximise customer satisfaction and benefit service
providers. To reduce human intervention, we propose several
strategies: (a) Automation: Leverage functional and system
automation testing to validate configurations in a staging
environment before applying them in production. To further
optimise this, use of feature interaction map can help identify
test suites related to specific network nodes (new features or
configurations) and their interactions. After identifying this
smaller test suite, it can be tested in a staging environment to
confirm success before applying the configuration to the live
network. (b) Continuous Learning: Automating the feedback
loop from validated configurations will enhance the RLHF
process. We believe that as a result of the study in this paper,
a significant challenge faced by network operators during the
roll-out of tariff plans can be resolved, enabling a transition
to a higher level of abstraction in network provisioning.
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