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Abstract—Escalating mobile service demands require
Mobile Network Operators (MNOs) to optimize Radio Access
Network (RAN) infrastructure for cost, efficiency, and
scalability. While Cloud RAN virtualization improves resource
pooling, hardware remains underutilized during low-traffic
periods. This study introduces a dynamic resource management
framework for SG Cloud RAN that optimizes L1-Hi processing
on hardware accelerators like GPUs and SmartNICs. By
combining predictive workload modeling with adaptive
allocation, the framework scales resources based on real-time
traffic. This approach mitigates over-provisioning, thereby
increasing hardware utilization, lowering energy consumption,
and reducing operational costs. Simulations confirm the
framework enhances hardware efficiency while maintaining
user Quality of Experience (QoE), enabling more scalable, cost-
effective, and sustainable telecom networks.

Keywords—Cloud RAN, Resource Management, Hardware
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L INTRODUCTION

The surge in mobile network usage, driven by increased
data consumption and a growing subscriber base, pressures
Mobile Network Operators (MNOs) to expand Radio Access
Network (RAN) infrastructure. RAN accounts for 65-70% of
telecom costs, making optimization critical as traffic and user
expectations rise [1]. Traditional peak load provisioning leads
to significant underutilization, with average RAN usage at just
25-50%—a figure that drops to 20% of peak levels during
nighttime hours.

To combat this inefficiency, solutions like Centralized
RAN (C-RAN) and Cloud RAN introduce virtualization to
consolidate baseband processing and improve resource
utilization [2]. In 5G, this architecture splits functions into
virtualized Central Units (vCUs) and Distributed Units
(vDUs), where vDUs rely on specialized accelerators (e.g.,
GPUs, SmartNICs) for real-time Layer 1 (L1) processing.

However, these powerful accelerators are also provisioned
for peak loads and thus remain idle much of the time, creating
a critical need for dynamic management. Addressing this gap,
our study proposes a framework to dynamically scale
accelerator resources for L1-Hi processing based on real-time
traffic demands. This approach enhances hardware utilization,
reduces capital (CAPEX) and operational (OPEX) costs, and
improves energy efficiency, paving the way for sustainable
telecom networks.

The paper is structured as follows: Section II reviews
related work, Section III discusses hardware acceleration,
Section IV presents our workload modeling, Section V details
the proposed framework, Section VI evaluates its
performance, and Section VII concludes with future work.
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II.  RELATED WORK

Significant research has explored balancing computational
loads in Baseband Unit (BBU) pools, often migrating
workloads from overloaded to underutilized BBUs to improve
resource utilization and energy efficiency [3]. Clustering
techniques, such as location-aware, load-aware, and QoS-
aware clustering, dynamically associate BBUs with Remote
Radio Heads (RRHs) to meet user demand [4]. These methods
typically involve switching BBUs on or off during low-traffic
periods but address only specific optimization aspects and
lack rapid adaptability under real-world constraints.

Frameworks like Pompili et al. [5] propose elastic, on-
demand BBU resource allocation using virtualization,
implementing baseband functions as virtual network functions
on general-purpose servers. These models enhance utilization
but assume sufficient peak-load capacity, overlooking
resource-constrained scenarios [6]. Optimization algorithms,
including game-theory and linear programming, distribute
computing resources among BBUs to maximize pool
utilization [7]. Emerging studies leverage machine learning to
predict traffic loads and scale resources dynamically [8].
However, these models’ computational complexity limits
practicality in environments with frequent short-term
fluctuations [9]. Our framework diverges from these methods
by employing a lightweight allocation algorithm built on
empirically derived workload models, which enhances both
adaptability and efficiency. This approach yields significant
performance gains, with simulations showing up to a 50%
increase in serving capacity under moderate traffic while
maintaining high QoE.

The primary novelty of our work lies in its granular focus.
Unlike prior research that treats BBUs as monolithic entities,
our framework manages resources for vDUs by decoupling
L1-Hi processing on specialized accelerators (e.g., GPUs,
FPGAs, SmartNICs) from L2 tasks on CPUs. This separation
is critical because L1-Hi and L2 workloads scale differently;
L1-Hi processing demands are driven by Physical Resource
Blocks (PRBs), MIMO layers, and Modulation and Coding
Scheme (MCS), whereas L2 scales mainly with user count. By
targeting the unique requirements of L1-Hi, our approach
provides tailored resource management that directly addresses
hardware underutilization and operational inefficiencies,
thereby improving the scalability and sustainability of Cloud
RAN infrastructures

III. HARDWARE ACCELERATION FOR L1-HI PROCESSING

As 5G networks evolve to support higher bandwidths and
advanced antenna systems, pure CPU-based platforms
struggle to meet the intense computational demands of L1-Hi
processing, necessitating hardware acceleration. SmartNICs
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are an excellent example of acceleration for L1-Hi
processing, utilizing specialized System-on-Chip (SoC)
architectures. These SoCs contain dedicated components like
ARM or RISC-V cores for control plane tasks, Digital Signal
Processors (DSPs), and hardware accelerators to handle
computationally-intensive tasks. They also feature high-
bandwidth memory to facilitate rapid data transfer and ensure
low latency. Within the SmartNIC, a high-speed job scheduler
dynamically assigns baseband processing tasks to the DSPs
and hardware accelerators, enabling efficient parallel
processing for multiple cells.

IV.  WORKLOAD MODELLING

SmartNICs perform baseband processing for multiple
cells, with their capacity typically defined by full-load Layer
1 (L1) configurations. However, under moderate traffic, the
same hardware can support additional cells, significantly
improving resource utilization. To quantify this potential, we
developed empirical workload models that mathematically
map L1 configuration parameters and cell load to their
corresponding processing times.

Due to a lack of vendor-provided empirical data, we
conducted controlled experiments on a commercial SmartNIC
using its development kit. We created custom unit tests to
simulate various cell loads and L1 configurations by
manipulating parameters such as PRBs, MIMO layers, MCS
index, and user count. These automated tests measured key
performance indicators, including symbol processing time and
resource utilization. Capturing a comprehensive dataset of
hardware behavior required running hundreds of unique
experiments, one for each distinct L1 configuration.

The models were developed for a SmartNIC advertised to
support 16 cells at full load. As shown in Fig. 1, we analyzed
processing times for two critical L1 tasks—PDSCH symbol
processing and Frequency Offset Compensation (FoC)—as a
function of PRB count. The results, reported in Abstract Units
(AU) for confidentiality, revealed that PDSCH processing
time scales proportionally with PRB count, though its
variance widens at higher values, suggesting increased
complexity. Conversely, FoC processing time shows a
predictable, near-linear scaling. To model these trends, we
applied linear regression against the 95th percentile of
measured times to establish a robust performance boundary.
The models proved highly accurate, achieving coefficients of
determination (R?) of 0.9974 for PDSCH and 0.9994 for FoC.
Since processing times also vary with MIMO and modulation,
we developed separate models for each configuration to
maintain accuracy.

We applied this methodology to other L1-Hi tasks like
PUCCH and RACH , using linear, piecewise, or polynomial
regression as appropriate. For validation, the dataset was split
into training (80%) and validation (20%) subsets. Models
were evaluated using Mean Squared Error (MSE) and R, and
residual analysis confirmed the suitability of our regression
techniques. Controlled experiments further verified the
models' accuracy. We chose regression over complex methods
like deep neural networks for its practicality in a real-time
vDU, where low computational overhead and small storage
footprints are critical.

While the resulting models are specific to the tested
SmartNIC, the methodology is broadly generalizable. The
core approach of empirical data collection, regression
analysis, and workload-to-processing time mapping can be
adapted for other accelerators like FPGAs or GPUs. These
workload models are the foundation of our dynamic resource
management framework, enabling predictive resource
allocation based on real-time network demands. By pre-
calculating estimates, the system can proactively optimize
resources without imposing test loads. Through this
combination of empirical testing and validated modeling, our
work establishes a robust method for understanding and
optimizing computational workloads in vDUs.
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Fig. 1: Processing times for PDSCH and FoC tasks, shown as a

function of PRBs. The box plots show the data distribution, blue

stars indicate the 95th percentile, and the red dashed line represents
the linear regression fit.

V. PROPOSED RESOURCE MANAGEMENT FRAMEWORK

This section outlines the requirements, design, and
operational mechanisms of the proposed resource
management framework, addressing the challenges of
computational load distribution, communication overhead,
and dynamic traffic conditions.

1. Requirements for a Resource Management

The proposed framework is designed to maximize
accelerator utilization and ensure reliable operation under
fluctuating traffic conditions. It is built on four core
requirements:

e Efficiency: A lightweight design to allow frequent

updates without computational burden.

e Low Overhead: Minimized

communications.

e Fairness: Dynamic and equitable resource distribution

based on traffic loads.

e Reliability: A robust mechanism to prevent

accelerator overload and L1-Hi processing failures.

control-plane

2. Framework Design

Building on these requirements, this study proposes a
centralized resource management framework where a single
manager allocates computational resources from an
accelerator, like a SmartNIC, to multiple cells. This system
optimizes resource distribution and improves efficiency by
using workload models that accurately estimate processing
times based on cell loads and Layer 1 (L1) configurations.

Fig. 2 illustrates a vDU host equipped with SmartNIC
designed to support multiple cells. The framework operates
through a communication cycle. Each cell has a resource
management (RM) client that monitors its load and sends its
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PRB demands to the central resource manager. The manager
uses this information, along with workload models, to
determine the necessary resource allocations. These
allocations are then sent back to the RM client, which informs
the cell's L2 processing subsystem.

The central manager's allocation imposes a new constraint
on the L2 scheduler. Traditionally, L2 scheduling is based on
factors like Channel Quality Indicators (CQI) and Quality of
Service (QoS). With this framework, the L2 subsystem must
now ensure its scheduling decisions remain within the
allocated resource limits, which are periodically updated to
reflect changing traffic conditions. This dynamic process
ensures efficient resource utilization. If the total demand from
all cells exceeds the accelerator's capacity, the manager
adjusts allocations to keep the total distribution within the
hardware limits. The vDU host is assumed to have sufficient
capacity for L2 processing, allowing the manager to focus
exclusively on distributing L1-Hi resources. This approach is
further discussed in next subsection.
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Fig. 2: AvDU with a SmartNIC for L1-Hi processing, showing
resource management components in blue.

3. Resource Distribution

When the total resource demand from all cells exceeds an
accelerator's capacity, the framework manages resource
allocation through adaptable distribution strategies. A
priority-based distribution gives precedence to high-priority
cells, ensuring critical demands are met, which is useful for
emergency scenarios. A fair distribution allocates resources
proportionally to cell demands using weighted round-robin
techniques, ensuring equitable sharing. A hybrid approach
combines these methods, prioritizing important cells while
fairly distributing any remaining resources.

These strategies are designed to be simple and fast,
allowing for real-time execution. They assume cells report
their demands accurately to avoid unnecessary complexity
and ensure the resource distribution is both effective and
scalable for dynamic 5G network traffic.

4. Traffic Load Prediction

For managing resources in wireless networks, predicting
cell resource demands is critical. This is possible because
cellular traffic often follows predictable patterns based on the
time of day and the short duration of grant periods (under 100
milliseconds), which causes gradual load changes.

Various methods can be used for forecasting these
demands [10]. Classical time-series forecasting techniques
like ARIMA and Exponential Smoothing are effective at
capturing temporal patterns. On the other hand, machine

learning approaches, such as LSTM networks and XGBoost,
offer data-driven adaptability for dynamic traffic.

Accurate load predictions allow the resource manager to
allocate the optimal amount of resources to each cell, thereby
avoiding both service degradation from under-allocation and
inefficiency from over-allocation. The task of forecasting is
delegated to individual cells to ensure scalability and
accuracy. Each cell predicts its own demands and sends the
information to the central resource manager, which then
focuses on optimizing resource allocation across all cells.

5. Grant Period Length

Efficient resource management in cellular networks
depends on the grant period length, which determines how
often resources are reallocated. A fixed grant period is simple
but can be inefficient, as short periods create overhead and
long periods can't adapt to rapid traffic changes. Dynamic
grant periods are more flexible, adjusting their length to traffic
conditions to balance responsiveness and overhead. An
alternative is asynchronous updates, where cells report
changes only when significant shifts occur, reducing control-
plane overhead. The optimal strategy balances overhead, and
system complexity to enhance efficiency and scalability.

6. Avoiding Overloading

To prevent an overloaded accelerator from causing L1-Hi
processing failures, a resource manager uses real-time load
Key Performance Indicators (KPIs) from the hardware
alongside predictions from a workload model. A dynamic
allocation system is employed to keep resource utilization
within a safe range, typically targeting 90-95% to leave a 5—
10% buffer for unexpected demand spikes. The system adjusts
allocations adaptively, scaling up when utilization drops
below 85% and scaling down when it exceeds 95%.
Shortening the duration of grant periods could improve
responsiveness, allowing for more frequent reallocations to
match sudden changes in traffic. This ensures that resource
distribution aligns with real-time demands, optimizing
performance while minimizing the risk of overloading.

7. RM Client Feedback

RM clients are crucial for refining resource distribution by
providing feedback on both resource utilization and the
adequacy of the current grant period. This feedback allows the
resource manager to make informed, dynamic decisions. For
instance, a cell with high resource utilization may signal an
increased load, making it a strong candidate for more
resources. Conversely, low utilization could prompt resource
adjustments to prevent over-allocation.

Feedback on the grant period is also vital. RM clients can
suggest shorter grant periods when accurate load predictions
are difficult, or recommend longer ones when predictions are
reliable, which helps reduce system overhead. This
continuous feedback loop ensures that the resource
distribution process is continuously optimized to meet real-
world demands and improve overall system performance.

8. Information Flow

In each grant period, the resource management framework
dynamically allocates resources for L1-Hi processing. As
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illustrated in Fig. 3, the process starts when RM clients
retrieve load information, including PRB usage, from the L2
processing unit. The RM clients then process this data to
estimate PRB needs for the next grant and evaluate the
adequacy of the current grant period.

This information is sent to a central resource manager,
which consolidates demands from all clients. The resource
manager uses workload models and hardware usage data to
determine the new PRB allocations for all cells. These
allocations are then sent back to the RM clients, which update
the L2 subsystem's scheduling parameters. This cyclical
process repeats, ensuring an efficient and dynamic allocation
of resources. This framework effectively addresses challenges
like overloading and scalability by combining centralized
management with client feedback and load predictions.
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Fig. 3: Information flow within resource management framework

VI. RESULTS AND DISCUSSION
A. Workload Models

Workload models, developed for a commercial SmartNIC
that supports 16 cells under full load, form the basis of a new
resource management framework. These models enable
precise estimation of processing times and efficient resource
allocation by providing granular insight into the LI1-Hi
processing chain.

For downlink operations, the SmartNIC processes tasks
such as PDSCH and PDCCH sequentially. A test with 16 cells
under full load validated the models, showing that they
provide accurate, yet slightly conservative, estimates. This
conservative approach is intentional, creating a safety buffer
to prevent hardware overloading (see Fig. 4).
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Fig. 4: Boxplots of L1-Hi processing times on SmartNIC.
Workload model estimates are marked with stars, demonstrating
alignment with actual measurements.

For uplink operations, the SmartNIC uses slot-level
processing with parallel hardware accelerators. Similar to the
downlink, workload models for uplink tasks also provided
precise and slightly conservative predictions that closely
matched empirical data. The findings confirm that the

methodology for developing these workload models is
effective, as they accurately predict processing times based on
L1 cell configurations and traffic loads, a crucial function for
the resource management framework.

B. Resource Management

To evaluate the proposed resource management
framework, this study used the OMNeT++ network simulator
with its Simu5G library [11]. The framework was
implemented within Simu5G with a central resource manager
and an RM client for each cell. The RM client communicates
with Layer 2 (L2-PS) to enforce PRB limits given by the
resource manager, ensuring resource usage doesn't exceed
allocated capacity. Workload models, based on real hardware
measurements of a SmartNIC, were integrated into the
resource manager to enable accurate and dynamic allocation
decisions. The SmartNIC was modeled as a high-level
statistical representation, with processing delays calibrated
using real hardware measurements.

The simulation scenarios involved multiple gNBs serving
users with VoIP and web browsing traffic. User counts and
movement were adjusted to simulate varying cell loads. A
seeding technique was used to ensure reproducible yet
dynamic load predictions, achieving around 90% accuracy. A
fixed grant period of 50 ms was chosen for periodic resource
allocations based on this prediction accuracy.

Simulations were run with configurations exceeding the
SmartNIC’s advertised capacity of 16 cells, but with reduced
average loads. PRB demands fluctuated over time. When
aggregated demands were within the SmartNIC’s capacity,
grants equaled demands. When demands exceeded capacity, a
round-robin approach was used to distribute resources.

The study examined how often demands were met when
more than 16 cells were served. Results, as shown in the
cumulative distribution function (CDF) of demand-grant
differences, demonstrated that cell demands were met most of
the time (see Fig. 5). Reductions in grants occurred in less than
6% of cases and had no noticeable impact on QoE. Key
metrics like throughput and latency were monitored to
confirm this. For example, the average RLC PDU delay
remained at 2.0ms (+0.3ms), and throughput reached 95% of
the baseline capacity. These findings suggest that minor
reductions in resource allocation are effectively managed by
higher-layer scheduling, preserving the end-user experience.
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Fig. 5: CDF of the differences between cell demands and grants

While the SmartNIC is advertised to support 16 fully
loaded cells, this study found it could handle a significantly
higher number under lighter traffic conditions. For instance, it
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could support up to 20 cells at an 80% mean load (a 25%
capacity increase) and up to 24 cells with a mean load below
60% (a 50% increase). In low-traffic scenarios, such as
nighttime, the SmartNIC successfully served 32 cells—double
its advertised capacity.

This enhanced capacity allows network operators to
consolidate workloads onto fewer vDU hosts during off-peak
hours, enabling the powering down of surplus hosts. This
strategy leads to significant energy savings, reduced cooling
needs, and lower hardware wear. For example, serving 24
cells at 60% load reduces energy usage per cell by about 20%
compared to a baseline of 16 fully loaded cells.

The study also observed an overhead when the SmartNIC
served more cells than its advertised capacity, meaning the
theoretical efficiency of a 50% load was not fully achieved
when serving 32 cells. The exact cause of this overhead could
not be determined due to the SmartNIC's proprietary, "black
box" nature. However, these findings suggest opportunities
for future optimization to further extend the practical capacity
of these accelerators under reduced load conditions.

In scenarios with increasing cell counts, the SmartNIC's
computational resource utilization approaches 90% in the 32-
cell scenario, as shown in Fig. 6. This suggests the resource
management framework efficiently uses idle resources.
However, scaling beyond 32 cells may not be possible without

further optimization.
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Fig. 5: Computational resource utilization of the SmartNIC across

different cell count scenarios

Without the framework, high load peaks caused the
SmartNIC to enter an overload state, triggering failure events
(where cells aren't processed within the required time). As Fig.
7 shows, the number of cumulative failures increases over
time without resource management, emphasizing its
importance in preventing these disruptions.

SmartNIC Failures Due to Overload
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Fig. 6: Cumulative failure events over time without resource
management

The proposed framework prevents failures by dynamically
controlling load peaks. It assesses computational demands,

redistributes resources, and trims unserviceable peaks to keep
operations within safe limits. While trimming is vital for
stability, prolonged excessive trimming can reduce the QoE.
To prevent this, the framework must also scale resources up
during long periods of high load.

VII. CONCLUSIONS AND FUTURE WORK

This study presents a dynamic resource management
framework aimed at optimizing L1-Hi processing in 5G Cloud
RAN. By leveraging predictive workload models and adaptive
allocation strategies, the framework addresses inefficiencies
associated with static allocation methods. Simulation results
demonstrate its effectiveness in extending the capacity of
hardware accelerators like SmartNICs, supporting up to 24
cells at 60% load—a 50% improvement over their advertised
capacity—without compromising user QoE. In extreme
scenarios, such as nighttime traffic conditions with mean cell
loads of 20%, the SmartNIC successfully served 32 cells,
achieving double its advertised capacity.

The findings highlight the potential of dynamic resource
management to optimize operational costs, reduce energy
consumption, and enhance the scalability of 5G deployments.
Future work will focus on expanding the approach to
alternative accelerators, such as GPUs, and exploring
integration with radio resource management strategies to
create a holistic optimization model for 5G RANs. This
research lays a robust foundation for cost-effective, scalable,
and energy-efficient next-generation telecommunications,
supporting the transition to greener 5G networks and enabling
the future of ubiquitous, high-performance connectivity.
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