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Abstract—Escalating mobile service demands require 

Mobile Network Operators (MNOs) to optimize Radio Access 

Network (RAN) infrastructure for cost, efficiency, and 

scalability. While Cloud RAN virtualization improves resource 

pooling, hardware remains underutilized during low-traffic 

periods. This study introduces a dynamic resource management 

framework for 5G Cloud RAN that optimizes L1-Hi processing 

on hardware accelerators like GPUs and SmartNICs. By 

combining predictive workload modeling with adaptive 

allocation, the framework scales resources based on real-time 

traffic. This approach mitigates over-provisioning, thereby 

increasing hardware utilization, lowering energy consumption, 

and reducing operational costs. Simulations confirm the 

framework enhances hardware efficiency while maintaining 

user Quality of Experience (QoE), enabling more scalable, cost-

effective, and sustainable telecom networks. 

Keywords—Cloud RAN, Resource Management, Hardware 

Accelerators, virtual Distributed Unit, Layer 1 Processing  

I. INTRODUCTION 

The surge in mobile network usage, driven by increased 

data consumption and a growing subscriber base, pressures 

Mobile Network Operators (MNOs) to expand Radio Access 

Network (RAN) infrastructure. RAN accounts for 65–70% of 

telecom costs, making optimization critical as traffic and user 

expectations rise [1]. Traditional peak load provisioning leads 

to significant underutilization, with average RAN usage at just 

25–50%—a figure that drops to 20% of peak levels during 

nighttime hours. 

To combat this inefficiency, solutions like Centralized 

RAN (C-RAN) and Cloud RAN introduce virtualization to 

consolidate baseband processing and improve resource 

utilization [2]. In 5G, this architecture splits functions into 

virtualized Central Units (vCUs) and Distributed Units 

(vDUs), where vDUs rely on specialized accelerators (e.g., 

GPUs, SmartNICs) for real-time Layer 1 (L1) processing.  

However, these powerful accelerators are also provisioned 

for peak loads and thus remain idle much of the time, creating 

a critical need for dynamic management. Addressing this gap, 

our study proposes a framework to dynamically scale 

accelerator resources for L1-Hi processing based on real-time 

traffic demands. This approach enhances hardware utilization, 

reduces capital (CAPEX) and operational (OPEX) costs, and 

improves energy efficiency, paving the way for sustainable 

telecom networks. 

The paper is structured as follows: Section II reviews 

related work, Section III discusses hardware acceleration, 

Section IV presents our workload modeling, Section V details 

the proposed framework, Section VI evaluates its 

performance, and Section VII concludes with future work. 

II. RELATED WORK 

Significant research has explored balancing computational 

loads in Baseband Unit (BBU) pools, often migrating 

workloads from overloaded to underutilized BBUs to improve 

resource utilization and energy efficiency [3]. Clustering 

techniques, such as location-aware, load-aware, and QoS-

aware clustering, dynamically associate BBUs with Remote 

Radio Heads (RRHs) to meet user demand [4]. These methods 

typically involve switching BBUs on or off during low-traffic 

periods but address only specific optimization aspects and 

lack rapid adaptability under real-world constraints. 

Frameworks like Pompili et al. [5] propose elastic, on-

demand BBU resource allocation using virtualization, 

implementing baseband functions as virtual network functions 

on general-purpose servers. These models enhance utilization 

but assume sufficient peak-load capacity, overlooking 

resource-constrained scenarios [6]. Optimization algorithms, 

including game-theory and linear programming, distribute 

computing resources among BBUs to maximize pool 

utilization [7]. Emerging studies leverage machine learning to 

predict traffic loads and scale resources dynamically [8]. 

However, these models’ computational complexity limits 

practicality in environments with frequent short-term 

fluctuations [9]. Our framework diverges from these methods 

by employing a lightweight allocation algorithm built on 

empirically derived workload models, which enhances both 

adaptability and efficiency. This approach yields significant 

performance gains, with simulations showing up to a 50% 

increase in serving capacity under moderate traffic while 

maintaining high QoE.  

The primary novelty of our work lies in its granular focus. 

Unlike prior research that treats BBUs as monolithic entities, 

our framework manages resources for vDUs by decoupling 

L1-Hi processing on specialized accelerators (e.g., GPUs, 

FPGAs, SmartNICs) from L2 tasks on CPUs. This separation 

is critical because L1-Hi and L2 workloads scale differently; 

L1-Hi processing demands are driven by Physical Resource 

Blocks (PRBs), MIMO layers, and Modulation and Coding 

Scheme (MCS), whereas L2 scales mainly with user count. By 

targeting the unique requirements of L1-Hi, our approach 

provides tailored resource management that directly addresses 

hardware underutilization and operational inefficiencies, 

thereby improving the scalability and sustainability of Cloud 

RAN infrastructures 

III. HARDWARE ACCELERATION FOR L1-HI PROCESSING 

As 5G networks evolve to support higher bandwidths and 

advanced antenna systems, pure CPU-based platforms 

struggle to meet the intense computational demands of L1-Hi 

processing, necessitating hardware acceleration. SmartNICs 
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are an excellent example of  acceleration for L1-Hi 

processing, utilizing specialized System-on-Chip (SoC) 

architectures. These SoCs contain dedicated components like 

ARM or RISC-V cores for control plane tasks, Digital Signal 

Processors (DSPs), and hardware accelerators to handle 

computationally-intensive tasks. They also feature high-

bandwidth memory to facilitate rapid data transfer and ensure 

low latency. Within the SmartNIC, a high-speed job scheduler 

dynamically assigns baseband processing tasks to the DSPs 

and hardware accelerators, enabling efficient parallel 

processing for multiple cells. 

IV. WORKLOAD MODELLING 

SmartNICs perform baseband processing for multiple 

cells, with their capacity typically defined by full-load Layer 

1 (L1) configurations. However, under moderate traffic, the 

same hardware can support additional cells, significantly 

improving resource utilization. To quantify this potential, we 

developed empirical workload models that mathematically 

map L1 configuration parameters and cell load to their 

corresponding processing times. 

Due to a lack of vendor-provided empirical data, we 

conducted controlled experiments on a commercial SmartNIC 

using its development kit. We created custom unit tests to 

simulate various cell loads and L1 configurations by 

manipulating parameters such as PRBs, MIMO layers, MCS 

index, and user count. These automated tests measured key 

performance indicators, including symbol processing time and 

resource utilization. Capturing a comprehensive dataset of 

hardware behavior required running hundreds of unique 

experiments, one for each distinct L1 configuration. 

The models were developed for a SmartNIC advertised to 

support 16 cells at full load. As shown in Fig. 1, we analyzed 

processing times for two critical L1 tasks—PDSCH symbol 

processing and Frequency Offset Compensation (FoC)—as a 

function of PRB count. The results, reported in Abstract Units 

(AU) for confidentiality, revealed that PDSCH processing 

time scales proportionally with PRB count, though its 

variance widens at higher values, suggesting increased 

complexity. Conversely, FoC processing time shows a 

predictable, near-linear scaling. To model these trends, we 

applied linear regression against the 95th percentile of 

measured times to establish a robust performance boundary. 

The models proved highly accurate, achieving coefficients of 

determination (R²) of 0.9974 for PDSCH and 0.9994 for FoC. 

Since processing times also vary with MIMO and modulation, 

we developed separate models for each configuration to 

maintain accuracy. 

We applied this methodology to other L1-Hi tasks like 

PUCCH and RACH , using linear, piecewise, or polynomial 

regression as appropriate. For validation, the dataset was split 

into training (80%) and validation (20%) subsets. Models 

were evaluated using Mean Squared Error (MSE) and R², and 

residual analysis confirmed the suitability of our regression 

techniques. Controlled experiments further verified the 

models' accuracy. We chose regression over complex methods 

like deep neural networks for its practicality in a real-time 

vDU, where low computational overhead and small storage 

footprints are critical. 

While the resulting models are specific to the tested 

SmartNIC, the methodology is broadly generalizable. The 

core approach of empirical data collection, regression 

analysis, and workload-to-processing time mapping can be 

adapted for other accelerators like FPGAs or GPUs. These 

workload models are the foundation of our dynamic resource 

management framework, enabling predictive resource 

allocation based on real-time network demands. By pre-

calculating estimates, the system can proactively optimize 

resources without imposing test loads. Through this 

combination of empirical testing and validated modeling, our 

work establishes a robust method for understanding and 

optimizing computational workloads in vDUs. 

Fig. 1: Processing times for PDSCH and FoC tasks, shown as a 

function of PRBs. The box plots show the data distribution, blue 

stars indicate the 95th percentile, and the red dashed line represents 

the linear regression fit. 

V. PROPOSED RESOURCE MANAGEMENT FRAMEWORK 

This section outlines the requirements, design, and 

operational mechanisms of the proposed resource 

management framework, addressing the challenges of 

computational load distribution, communication overhead, 

and dynamic traffic conditions. 

1. Requirements for a Resource Management 

The proposed framework is designed to maximize 

accelerator utilization and ensure reliable operation under 

fluctuating traffic conditions. It is built on four core 

requirements: 

• Efficiency: A lightweight design to allow frequent 

updates without computational burden. 

• Low Overhead: Minimized control-plane 

communications. 

• Fairness: Dynamic and equitable resource distribution 

based on traffic loads. 

• Reliability: A robust mechanism to prevent 

accelerator overload and L1-Hi processing failures. 

2. Framework Design 

Building on these requirements, this study proposes a 

centralized resource management framework where a single 

manager allocates computational resources from an 

accelerator, like a SmartNIC, to multiple cells. This system 

optimizes resource distribution and improves efficiency by 

using workload models that accurately estimate processing 

times based on cell loads and Layer 1 (L1) configurations. 

Fig. 2 illustrates a vDU host equipped with SmartNIC 

designed to support multiple cells. The framework operates 

through a communication cycle. Each cell has a resource 

management (RM) client that monitors its load and sends its 
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PRB demands to the central resource manager. The manager 

uses this information, along with workload models, to 

determine the necessary resource allocations. These 

allocations are then sent back to the RM client, which informs 

the cell's L2 processing subsystem. 

The central manager's allocation imposes a new constraint 

on the L2 scheduler. Traditionally, L2 scheduling is based on 

factors like Channel Quality Indicators (CQI) and Quality of 

Service (QoS). With this framework, the L2 subsystem must 

now ensure its scheduling decisions remain within the 

allocated resource limits, which are periodically updated to 

reflect changing traffic conditions. This dynamic process 

ensures efficient resource utilization. If the total demand from 

all cells exceeds the accelerator's capacity, the manager 

adjusts allocations to keep the total distribution within the 

hardware limits. The vDU host is assumed to have sufficient 

capacity for L2 processing, allowing the manager to focus 

exclusively on distributing L1-Hi resources.  This approach is 

further discussed in next subsection. 

Fig. 2: A vDU with a SmartNIC for L1-Hi processing, showing 

resource management components in blue. 

3. Resource Distribution  

When the total resource demand from all cells exceeds an 

accelerator's capacity, the framework manages resource 

allocation through adaptable distribution strategies. A 

priority-based distribution gives precedence to high-priority 

cells, ensuring critical demands are met, which is useful for 

emergency scenarios. A fair distribution allocates resources 

proportionally to cell demands using weighted round-robin 

techniques, ensuring equitable sharing. A hybrid approach 

combines these methods, prioritizing important cells while 

fairly distributing any remaining resources. 

These strategies are designed to be simple and fast, 

allowing for real-time execution. They assume cells report 

their demands accurately to avoid unnecessary complexity 

and ensure the resource distribution is both effective and 

scalable for dynamic 5G network traffic. 

4. Traffic Load Prediction 

For managing resources in wireless networks, predicting 

cell resource demands is critical. This is possible because 

cellular traffic often follows predictable patterns based on the 

time of day and the short duration of grant periods (under 100 

milliseconds), which causes gradual load changes. 

Various methods can be used for forecasting these 

demands [10]. Classical time-series forecasting techniques 

like ARIMA and Exponential Smoothing are effective at 

capturing temporal patterns. On the other hand, machine 

learning approaches, such as LSTM networks and XGBoost, 

offer data-driven adaptability for dynamic traffic. 

Accurate load predictions allow the resource manager to 

allocate the optimal amount of resources to each cell, thereby 

avoiding both service degradation from under-allocation and 

inefficiency from over-allocation. The task of forecasting is 

delegated to individual cells to ensure scalability and 

accuracy. Each cell predicts its own demands and sends the 

information to the central resource manager, which then 

focuses on optimizing resource allocation across all cells. 

5. Grant Period Length 

Efficient resource management in cellular networks 

depends on the grant period length, which determines how 

often resources are reallocated. A fixed grant period is simple 

but can be inefficient, as short periods create overhead and 

long periods can't adapt to rapid traffic changes. Dynamic 

grant periods are more flexible, adjusting their length to traffic 

conditions to balance responsiveness and overhead. An 

alternative is asynchronous updates, where cells report 

changes only when significant shifts occur, reducing control-

plane overhead. The optimal strategy balances overhead, and 

system complexity to enhance efficiency and scalability. 

6. Avoiding Overloading 

To prevent an overloaded accelerator from causing L1-Hi 

processing failures, a resource manager uses real-time load 

Key Performance Indicators (KPIs) from the hardware 

alongside predictions from a workload model. A dynamic 

allocation system is employed to keep resource utilization 

within a safe range, typically targeting 90–95% to leave a 5–

10% buffer for unexpected demand spikes. The system adjusts 

allocations adaptively, scaling up when utilization drops 

below 85% and scaling down when it exceeds 95%. 

Shortening the duration of grant periods could improve 

responsiveness, allowing for more frequent reallocations to 

match sudden changes in traffic. This ensures that resource 

distribution aligns with real-time demands, optimizing 

performance while minimizing the risk of overloading. 

7. RM Client Feedback 

RM clients are crucial for refining resource distribution by 

providing feedback on both resource utilization and the 

adequacy of the current grant period. This feedback allows the 

resource manager to make informed, dynamic decisions. For 

instance, a cell with high resource utilization may signal an 

increased load, making it a strong candidate for more 

resources. Conversely, low utilization could prompt resource 

adjustments to prevent over-allocation. 

Feedback on the grant period is also vital. RM clients can 

suggest shorter grant periods when accurate load predictions 

are difficult, or recommend longer ones when predictions are 

reliable, which helps reduce system overhead. This 

continuous feedback loop ensures that the resource 

distribution process is continuously optimized to meet real-

world demands and improve overall system performance. 

8. Information Flow  

In each grant period, the resource management framework 

dynamically allocates resources for L1-Hi processing. As 
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illustrated in Fig. 3, the process starts when RM clients 

retrieve load information, including PRB usage, from the L2 

processing unit.  The RM clients then process this data to 

estimate PRB needs for the next grant and evaluate the 

adequacy of the current grant period. 

This information is sent to a central resource manager, 

which consolidates demands from all clients. The resource 

manager uses workload models and hardware usage data to 

determine the new PRB allocations for all cells. These 

allocations are then sent back to the RM clients, which update 

the L2 subsystem's scheduling parameters. This cyclical 

process repeats, ensuring an efficient and dynamic allocation 

of resources. This framework effectively addresses challenges 

like overloading and scalability by combining centralized 

management with client feedback and load predictions.  

Fig. 3: Information flow within resource management framework 

VI. RESULTS AND DISCUSSION 

A. Workload Models 

Workload models, developed for a commercial SmartNIC 

that supports 16 cells under full load, form the basis of a new 

resource management framework. These models enable 

precise estimation of processing times and efficient resource 

allocation by providing granular insight into the L1-Hi 

processing chain. 

For downlink operations, the SmartNIC processes tasks 

such as PDSCH and PDCCH sequentially. A test with 16 cells 

under full load validated the models, showing that they 

provide accurate, yet slightly conservative, estimates. This 

conservative approach is intentional, creating a safety buffer 

to prevent hardware overloading (see Fig. 4). 

Fig. 4: Boxplots of L1-Hi processing times on SmartNIC. 

Workload model estimates are marked with stars, demonstrating 

alignment with actual measurements. 

For uplink operations, the SmartNIC uses slot-level 

processing with parallel hardware accelerators. Similar to the 

downlink, workload models for uplink tasks also provided 

precise and slightly conservative predictions that closely 

matched empirical data. The findings confirm that the 

methodology for developing these workload models is 

effective, as they accurately predict processing times based on 

L1 cell configurations and traffic loads, a crucial function for 

the resource management framework. 

B. Resource Management  

To evaluate the proposed resource management 

framework, this study used the OMNeT++ network simulator 

with its Simu5G library [11]. The framework was 

implemented within Simu5G with a central resource manager 

and an RM client for each cell. The RM client communicates 

with Layer 2 (L2-PS) to enforce PRB limits given by the 

resource manager, ensuring resource usage doesn't exceed 

allocated capacity. Workload models, based on real hardware 

measurements of a SmartNIC, were integrated into the 

resource manager to enable accurate and dynamic allocation 

decisions. The SmartNIC was modeled as a high-level 

statistical representation, with processing delays calibrated 

using real hardware measurements. 

The simulation scenarios involved multiple gNBs serving 

users with VoIP and web browsing traffic. User counts and 

movement were adjusted to simulate varying cell loads. A 

seeding technique was used to ensure reproducible yet 

dynamic load predictions, achieving around 90% accuracy. A 

fixed grant period of 50 ms was chosen for periodic resource 

allocations based on this prediction accuracy. 

Simulations were run with configurations exceeding the 

SmartNIC’s advertised capacity of 16 cells, but with reduced 

average loads. PRB demands fluctuated over time. When 

aggregated demands were within the SmartNIC’s capacity, 

grants equaled demands. When demands exceeded capacity, a 

round-robin approach was used to distribute resources. 

The study examined how often demands were met when 

more than 16 cells were served. Results, as shown in the 

cumulative distribution function (CDF) of demand-grant 

differences, demonstrated that cell demands were met most of 

the time (see Fig. 5). Reductions in grants occurred in less than 

6% of cases and had no noticeable impact on QoE. Key 

metrics like throughput and latency were monitored to 

confirm this. For example, the average RLC PDU delay 

remained at 2.0ms (±0.3ms), and throughput reached 95% of 

the baseline capacity. These findings suggest that minor 

reductions in resource allocation are effectively managed by 

higher-layer scheduling, preserving the end-user experience. 

While the SmartNIC is advertised to support 16 fully 

loaded cells, this study found it could handle a significantly 

higher number under lighter traffic conditions. For instance, it 

Fig. 5: CDF of the differences between cell demands and grants 
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could support up to 20 cells at an 80% mean load (a 25% 

capacity increase) and up to 24 cells with a mean load below 

60% (a 50% increase). In low-traffic scenarios, such as 

nighttime, the SmartNIC successfully served 32 cells—double 

its advertised capacity. 

This enhanced capacity allows network operators to 

consolidate workloads onto fewer vDU hosts during off-peak 

hours, enabling the powering down of surplus hosts. This 

strategy leads to significant energy savings, reduced cooling 

needs, and lower hardware wear. For example, serving 24 

cells at 60% load reduces energy usage per cell by about 20% 

compared to a baseline of 16 fully loaded cells. 

The study also observed an overhead when the SmartNIC 

served more cells than its advertised capacity, meaning the 

theoretical efficiency of a 50% load was not fully achieved 

when serving 32 cells. The exact cause of this overhead could 

not be determined due to the SmartNIC's proprietary, "black 

box" nature. However, these findings suggest opportunities 

for future optimization to further extend the practical capacity 

of these accelerators under reduced load conditions. 

In scenarios with increasing cell counts, the SmartNIC's 

computational resource utilization approaches 90% in the 32-

cell scenario, as shown in Fig. 6. This suggests the resource 

management framework efficiently uses idle resources. 

However, scaling beyond 32 cells may not be possible without 

further optimization. 

Fig. 5: Computational resource utilization of the SmartNIC across 

different cell count scenarios 

Without the framework, high load peaks caused the 

SmartNIC to enter an overload state, triggering failure events 

(where cells aren't processed within the required time). As Fig. 

7 shows, the number of cumulative failures increases over 

time without resource management, emphasizing its 

importance in preventing these disruptions. 

Fig. 6: Cumulative failure events over time without resource 

management 

The proposed framework prevents failures by dynamically 

controlling load peaks. It assesses computational demands, 

redistributes resources, and trims unserviceable peaks to keep 

operations within safe limits. While trimming is vital for 

stability, prolonged excessive trimming can reduce the QoE. 

To prevent this, the framework must also scale resources up 

during long periods of high load. 

VII. CONCLUSIONS AND FUTURE WORK 

This study presents a dynamic resource management 

framework aimed at optimizing L1-Hi processing in 5G Cloud 

RAN. By leveraging predictive workload models and adaptive 

allocation strategies, the framework addresses inefficiencies 

associated with static allocation methods. Simulation results 

demonstrate its effectiveness in extending the capacity of 

hardware accelerators like SmartNICs, supporting up to 24 

cells at 60% load—a 50% improvement over their advertised 

capacity—without compromising user QoE. In extreme 

scenarios, such as nighttime traffic conditions with mean cell 

loads of 20%, the SmartNIC successfully served 32 cells, 

achieving double its advertised capacity. 

The findings highlight the potential of dynamic resource 

management to optimize operational costs, reduce energy 

consumption, and enhance the scalability of 5G deployments. 

Future work will focus on expanding the approach to 

alternative accelerators, such as GPUs, and exploring 

integration with radio resource management strategies to 

create a holistic optimization model for 5G RANs. This 

research lays a robust foundation for cost-effective, scalable, 

and energy-efficient next-generation telecommunications, 

supporting the transition to greener 5G networks and enabling 

the future of ubiquitous, high-performance connectivity.  
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