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Abstract—Bluetooth Low Energy (BLE) is widely used in
devices like smartphones and personal trackers, but also raises
serious privacy risks, especially related to stalking. Machine
Learning (ML)-based methods for detecting BLE trackers
across vendors show promise, yet are limited by the scarcity
and variability of BLE advertisement packets, which hin-
ders model performance. This paper addresses this limitation
by introducing the first publicly available, open-source tool
for generating synthetic BLE advertisement packets using
a Markov model. Designed for structured time-series data,
the model can produce all valid BLE packet permutations,
addressing a key data gap for research and training. As a
case study, synthetic Samsung SmartTag (nearby) packets are
used to augment training data, resulting in a 37% increase in
median prediction confidence level in real-world evaluations.

Index Terms—Internet of Things, Crowdsourced Finding
Networks, Bluetooth Low Energy, Personal Trackers

I. INTRODUCTION

Bluetooth Low Energy (BLE) is a low-power wireless
technology widely used to connect Internet of Things (IoT)
devices , for example, personal tracking devices, such as
Samsung’s SmartTag, are being adopted rapidly [1]. While
useful for locating lost items, these devices also raise pri-
vacy concerns, such as unauthorized tracking [2]. Our recent
work has focused on detecting and classifying BLE devices,
capturing a 200-hour BLE dataset including all available
personal trackers on the market [3] with Machine Learning
(ML) classifiers proposed for effective identification [4].
The classifier demonstrated strong performance under con-
trolled conditions, achieving over 99% accuracy on training
data. However, this high accuracy did not translate reliably
to real-world environments, where only a confidence of 80%
was achieved. Further analysis exposed limitations in fine-
grained classification tasks, such as identifying different
operational states of personal trackers. For instance, dis-
tinguishing between a SmartTag in a “lost” state (far from
the owner’s phone) and one that is “nearby” (within 20 m)
proved challenging. The "SmartTag (nearby)" state achieved
only ~ 50% accuracy. The issue stems from significant
bias within the dataset. A greater number of advertisement
packets were collected from AirTags than from SmartTags,
due to the limited time the device spent in the nearby
state, restricting the classifier’s ability to learn representative
features. A common challenge, when collecting balanced
real-world data.

To address the data imbalance [3] and the limited gen-
eralization in BLE packet classification [4], synthetic data
generation was explored using Generative Adversarial Net-
works (GANs) and Markov Models (MMs). GANs were
deemed unsuitable due to the few misclassified packets
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found (< 20), which is likely to lead to overfitting or invalid
packets. Hence, MMs were chosen for their ability to model
structured time-series data, capturing field dependencies and
structural constraints inherent in BLE advertisements.

This paper introduces a Proof-of-Concept (PoC) MM-
based method that synthesizes high-quality Samsung Smart-
Tag (nearby) packets to augment the training set. The
synthetic data improves model robustness across device
types and operational states, while laying the foundation for
a generalizable, specification-compliant BLE packet gener-
ator capable of producing any valid advertisement packet
permutation. This paper’s contributions are:

1) Open-source mapping of BLE advertisement packets

to MM: https://github.com/keyyke/ble_forge

2) Synthetic data to augment the existing dataset

3) Evaluation of effect of synthetic data on real-world

classification, demonstrating a ~ 37% increase in the
median model confidence level for SmartTag (nearby)

The paper is organized as follows: Section II introduces
background; Section III reviews related work; Section IV
presents the synthetic BLE data generation design; Sec-
tion V details Markov mappings; Section VI evaluates the
impact on tracker classification; and Section VII concludes.

II. BACKGROUND

In BLE communication, devices act as either Central
or Peripheral [16], [17]. Smartphones typically serve as
Centrals, while personal trackers act as Peripherals. Pe-
ripherals broadcast advertisement packets to announce their
presence, allowing nearby Centrals to initiate connections.
Once connected, the Peripheral stops advertising and en-
ters one-to-one communication [17]. These pre-connection
advertisement packets can be analyzed to identify and
classify Peripheral devices. The collected data contains only
metadata and encrypted payloads for secure pairing, with no
personal information such as location or activity, and thus
does not compromise user privacy.

A. BLE Packet Structure

Packets consist of a Preamble, Access Address, Protocol
Data Unit (PDU), and Cyclic Redundancy Check (CRC)
(cf. Figure 1). Since advertising occurs via the PDU, this
component is the primary focus. There are two PDU types:
Adpvertising Physical Channel PDUs (used for broadcasting)
and Data Physical Channel PDUs (used for Central device
communication), though only the former is relevant here.
The payload structure varies slightly by PDU type.

The PDU comprises a Header and a Payload contain-
ing the Advertising Address (AdvA) and Advertising Data
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TABLE I: Overview of the Related Work

Related

Research Synthesizing BLE Packet Data

Hidden Markov Model

. ) Can It Be Used to Create Synthetic BLE Packets?
Time Series Data

Synthesizing Data  Simulation Method Data
[51, [6] No Yes No No Yes No Partially
[71, (8] No No Yes No Yes No Partially
[9] No Yes No No Yes No Partially
[10], [11], [12] No Yes No No Yes Yes No
[13] No Yes No Yes Yes No No
[14], [15] No Yes No Yes No No No
This Paper Yes Yes No No Yes Yes Yes
BLE Packet ‘ These studies addressed privacy protection and the high cost
Preamble| Access Address Protocol Data Unit (PDU) CRC . .
Tore || 4oy e e | of data collection, but they did not focus on BLE packets.
AdvertisementPOU B. Creation of Synthetic Data Using Markov Models
leader ayloa
2bytes 0-37 bytes [10] used an MM to generate high-resolution synthetic
— y solar radiation data by modeling the clarity index time se-
Advertisement Packet Payload . .
AdvA AdvData ries. [11] applied a first- and second-order Markov model to
| Gl | Qa3llbvics create S-minute wind speed data from 30-minute intervals,
AdvData . . ~
L~ and [12] generated synthetic wind power outputs. All stud

Advertisement Data Structure

ADlength|| ADtype || ADdata |

1 byte ‘ n byte ‘Length-n bytes|

Fig. 1: BLE Advertisement Packets Structure adapted: [17]

(AdvData). AdvA identifies the transmitting device, though
BLE devices may use multiple or rotating addresses for
privacy. AdvData includes fields such as device name and
manufacturer identifier. AdvData is further structured into
AD length, AD type, and AD data, which represent the total
size, data type, and actual content, respectively.

B. Synthetic Data and MM

Synthetic data replicates the structure and statistics of real
data while reducing cost and effort, and offers benefits such
as privacy, scalability, and bias reduction via augmentation
[18]. It can be generated through statistical methods, ML,
or deep learning [19]. Here, the statistical approach with
an MM is used. A stochastic process with the memoryless
property: the next state depends only on the current one.
For instance, a cloudy state may transition to rainy (50%),
sunny (20%), or stay cloudy (30%). This property makes
MMs suitable for structured data such as BLE packets [20].

III. RELATED WORK

This section reviews related work on BLE and Markov
Models (MM) for synthetic time series generation, noting
that none address synthetic BLE packet data.

A. Synthetic Data Generation for BLE

For example, [5], [6] generated synthetic RSSI data for
BLE location tracking using the Wasserstein interpolation
method. However, this focused only on signal strength rather
than packet data. [7] simulated BLE advertising packet
collisions, and [8] developed a MATLAB Simulink library
for BLE sensor network simulation. Moreover, synthetic
data has been generated for IP packets and TCP/UDP flows.
For instance, [9] created synthetic network traffic data to
support the development of intrusion detection systems.

ies produced data statistically similar to real observations.
Hidden MM have also been used. [13] generated financial
time series data, [14] created disease incidence data, and
[15] modeled population data, capturing complex attribute
dependencies such as age, gender, and education. These
studies show that both MM and HMM are suited for time
series data. MMs work for straightforward patterns such
as wind speed, while HMMs handle more complex state
transitions, such as in health or demographic data. However,
no study has used either to generate synthetic BLE packets.

IV. DATASET AND SYNTHETIC DATA GENERATION
This paper builds on our prior work [3], [4].

—r

0

The Faraday Cage

@

BLE device in Nearby State
(e.g, SmartTag (nearby))

Pairing device
(e.g, Galaxy S23 Ultrx)

Fig. 3: Faraday Cage Setup: Samsung Nearby State [3]

[3] collected 30 million BLE packets in a controlled envi-
ronment using a Faraday cage to eliminate external interfer-
ence. An nRF 52840 DK logic board captured packets from
various BLE devices, including but not limited to: AirTags,
SmartTags, iPhones, MacBooks, and Lenovo laptops. For
"nearby" state data, both the tracker and its paired device (cf.
Figure 3) were included. The controlled setup ensured clean,
labeled data, as shown in Table II. Additionally, unlabeled
data was collected at a central train station. To improve
real-world classifier confidence, increasing the quantity and
diversity of training data helps models better handle noise
and interference. Although enhancing feature extraction or
model complexity is an option, [4] suggests the existing
features are sufficient and the model already performs well
on test data, so further tuning will not yield significant gains.
Thus, the primary bottleneck is the lack of balanced real-
world data, motivating the generation of synthetic data.
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TABLE II: Example of the Dataset Created by [3] (SmartTag: Lost)

. . Length  Length Company Service
Number Time Source Destination ~ Protocol ~ Channel Packet  Header AD Type D Data PDU
1 1712778478  6d:40:e6:f1:49:01 ft: ff:£f: ff:£f: ff LE LL 37 63 37 Flags, 16-bit Service Class ~ Samsung 130f050217cfe ADV_IND
UUIDs (incomplete), Ser-  Electronics ~ bfablc2e0deb7
vice Data - 16-bit UUID Co., Ltd. 000000558045¢8
2 1712778480  6d:40:¢6:£1:49:01 JiRIRIRININIG LE LL 38 63 37 Flags, 16-bit Service Class ~ Samsung 130f050217cfe ADV_IND
UUIDs (incomplete), Ser-  Electronics ~ bfablc2e0deb7
vice Data - 16-bit UUID Co., Ltd. 000000558045¢8
Columns with a .
single unique value Duplicated Columns
@-1Duplicate X
Raw Data Prepg;ctzssed Columns Synthetic Dataset
== E @ Investigate each column ® Horizontally concatenate
- HE

Grouped Columns
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Split into columns

Synthetic Data of
Each Column
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@-2 Apply a Markov model

Fig. 2: Pipeline for Synthetic BLE Packet Data Generation

Figure 2 shows the synthetic data creation pipeline. The
raw data was first preprocessed and then separated into
individual columns for analysis. The columns that contained
only a single unique value (0), such as AD Tx Power Level
and UUID Tile, were therefore not processed using an MM;
instead, synthetic data was generated for them by directly
duplicating the original values, not requiring unique models.
The remaining columns, with two or more unique values
and high correlation, were grouped and treated as single-
state transition units:

Length Packet, Length Header, Length MS Data,
Length Service Data: All define packet length.

CH 37, CH38, CH 39: Define used channel.

AD Flags, AD Service Data 16-bit UUID, AD 16-
bit Service Class UUIDs (incomplete), AD Other: All
define AD type.

UUID Samsung, UUID Other: All define the UUIDs.
PDU ADV_IND, PDU Other: All define PDU type.
ST 5, ST Other: All define SmartTag type.

These grouped state models represent the key adaptation of
MMs and the paper’s main contribution. For each group,
transition probabilities were derived to generate synthetic
data, which was then combined into a dataset of 600,000
rows and 30 columns. To avoid bias from initial state
selection, all possible states were treated as starting points
with balanced sampling, ensuring even rare states were rep-
resented. The synthetic data was evaluated by (1) comparing
value distributions between original and synthetic data and
(2) comparing model performance when trained on original
versus mixed data.

V. RESULTS: MM STATE TRANSITION MODELS

This section describes each grouped state transition model
and the probability matrices.

A. Length (Packet, Header, MS Data, Service Data)

This group defines the various observed field length
values, indicating valid and correctly structured Samsung
SmartTag (nearby) packets. A valid packet requires the
Packet Length to exceed the Header Length by at least
26 bytes. Based on this, the valid (Packet Length, Header
Length) combinations are (63, 37), (38, 12), and (32, 6). The
combination (36, 37), observed only 11 times out of 24,038
data points, appears to deviate from this rule and suggests
an unusual packet structure. Notably, Packet Length 63
occurred 23,837 times, while lengths 38 and 32 appeared
95 times each. MS Data Length of 176 appeared only
twice. These rare values may reflect manufacturer-specific
behavior between the Galaxy smartphone and SmartTag
during data collection. While the exact cause is unclear,
synthetic data was generated to include these variations.

Figure 4 shows the transition diagram for the Packet
Length Group, illustrating the state transition probabilities
between different length configurations, including Packet,
Header, MS Data, and Service Data Length, from left to
right. For example, 63_37_0_160 means that the Length of
the Packet is 63, the Length of the Header is 37, the Length
of MS Data is 0, and the Length of Service Data is 160.
Showing the transition probability is heavily concentrated
on specific states, particularly 63_37_0_160.
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Fig. 4: State Transition Model for Packet Length

B. Chanel: 37, 38, or 39

SmartTag (nearby) consistently operated on a single chan-
nel at any given time, with no instances of simultaneous or
absent channel use. Channel 37 was used most frequently,
with transition probabilities exceeding 60% from channels
38 or 39, and a self-transition probability above 50%.
Channel 38 was the second most used, followed by 39. The
transition probabilities, summarized in Table III, confirm
Channel 37 as the dominant state and highlight the high
likelihood of transitions from Channel 38 to 37.

TABLE III: Transition Probability Matrix: Channel

CH 39 CH 38 CH 37
CH 39  0.000000  0.000419  0.999581
CH 38 0.333054 0.001398  0.665549
CH 37  0.000069  0.492758  0.507173

C. Advertising Data Type

SmartTag (nearby) used three types of Advertising Data:
AD Flags, AD Service Data (16-bit UUID), and AD 16-bit
Service Class UUIDs. Advertising Data other than these
occurred very rarely (5 times out of 24,038). Figure 5
shows the state transition diagram for Advertising Data. It
illustrates that AD Flags, AD Service Data (16-bit UUID),
and AD 16-bit Service Class UUIDs commonly appear
together. In contrast, other advertising data combinations
are rare, as reflected by their low transition probabilities.

1.00

N

Flags & Service Class & Other Flags & Service Class & 2 Others

Fig. 5: State Transition Model: Advertising Data Type

Flags & Other

D. UUID Type

SmartTag (nearby) typically stored two identical Samsung
UUIDs, such as "Samsung Electronics Co., Ltd., Samsung
Electronics Co., Ltd.," labeled as "2 Samsung" in Table IV.
In one rare case, only one Samsung UUID was present. Ad-
ditionally, non-Samsung UUIDs appeared only four times

and are labeled as "Other." Although the reason for their
presence in data from a Samsung device is unclear, these
rare cases were included in the synthetic data to preserve
statistical realism. Table IV confirms that "2 Samsung" is
the dominant state. Additionally, transitions from "Nothing"
tend to lead to "2 Samsung" with a probability of approxi-
mately 52%, reflecting the prevalence of this configuration.

TABLE IV: Transition Probability Matrix: UUID Type

Nothing Other  Samsung  Samsung & Other 2 Samsung

Nothing 0.475248  0.000000  0.000000 0.000000 0.524752

Other 0.000000  0.000000  0.000000 0.000000 1.000000

Samsung 0.000000  0.000000  0.000000 0.000000 1.000000

Samsung&Other ~ 0.000000  0.000000  0.000000 0.000000 1.000000

2 Samsung 0.004448  0.000084  0.000084 0.000084 0.995300
E. PDU Type

Most SmartTag (nearby) PDU types are ADV_IND, in-
dicating that the device is advertising and ready to accept
connections from a Central. Other PDU types, primarily
SCAN_REQ, likely originate from the paired smartphone in
the Faraday cage. As shown in the transition probabilities,
ADV_IND dominates with a self-transition rate of approx-
imately 99.6%, while "Other" types occur infrequently and
transition equally between themselves and ADV_IND.

F. Smartlag Type

SmartTags in the "nearby" state predominantly use Smart-
Tag Type 5 (ST 5), making it the most common transition
state. However, instances with missing or alternative types
were also observed, likely originating from the paired
smartphone. Table V shows that ST 5 is the dominant state,
with a self-transition probability of approximately 99.5%.
Transitions from "Nothing" to ST 5 occur about 53% of the
time, further confirming its prevalence. "Other" types are
rare and transition exclusively to ST 5.

TABLE V: Transition Probability Matrix: SmartTag Type

Nothing Other ST S
Nothing  0.466019  0.000000  0.533981
Other 0.000000  0.000000  1.000000
ST 5 0.004616  0.000042  0.995342

VI. EVALUATION OF SYNTHETIC DATA

This section evaluates the synthetic data by analyzing its
structure and its impact on classification performance. The
level of detail is necessary to ensure the data is not only
accurate but also effective for its intended use.

A. Comparison of Data Structures

Comparisons of data structures were made for each of
the MM state transition models.

1) Length (Packet, Header, MS Data, Service Data):
Table VI provides the numerical breakdown of the propor-
tions of different length combinations (Packet, Header, MS
Data, and Service Data) between the original dataset and the
synthetic dataset. The values confirm that the structure of the
data and the most frequently occurring length combination
(63_37_0_160) are the same in both datasets.
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TABLE VI: Length Distribution Comparison

32.6.00 363700 381200 63.37.0.0 63.37_0_160 63_37_176_0
Original Data 0.395208 0.045761 0.395208 0.012480 99.143024 0.008320
Synthetic Data  0.403333 0.049167 0.403167 0.007167 99.131000 0.006167

2) Channel: No significant structural change concerning
channels exists, with CH37 being the most common, fol-
lowed by CH38 and CH39, seen in Table VII. The values
indicate that the relative distribution of channels remains
nearly identical between the original and synthetic datasets,
with only minor variations in CH 38 and CH 39.

TABLE VII: Channel Distribution Comparison

CH 37 CH 38 CH 39
Original Data 60.316998  29.765371  9.917630
Synthetic Data  60.334167  29.711667  9.95416

3) Advertising Data Type: As shown in Table VIII, there
is no significant structural change in the Advertising data
type between the original and synthetic data. Flags, Service
Data, and Service Class Advertisement Data are often used
simultaneously, with the most frequently occurring adver-
tising data type remaining consistent across both datasets,
with minor variations in the lower-frequency categories.

TABLE VIII: Advertising Data Type Distribution Compar-
ison

Flags Flags Flags Flags
Nothing Flags & Oﬁ\cr & Service Class & Service Class & Service Data
& Other & 2 Others & Service Class
Original Data ~ 0.790415  0.045761  0.004160 0.012480 0.004160 99.143024
Synthetic Data  0.821167  0.047167  0.002167 0.010167 0.001167 99.118167

4) UUID Type: Table IX provides the numerical break-
down of these proportions, confirming there is no significant
structural change in UUID type between the original and
synthetic data. In both cases, UUIDs in which the name
Samsung appears twice are primarily used, such as "Sam-
sung Electronics Co., Ltd., Samsung Electronics Co., Ltd.",
indicating that "2 Samsung" is the dominant UUID type.

TABLE IX: UUID Type Distribution Comparison

Nothing Other Samsung ~ Samsung & Other 2 Samsung
Original Data 0.840336  0.008320  0.008320 0.008320 99.134703
Synthetic Data  0.847667  0.008500  0.006833 0.005167 99.131833

5) PDU Type: Table X provides the numerical break-
down of these proportions, showing no significant structural
change in PDU type between the original and synthetic data.
In both cases, ADV_IND accounts for more than 99% of
the data.

TABLE X: PDU Type Distribution Comparison

PDU ADV_IND  PDU Other
Original Data 99.209585 0.790415
Synthetic Data 99.219500 0.780500

6) SmartTag Type: Table XI presents the distribution of
SmartTag types in both the original and synthetic datasets.
ST 5 consistently accounts for more than 99% of the data in
both cases, indicating no significant structural differences.

Minor variations were observed, with some data having no
SmartTag type at all.

TABLE XI: SmartTag Type Distribution Comparison

ST S ST Other ST Nothing
Original Data 99.138863  0.004160 0.856976
Synthetic Data  99.134167  0.003167 0.862667

7) Summary: The comparison showed no significant
structural differences between the synthetic and original
datasets, confirming that the MM-based generation pre-
serves data structure. Although initializing from all possible
states could introduce deviations, the results indicate that
the method avoids malformed packets and maintains BLE
protocol compliance, crucial for classification tasks.

B. Model Accuracy and Confidence Comparison

In this section, we adopt the neural network from [4] to
assess the impact of synthetic data. The model was trained
(1) on original data only, (2) on a mix of original and
synthetic data, and (3) with varying amounts of synthetic
data to identify the threshold needed for significant gains in
real-world classification. Performance was evaluated using
confusion matrices and model confidence on the test data.

1) Training Datasets: The original dataset contained
8,734,048 BLE advertisement packets, from which 240,380
were selected for training. Adding MM-generated synthetic
data increased this to 328,290. To balance training, all
classes were aligned to the size of the smallest class, orig-
inally SmartTag (nearby) (Table XII), leading to downsam-
pling of others. After generating 600,000 synthetic samples
for SmartTag (nearby), SmartTag (lost) became the new
smallest class, and all labels were resampled to this new
minimum, yielding a larger balanced training set.

TABLE XII: Samples per label in original, training, and
MM-augmented training datasets

Label Original Dataset

5,775,063

Training Dataset
24,038

Training + MM Synthetic
32,829

iDevice

other Device 1,776,914 24,038 32,829
FindMy Tracker (unpaired) 304,646 24,038 32,829
FindMy Tracker (lost) 191,815 24,038 32,829
FindMy Tracker (nearby) 190,271 24,038 32,829
iDevice FindMy online 189,946 24,038 32,829
iDevice FindMy offline 182,397 24,038 32,829
Tile (lost) 66,129 24,038 32,829

32,829
24,038

32,829
32,829

SmartTag (lost)
SmartTag (nearby)

24,038
24,038

2) Model: The neural network leverages the Softmax
function for confidence scoring, while offering the capa-
bility in learning nonlinear patterns and distinguish subtle
differences between real and synthetic data. Therefore, the
neural network was selected for evaluating the synthetic
dataset. The model used follows the MLP classifier im-
plementation from the scikit-learn library, with one hid-
den layer of 100 ReLU-activated neurons and a Softmax-
activated output layer for class probability estimation. For
reference, the model trained exclusively on original data
is denoted as Model-O, while the model trained with both
original and MM-generated synthetic data is referred to as
Model-M.
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3) Classification Accuracy Comparison: Model-O al-
ready achieved a high overall accuracy, especially for com-
mon and well-represented classes such as iDevice, Tile
(lost), SmartTag (lost), and FindMy Tracker (unpaired),
all achieving 100% accuracy. With only slight perfor-
mance drops for underrepresented classes such as SmarTag
(nearby) with 99.1% accuracy and 0.9% leakage into the
Other Devices class, and more variable classes, such as
FindMy Tracker (nearby) with 98.3% accuracy and the
remaining 1.7% misclassified as "lost".

Model-M maintained the 100% accuracy for all com-
mon and well-represented classes. With slight but notable
improvements to the FindMy Tracker (nearby) class, with
accuracy improved to 98.5% (from 98.3%) and SmartTag
(nearby) demonstrating an improvement to 99.9% accuracy
(from 99.1%), and therefore a 0.8% reduction in misclassi-
fication as Other Device as summarized in Table XIII.

TABLE XIII: Comparison of Classification Accuracy Be-
tween Model-O and Model-M

Class Model-O Accuracy

99.1%
98.3%
100.0%

Model-M Accuracy  Gain

99.9% +0.8%
98.5% +0.2%
100.0% —

SmartTag (nearby)
FindMy Tracker (nearby)
Other major classes

Therefore, Model-M enhances accuracy on underrepre-
sented classes, with no degradation on well-represented
ones. This shows that MM-generated synthetic data im-
proves class balance and generalization, especially for edge
cases like SmartTag (nearby). To rule out data size as the
cause of performance differences, the model was trained on
varying dataset sizes, from 1/64 up to the full training set.
Accuracy remained near 100% across all sizes, suggesting
that the observed improvement is attributable to the inclu-
sion of synthetic data rather than dataset size.

4) Confidence Level: Accuracies are compared only on
the labeled test set, where ground truth is available. For
real-world inference data without labels, performance is
evaluated via prediction confidence, defined as the max-
imum class probability assigned by the model for each
input. To compare Model-O and Model-M, confidence
scores are ranked and plotted by percentile, showing
how certainty varies across predictions. Applied to the
Bahnhof_v2 dataset, Model-O’s confidence for SmartTag
(nearby) plateaus near 62%, while Model-M remains close
to 100% across most packets, dropping only at the tail
(Figure 6a). Thus, incorporating MM-generated synthetic
data raises median confidence by ~ 37%, indicating im-
proved generalization and more reliable predictions under
real-world conditions.

Model-M improves confidence not only for SmartTag
(nearby) but also for FindMy Tracker (lost/nearby), though
confidence decreases slightly for FindMy Tracker (un-
paired). For Tile (lost) and SmartTag (lost), both models
already achieve near-100% confidence with minimal de-
cline, as these classes were well-represented and structurally
consistent. While no major gains were expected there,
importantly, synthetic data did not degrade performance,
confirming that MM-based augmentation is robust and struc-
turally aligned even when improvement is unnecessary.

For the Other Device class, which contain greater vari-
ability and noise, synthetic data produced a moderate gain.
Model-M’s confidence declined slightly earlier than Model-
O’s but tapered more smoothly, with a higher minimum
(40% vs. 30%). Indicating improved generalization across
diverse inputs, showing that MM-generated synthetic data
boosts performance for underrepresented or complex classes
while preserving reliability for well-performing ones.

However, the FindMy Tracker (unpaired), see Figure 6b,
Model-O (blue), begins at 100% confidence and maintains
high certainty of =~ 90% up to around 40% of the packet
distribution. It then undergoes several small declines, sta-
bilizing at a plateau of 88%, followed by a steeper drop
beginning after the 80th percentile, eventually reaching
a tail confidence of roughly 47%. In contrast, Model-M
(orange), which is trained with additional synthetic data
generated, also starts near 100% confidence but shows a
sharp decline much earlier, around the 30th percentile. The
confidence then levels off at a significantly lower plateau of
~ 50%, with minimal further variation. This suggests that
the synthetic data introduced greater variability, lowering
the model’s overall confidence. Unlike most other classes,
Model-M underperforms relative to Model-O in this case,
indicating that the synthetic data may not have adequately
captured the distributional characteristics of FindMy Tracker
(unpaired), thereby reducing model certainty.

C. Impact of Synthetic Data Volume on Model

To evaluate the impact of synthetic data, the ratio of
synthetic to real training samples for the SmartTag (nearby)
class was systematically varied, while keeping the total
number of samples per label constant at 24,038 (as shown
in Table XII). The proportion of synthetic data was incre-
mentally adjusted to 0%, 1%, 5%, 10%, 30%, 50%, 75%,
and 100%. No substantial changes in model performance
were observed up to the 50% synthetic data. However, at
75% and 100%, an overall increase in confidence levels was
noted, particularly for SmartTag (nearby), where the model
demonstrated exceptionally high confidence when trained
entirely on synthetic data. For all other device classes, the
variation in synthetic data proportion had no significant
effect on confidence levels.

D. Discussion and Limitations

MM-generated synthetic data improved classification by
increasing diversity rather than volume, preserving indi-
vidual feature distributions while introducing more unique
combinations that enhanced generalization to real-world
inputs. However, several risks and limitations must be
considered. Overfitting to synthetic patterns is possible:
while most classes benefited, FindMy Tracker (unpaired)
showed decreased confidence, likely due to altered feature
correlations, underscoring the risk of mismatches between
synthetic and real-world dependencies. Generalizability is
also limited, as our study focused on SmartTag (nearby),
and devices with different communication patterns (e.g.,
Tile, AirTag) may behave differently. Moreover, the MM’s
memoryless assumption may fail to capture longer-term
dependencies such as interference patterns or battery-related
effects. Finally, although grouping related fields reduced
the risk of implausible feature combinations, independently
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Fig. 6: Changes in Models Predicition Confidence from Model-O to Model-M

modeling column groups can still yield invalid states, even
if rare in our evaluation. These limitations highlight that
MM-based augmentation is promising and effective in many
cases, but not universally reliable, requiring careful valida-
tion before use in critical applications.

VII. SUMMARY AND FUTURE WORK

This work addresses three key limitations: the scarcity
of labeled BLE advertisement data, especially for under-
represented classes; the resulting lack of generalization in
real-world environments; and the high cost and privacy risks
of collecting balanced datasets.

To address these issues, an MM-based method for gen-
erating realistic, structurally valid synthetic BLE packets
was presented. It augmented the dataset without introducing
errors, as confirmed by detailed structural comparisons, and
evaluation showed significant gains in model performance,
boosting the median model confidence in SmartTag (nearby)
classification by 37% and training model accuracy from
99.1% to 99.9%. Crucially, these improvements stemmed
from increased data diversity rather than volume, enhanc-
ing real-world generalization. Importantly, performance on
well-represented classes remained unchanged, confirming
its safe integration into the training process.

Future work will explore extending this approach to
other personal tracker types and to raw BLE data beyond
preprocessed fields, paving the way toward general-purpose
BLE data synthesis for robust IoT classification that can be
leveraged for any future IoT system.
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