
AirTagged: A Dataset and Processing Framework
for Heterogeneous High-Density IoT Environments

Katharina O. E. Müller1, Stefan Saxer1, Daria Schumm1, Weijie Niu1, Bruno Rodrigues2, Burkhard Stiller1

1Communication Systems Group CSG, Department of Informatics IfI, University of Zurich UZH, Switzerland
2Embedded Sensing Group ESG, School of Computer Science SCS, University of St. Gallen HSG, Switzerland

E-mail: [mueller|schumm|niu|stiller]@ifi.uzh.ch, stefanrichard.saxer@uzh.ch, bruno.rodrigues@unisg.ch

Abstract—Personal Bluetooth Low Energy (BLE) trackers
such as AirTag help locate lost items but can be misused for
stalking. Research indicates that BLE trackers can be identified
through their transmitted packets, thus offering potential for ma-
chine learning (ML) solutions. However, current packet datasets
lack the scale and diversity needed for real-world applicability.

This paper presents an open-source 200-hour BLE advertise-
ment packet dataset focused on personal tags, enabling future
ML-based device detection approaches. Additionally, introduces
the first large-scale BLE data preprocessing framework for effi-
cient and modular BLE packet preprocessing. The Framework
is showcased on the dataset, demonstrating feature extraction,
labelling, and dynamic plotting. This paper lays the groundwork
for IoT device detection in high-density, heterogeneous environ-
ments, enabling future advances in BLE device classification.

Index Terms—Internet of Things, Application-Layer Traffic,
Dataset, Classification, Privacy

I. INTRODUCTION

Personal BLE tracking devices, such as Apple’s AirTag,
have become popular for locating lost items [1]. However,
their small size and discreet design make them susceptible to
misuse, particularly for stalking [2]. Trackers can be easily
concealed in and under vehicles or in personal belongings,
making visual detection nearly impossible [3]. These privacy
risks are not just theoretical; documented stalking cases [4],
[5] involving BLE trackers have even escalated to murder [6].
To mitigate these concerns, manufacturers such as Apple have
introduced smartphone applications to detect only their own
trackers [7], [8]. However, these solutions are vendor-specific
and inadequate for comprehensive privacy protection [9], [10].
Thus, a universal detection approach is needed, not only for
personal trackers but also for the growing range of BLE-
enabled IoT devices (e.g., headphones, laptops, wearables)
that broadcast similar advertisements and coexist in dense
environments. Distinguishing trackers from this broader IoT
landscape is essential for realistic detection and classification.

ML-driven detection presents a promising approach but
requires large-scale data collection, particularly given the
heterogeneous landscape of millions of IoT devices [11].
Thus, providing diverse, high-quality training data to distin-
guish between legitimate devices and unauthorized trackers,
as well as distinguish trackers from all other IoT devices, is
crucial. Moreover, real-world packet captures in high-traffic
environments (e.g., train stations) are necessary to ensure
model robustness and generalizability. Since exhaustive data
collection across all Bluetooth Low Energy (BLE) devices

is unfeasible, a structured dataset is needed to facilitate
feature analysis and extraction, anomaly detection, and the
development of privacy-preserving tracking countermeasures.

Thus, this paper presents the first open-source, large-
scale labeled dataset of BLE advertisement packets for ML,
alongside a real-world dataset and a robust preprocessing
tool tailored for high-volume BLE data. Captured in high-
density public environments, the dataset offers diverse and
representative signals critical for training scalable and reliable
ML models. The preprocessing tool enables efficient feature
extraction and data handling at scale. Together, these re-
sources establish a foundation for developing vendor-agnostic,
privacy-preserving ML solutions to detect unauthorized BLE
tracking across diverse real-world settings. This paper con-
tributes the following:

• Labeled BLE Advertisement Packet Dataset: 13 million
BLE packets collected over 200 hours, including isolated
and combined device- and state-specific traces1.

• Unlabeled BLE Advertisement Packet Dataset: Two train
station recordings, with 588,021 packets combined1.

• Open Source Task-Group-Framework: A modular, scal-
able pipeline for efficient large-scale data preprocessing,
labeling, dynamic visualization and feature extraction2.

• BLE packet dataset analysis and feature definition using
the Task-Group Framework and its visualization exten-
sion for structured data processing and representation.

This paper is structured as follows: Section II reviews
related datasets; Section III outlines BLE advertisement packet
structure. Section IV details dataset collection and processing,
followed by an overview of the Task-Group-Framework in
Section VI. Section VII presents a comprehensive dataset
analysis, with a summary and future work in Section VIII.

II. RELATED WORK

Research on BLE varies from device identification and
network traffic analysis to studies focusing on the reverse
engineering of the Apple [12] and Samsung [13] ecosystem.
Several published BLE datasets have focused on localization
and indoor positioning by leveraging Received Signal Strength
Indicator (RSSI) data [14], [15], [16]. While valuable for

1kaggle.com/datasets/stefansaxer/ble-packets-from-tracking-devices
2github.com/stsaxe/Dataset-and-Task-Group-Framework-for-

Heterogenous-High-Density-IoT-Environments

2025 21st International Conference on Network and Service Management (CNSM)

978-3-903176-75-1 ©2025 IFIP

spatial inference, these datasets publish only RSSI values, not
the entire needed advertising packets.

[17] studied hybrid approaches to device fingerprinting in
indoor environments using both BLE and Wi-Fi data, but
again relying on RSSI for environment-based localization. In
contrast, IoT device classification has seen more progress in
Ethernet-based networks, where analysis of IP and MAC layer
traffic provides meaningful insights [18]. Unfortunately, such
methods are not transferable to BLE, due to layer and packet
structure incompatibility.

A limited number of datasets examine BLE traffic for
machine learning applications, only focusing on physical-
layer signal data or modulation characteristics [19], [20].
Recent studies have also investigated commercial BLE-based
trackers (e.g., AirTag), to assess localization and privacy
risks across various regions [21], [22]. These datasets often
include GPS coordinates and aggregate counts of detected
devices, offering valuable macro-level insights into tracker
deployment. However, they do not include detailed link-layer
metadata or advertisement packets, limiting their usefulness
for low-level protocol analysis and device classification. In
summary, while a wide range of BLE-related datasets and
studies exist, none focus on analyzing advertisement metadata
at the link layer, especially for the purpose of identifying and
classifying BLE peripherals such as personal trackers.

III. BACKGROUND

In BLE, Peripherals (e.g., trackers) broadcast advertise-
ments, while Centrals (e.g., smartphones) scan for them [23].

A. BLE Devices, Trackers, and States

BLE centrals and peripherals periodically transmit adver-
tisements, but personal trackers advertise continuously, ad-
justing frequency by state. The studied devices operate in
2–4 states with different privacy implications: e.g., AirPods
alternate between nearby (low-frequency, low risk) and lost
(high-frequency, high risk). Find My trackers add an unpaired
state, while Tile and SmartTag include a searching state
triggered by user activation. Transmission intervals range from
>1 s in nearby mode to 100–250 ms in visibility-critical states
(lost, searching, unpaired). Non-tracker devices are instead
categorized as online (trackable via BLE and cellular) or
offline (BLE only).

B. BLE Advertisement Packet Structure

The link layer packet structure follows a predefined format,
see Figure 1, focusing specifically on the packet differences
in the payload structure of the Advertising Protocol Data
Unit (ADVPDU) as features for classification. An ADVPDU
consists of a header and a variable-length payload (≤ 37 bytes)
containing the source address and one or more advertisement
data types. These blocks may repeat, vary in length, or be
absent. Examples include manufacturer specific data (com-
pany ID, e.g., , 0x004C = Apple, plus vendor-defined content),
Service UUIDs (basic or with Service Data of fixed length),
as well as Flags (four bits) or an 8-bit TX Power Level.

Fig. 1: Adapted BLE Advertising Packet Structure: [24]

IV. DATASET COLLECTION AND PROCESSING

This section describes the dataset requirements, device
choice, dataset collection, feature extraction, and data labeling.

A. Dataset Requirements

The first step in collecting data is to define key requirements
to ensure the dataset supports effective model training. It
is essential that the data covers multiple device states (cf.
Section III-A), since models must be able to distinguish be-
tween them; partial state coverage is insufficient. The dataset
should include both conventional BLE trackers (e.g., AirTags)
and other BLE-enabled devices that can act as trackers (e.g.,
iPhones). Non-tracker BLE devices common in public transit
spaces (e.g., phones, tablets, laptops) were included, while
smart-home devices were omitted. The dataset must include
sufficient samples per device and state to capture features such
as packet rate over time. For instance, aggregating 10 packets/s
into 15-s intervals reduces 600 samples/min to just four. As no
existing dataset met these criteria (see Section II), a custom
dataset was created.

B. Device Choice Overview

Devices are split into three categories:
1) Conventional BLE Trackers: Trackers were selected

based on their popularity in the consumer tracking market,
determined by surveying available BLE trackers on the largest
national online marketplace and summarized in Table I.

TABLE I: BLE Trackers, Manufacturers, and Class Labels

Tracker Manufacturer Network Class Label
AirTag Apple Apple Find My "AirTag"
SkyTag 4Smarts Apple Find My "SkyTag"
One Chipolo Apple Find My "Chipolo"
SmartTag Samsung Samsung Galaxy Find "SmartTag"
Mate Tile Tile Network "Tile"

Vendors such as Tile, offer many similar tracker models,
thus, a single model per vendor was selected, assuming they
use the same tracking approach and packet rates.

2) Other BLE Tracking Capable Devices: Include BLE
devices, which are part of a crowdsourced finding network,
such as Apple FindMy, and can also be tracked within that
system. These devices include: an iPhone 11, a 3rd generation

2025 21st International Conference on Network and Service Management (CNSM)

iPad Pro 12.9", a 2019 MachBook Pro 15", and 3rd generation
Airpods. Devices supporting Tile’s tracking network include
HP and Lenovo laptops, which were excluded due to lim-
ited access and lesser relevance. As of May 2024, Google
introduced its Find My Device network for Android devices
[25]. However, Google’s tracking network was excluded as
it launched after our data collection period. Therefore, to
minimize inference bias, the dataset focused on capturing as
many Apple devices as possible.

3) Other BLE Devices: To reduce bias toward trackers
and Apple devices, data was also collected from a diverse
set of BLE-enabled devices. These included a Lenovo Yoga
laptop, Lenovo Tab 12 Pro (with Bluetooth pencil and key-
board), Samsung Galaxy S23 Ultra smartphone, Ultimate
Ears Boom 2 speaker, JBL BT 510 headphones, Logitech
K810 keyboard, MX Anywhere 2S mouse, and an Xbox One
controller. Although our dataset cannot include all IoT device
types, it covers representative categories (mobile, audio, input,
peripherals) frequently encountered in public environments.

C. Data Collection and Setup

The actual data was collected in two separate environments:
(1) a controlled basement with a aluminium lined metal box to
minimize interference as much as possible and isolate specific
devices or combination of devices from all others to create
the labeled dataset of 13 million packets, and (2) unfilterred
Zurich main station to create a real-world unlabeled dataset to
test against, with as many unknown devices and interference
as possible. To do so, both data collection setups utilized an
nRF52840 Development Kit (DK) from Nordic Semiconduc-
tor to passively capture BLE advertisement packets.

During data collection, the DK sequentially cycles between
channels 37, 38, and 39 [26], which are the three channels
reserved for advertising in BLE communication.

For environment (1) isolating the targeted device(s) from all
other devices was paramount, as they can rapidly switch states
when an owner device is nearby. For instance, a tracker can
transition from a "lost" to a "nearby" state almost instantly.
As such, to accurately collect data for all device states, three
setups were necessary.

First, each device had to be individually placed within the
Faraday cage, with only the DK and a flat USB micro B cable
leading out of the closed box to a PC with Bluetooth turned off
to send the captures to, see Figure 2a. Since there was only one
BLE device in the cage, the packets could be captured without
interference from other devices and directly labeled. This
allowed the capturing of the AirPods and conventional trackers
in the "lost", "unpaired", and, where possible, "searching"
states. As well as the individual captures for the iPhone,
MacBook, and iPad in both the "online" and "offline" states.

Second, to collect BLE packets in the nearby state, in
addition to the AirPods and conventional trackers, the paired
owner device needed to be placed in the Faraday cage (cf.
Figure 2b). For example, a SmartTag (nearby) and a Samsung
Galaxy S23 Ultra (online) were included in the Faraday cage
together, which is necessary as a device in a "nearby" state
will go to a "lost" state if the owner device is out of range.

nRF 52840 DK logic board

The Faraday Cage

BLE device (e.g, AirTag)

(a) Setup 1: "unpaired", "lost", "searching", "online", and "offline" states

nRF 52840 DK logic board

The Faraday Cage

BLE device in Nearby State
(e.g, SmartTag (nearby))

Pairing device
(e.g, Galaxy S23 Ultrx)

(b) Setup 2: "nearby" state

(c) Setup 3: all other devices

Fig. 2: Environment 1 Data Collection Setups

Last, the setup in Figure 2c was needed to collect the
garbage class, or more specifically, all other BLE devices (cf.
Section IV-B3), which needed to be collected simultaneously.

All collected data was saved in CSV and PCAP format and
published on Kaggle; see a summary of all datasets, including
device name, state, and capture duration, in Table II.

V. DATA LABELING APPROACHES

Assigning class labels to captured packets is essential
for preprocessing and subsequent ML approaches. Labeling
source addresses directly would add unnecessary complexity,
as packet labeling depends on the number of devices captured
simultaneously.

1) Single-device labeling: When capturing a single device
in isolation, all packets receive the same class label, regardless
of source address randomization. This straightforward method
was used for most of the collected data.

2) Multiple devices with one label: If several devices share
a class label, all packets can be labeled accordingly. This
applied only to the “Other BLE Devices,” which were captured
together in one PCAP file.

3) Multiple devices with different labels: When multiple
devices with distinct class labels are captured together, trans-
missions overlap, making labeling challenging. This occurs,
for example, when trackers operate in the “nearby” state or
AirPods connect to another device.

A naïve labeling approach uses source addresses as identi-
fiers, but frequent randomization restricts this method to short
time frames and renders it unsuitable for large-scale datasets.

2025 21st International Conference on Network and Service Management (CNSM)

TABLE II: Overview of All Collected and Published Datasets

Find My Trackers (AirTag, SkyTag, Chipolo One)
Tracker_lost 12h
Tracker_nearby 12h
Tracker_nearby_3h 3h
Tracker_nearby_labeled_training 10m
Tracker_nearby_labeled_evaluation 10m
Tracker_unpaired 12h, 4min, 60s respectivly

Samsung SmartTag
SmartTag_lost 12h
SmartTag_nearby 12h
SmartTag_nearby_3h 3h
SmartTag_nearby_labeled_training short
SmartTag_nearby_labeled_evaluation short
SmartTag_unpaired 5m
SmartTag_searching 12s

Tile Mate
Tile_lost 12h
Tile_nearby 12h
Tile_nearby_3h 3h
Tile_nearby_labeled_training 13m
Tile_nearby_labeled_evaluation 23m
Tile_unpaired 60s
Tile_searching 10s

Apple AirPod
AirPod_lost 12h
AirPod_nearby 12h
AirPod_nearby_3h 3h
AirPod_nearby_labeled_training 5m
AirPod_nearby_labeled_evaluation 5m

Other Apple Devices (iPhone, MacBook, iPad)
iDevice_online 12h
iDevice_offline 12h

Other Devices
Other_Device 2.5h

Fig. 3: Semi-Supervised Learning

To overcome this, we propose a semi-supervised ML label-
ing approach focused on two-device scenarios. Small labeled
datasets are created using the naïve labeling method, a neural
network is trained, and then refined with self-training on larger
unlabeled data. The resulting model is evaluated on a test set
labeled using the naïve labeling approach (cf. Figure 3).

This semi-supervised ML labeling process enables scal-
able labeling of device-state combinations and lays the foun-
dation for extending to more complex multi-device scenarios.

A. Feature Extraction

Feature extraction is key for all datasets, both labeled and
unlabeled, as ML models rely on extracted features. For
labeled datasets, extraction can occur before or after labeling.
The Task-Group-Framework can, for example, be utilized for
feature extraction methods, such as analyzing captured data,

as showcased in Section VII, and modeling. The automatic
labeling approach requires the training of two models for
each device combination with respect to the two presented
extraction methods. In total 14 features were identified from
the BLE packet fields. For personal tag distinction and label-
ing, two key features can be combined effectively. First, the
Company ID provides manufacturer-level identification (e.g.,
Apple, Samsung, Tile), which narrows down the device family.
Second, manufacturer-specific fields refine the labeling: for
Apple devices, the Continuity Type (CT) byte distinguishes
AirTags from other Find My accessories, while for Samsung
devices, the SmartTag Type bits in the Service Data separate
different SmartTag states. Together, these features enable
accurate differentiation and labeling of personal tracking tags
across ecosystems.

B. Automatic Labeling: Semi-Supervised Learning

For the automatic labeling approach, shown in Figure 3,
features are first extracted, and then the naïve labeling
approach is used to create a small labeled dataset with a few
thousand samples. A neural network is then trained on this
data using scikit-learn’s default model, which consists of one
hidden layer with 100 neurons and a ReLU activation function.
This model was chosen for its simplicity, fast training time,
and suitability for structured tabular data such as BLE packet
features. It offers a good balance between capacity and
overfitting risk, making it a practical choice for this relatively
simple binary classification task. To improve robustness, the
trained model is further refined using self-training on a much
larger, unlabeled dataset via scikit-learn’s semi-supervised
learning implementation. Although self-training can enhance
the model’s generalization to unseen data, it may not always
improve test set performance. In such cases, the original base
model is used. Despite the limited size of the labeled dataset,
the straightforward nature of the classification task allows the
model to achieve reliable results. Once trained, the model can
label other unlabeled datasets containing the same devices
in the same states as those seen during training. Lastly, the
model’s performance can be evaluated using the labeled test
set. In most cases, the labeling models achieved an excellent
accuracy of over 99%, see Table III for a summary. Due to
the excellent accuracy, no further models were tested.

TABLE III: Device Classification Confusion Matrix Results

Device 1 Device 2 Accuracy
Device 1 (%)

Accuracy
Device 2 (%)

Misclassification
Rate (%)

SmartTag Galaxy S23 99.34 100.00 0.66
Chipolo iPhone 99.65 100.00 0.35
AirTag iPhone 99.92 100.00 0.08
AirPod iPhone 100.00 100.00 0.00
Tile iPhone 99.81 100.00 0.19
SkyTag iPhone 99.90 100.00 0.10

VI. TASK-GROUP-FRAMEWORK

The Task-Group-Framework is a custom device-agnostic
tool and thus directly applicable to other IoT data once
collected. It handles data preprocessing and visualization,

2025 21st International Conference on Network and Service Management (CNSM)

featuring configurable, deterministic task pipelines with multi-
threading support. As discussed in Section IV, data pro-
cessing involves steps such as feature extraction, labeling,
and appending states to class labels (e.g., "AirTag" becomes
"AirTag (lost)"). While some steps like feature extraction can
be reused across datasets, others such as labeling and state
assignment are dataset-specific. To avoid code duplication
and improve efficiency, the Task-Group-Framework enables
a single, adaptable pipeline that uses runtime parameters to
activate or skip steps as needed. This approach eliminates the
need for separate pipelines for each device-state combination,
ensuring scalability and maintainability.

Fig. 4: Task-Group-Framework and Visualizer Components

The Task-Group-Framework structures data processing and
visualization through modular TaskGroups that handle prepro-
cessing, labeling, and state assignment. Each TaskGroup may
include multiple Tasks or nested TaskGroups, enabling scal-
able, reusable workflows (Figure 4). Visualization is provided
by dedicated Tasks based on a common Plotter superclass,
supporting bar, box, stacked, grouped, and line plots. Plots
are automatically refined with captions, labeled axes, sorted
data, and optimized formatting for clarity and quality.

VII. RESULTS AND EVALUATION

This Section outlines results and insights, covering dataset
collection and processing using the Task-Group-Framework.

A. Overview of Generated Datasets

The generated datasets vary by device, reflecting their
unique characteristics, with a full overview in Table II. Each
Environment 1 dataset was captured continuously without
combining separate recordings. Production datasets span 12
hours, ensuring sufficient data for ML models. With a 10-
second aggregation/sequence length, this results in 4,320
samples, with a 1,080-sample test set (25%), providing an
evaluation accuracy granularity of 0.1%. Additionally, two
Environment 2 datasets were created at the Zurich central
station, a real-world high-density IoT environment, "_V1," is
10 minutes long, while the second, "_V2," is 35 minutes long
with over half a million unknown BLE advertisement packets.

B. Labeling, States, and CT

Packet labeling was performed using the Task-Group-
Framework, with automatic labeling achieving over 99% test
accuracy (Table III). After class labeling, device states were
appended to create device-state categories for analysis.

Apple’s continuity services, such as the Find My network,
use structured manufacturer-specific data with service-specific

encodings [12]. All continuity packets include a leading byte,
the CT, which identifies the service (e.g., 0x12 for Find
My) [27]. For Apple devices, CTs help distinguish tracker
types. For example, long 0x12 packets include a public key
and indicate an offline (BLE-only) device, while shorter ones
indicate online devices (BLE with cellular/Wi-Fi). To capture
this distinction, the Task-Group-Framework appends the CT to
the class label before the state, e.g., "iPhone CT 10 (offline),"
enabling more precise classification of trackable vs. non-
trackable packets. Similarly, Samsung encodes device state
in its Service Data [13], specifically in bits 5–7, referred to as
the SmartTag type. This field is extracted to accurately label
tracker states.

C. Plots and Analysis

For this paper, 24 plot types were devised to analyze each
identified feature across 9 device types and their various states,
which could be up to 4, as in the case of the Tile, thus resulting
in hundreds of plots. For brevity, only the most relevant to
Conventional BLE Tracker distinction will be discussed, with
the full analysis available on GitHub.

Figure 6 shows the number of packets found for AirTag,
Chipolo, and SkyTag across their 3 states, with the packet
count remaining consistent across all three trackers in the
"nearby" and "lost" states, indicating a stable packet rate.
However, in the "unpaired" state, it varies significantly, high-
lighting its potential as a feature for tracker distinction; nev-
ertheless, due to the different capture duration and therefore
significantly reduced number of packets, it is questionable
whether the Chipolo tracker and the SkyTag in their "un-
paired" state can be used for modeling.

Fig. 6: Number of Packets - Find My Tracker

The box plot in Figure 7 reveals clear differences in
manufacturer-specific data across tracker states. The collapsed
boxes (i.e., orange median lines) indicate tightly clustered
values, with nearly all data points identical except for a
few outliers (i.e., black circles), suggesting highly consistent
packet lengths in most states, especially "lost" and "unpaired."
Closer analysis shows length differences between the "nearby"
and "lost" states are due to the presence or absence of the
public key, consistent with variations in header and packet
length. Chipolo and SkyTag lack manufacturer-specific data

2025 21st International Conference on Network and Service Management (CNSM)

(a) Average Packet Rate Across Find My Track-
ers and States

(b) Average Packet Rate Across SmartTag
States (c) Graph of Packet Rate of SmartTag (nearby)

Fig. 5: Packet Rates for Find My Trackers, AirTag, and SmartTag

in the "unpaired" state, highlighting differences from AirTag.
Outliers in the "nearby" state are due to labeling errors, or
match the "lost" state’s median, indicating state switching.

Fig. 7: Boxplot of Length of Manufacturer Specific Data

AirTag packet rate analysis reveals three key findings. First,
packet rates are generally stable, except for Chipolo and
SkyTag in the "unpaired" state, likely due to short captures
(Figure 5a). Second, no major differences are observed across
BLE channels. Third, outliers in the "unpaired" state show
packet rates up to ten times the median, occurring only
during the first 600 seconds after activation (Figure ??). This
temporary high-rate phase, triggered by pulling the security
latch, is likely intended to expedite pairing and serves as a
clear indicator for state identification.

Compared to AirTags, SmartTag packets are harder to dis-
tinguish across states. All states share identical structure, fixed
160-bit Service Data, and consistent use of UUIDs and flags.
Only the status bits differ, with "unpaired" and "searching"
sharing values. Unlike AirTags, SmartTag PDU type and
packet structure offer little variation. Packet rate, especially
in the "nearby" state, remains the most distinguishing feature,
with it varying significantly across states, see Figure 5b.
In "nearby," channel usage is uneven, with lower channels
showing higher packet rates, while other states are uniform.
Additionally, Figure 5c reveals that the packet rate in the
"nearby" state differs between each channel over the entire
captured time, and correlates with the distribution of packets
among the channels. The higher the packet rate, the higher
the relative share of packets.

In comparison, Tile’s "lost" and "nearby" states are identical
in packet structure and static in BLE address, making them
well-suited for packet rate modeling. However, the "searching"
and "unpaired" states have too few packets for modeling.
Unlike AirTag and SmartTag, Tile does not differentiate be-
tween "lost" and "nearby" states. Notably, "searching" packets
occasionally include undocumented Apple CTs. Service Data
length is fixed at 80 bits in active states, differing from Smart-
Tag, which may aid classification. As with other trackers, PDU
type remains constant and uninformative.

D. Overarching Insights and Limitations

While the analysis above highlights only key findings, the
broader evaluation offers important insights and limitations
for BLE tracker classification. Several features, such as mal-
formed packet percentage, broadcast rate, and protocol type,
show little variation and can be excluded. Find My trackers
(AirTag, Chipolo, SkyTag) are technically similar, except
AirTag differs in the “unpaired” state. Samsung SmartTag
enables “lost” vs. “nearby” differentiation via Service Data
status bits, but the “unpaired” and “searching” states are
underrepresented. Similarly, Tile lacks a distinct “nearby”
state, so “lost” and “nearby” should be merged, while its
other states provide too few samples for modeling. These
limitations highlight the need for cautious feature selection
to avoid misleading model behavior.

Apple devices (iPhone, iPad, MacBook) all rely on conti-
nuity protocols, making device-level classification infeasible;
instead, classification should rely on CT values. AirTags and
iDevices can be separated by PDU type, while “online” and
“offline” states differ in manufacturer-specific data length. Air-
Pods act as hybrids, producing both AirTag-like and iDevice-
like traffic, and therefore form a distinct class. However,
overlapping features across devices raise the risk of models
overfitting to dataset-specific artifacts rather than generalizable
characteristics.

Overall, effective modeling requires complex preprocessing,
which we address via the Task-Group-Framework pipeline.
Relevant features range from basic BLE attributes (e.g., packet
length, PDU type) to higher-level traits (e.g., CT and Smart-
Tag type), with categorical variables encoded for automatic
labeling. Yet, not all devices are fully separable; grouping
similar ones (e.g., Find My trackers) improves robustness, but

2025 21st International Conference on Network and Service Management (CNSM)

may obscure device-specific nuances. Given the limited data
in certain states and potential feature overlap, there remains a
risk of overfitting, underscoring the importance of validating
on diverse real-world datasets.

VIII. SUMMARY AND FUTURE WORK

This paper presents over 200 hours of BLE advertisement
captures, yielding 13 million labeled packets from 10 devices
across up to 4 states, plus two real-world inference datasets
with more than half a million packets. We introduced a
structured methodology for acquisition, preprocessing, feature
extraction, and evaluation in high-density IoT environments,
and showcased the Task-Group-Framework, the first large-
scale BLE preprocessing tool supporting labeling, automatic
labeling, and feature extraction. Together, these contributions
establish a foundation for ML-based BLE tracker classification
and, more broadly, for distinguishing trackers from heteroge-
neous IoT devices in dense environments.

Although this study focuses on trackers, the extracted fea-
tures (e.g., advertisement rate, manufacturer fields, CT values)
generalize to other BLE IoT devices. Validating this requires
broader datasets, which we identify as a key next step. A
further limitation is overlapping features and underrepresented
states, which risk overfitting and limit inference, particularly
in the Other BLE Devices class. Since collecting data from
all IoT devices is infeasible, future work will target ML-based
tracker classification, validation on diverse real-world datasets,
and synthetic data generation (e.g., VAEs, GANs, rule-based
methods) to expand coverage and improve robustness.

IX. ETHICAL STATMENT

The data collected in this study consists solely of BLE
advertisement data, which is freely broadcast and publicly
accessible metadata. It does not contain any personally iden-
tifiable information, thus anonymous, or patient data, and all
payload is encrypted. Following UZH’s ethical policy, such
work does not require explicit ethical approval.

REFERENCES

[1] G. Celosia and M. Cunche, “Saving private addresses: An analysis of
privacy issues in the bluetooth-low-energy advertising mechanism,” in
Proceedings of the 16th EAI International Conference on Mobile and
Ubiquitous Systems: Computing, Networking and Services, 2019, pp.
444–453.

[2] T. Mayberry, E. Fenske, D. Brown, J. Martin, C. Fossaceca, E. C.
Rye, S. Teplov, and L. Foppe, “Who tracks the trackers? circumventing
apple’s anti-tracking alerts in the find my network,” in Proceedings of
the 20th Workshop on Workshop on Privacy in the Electronic Society,
2021, pp. 181–186.

[3] “Class Action,” Jun. 2022, [Accessed 15-06-2025]. [Online]. Available:
https://www.classaction.org/media/hughes-et-al-v-apple-inc.pdf

[4] “Ex-partner Uses Apple AirTag to Stalk Ahmedabad Woman, Device
Found Hidden Under Driver’s Seat,” [Accessed 14-06-2025]. [Online].
Available: https://bit.ly/4amwV9r

[5] D. Hoffmeyer, “Airtag-Stalking: Hat Apple die Gefahr
unterschätzt?” Neue Zürcher Zeitung, Jun. 2022, [Accessed
16-06-2025]. [Online]. Available: https://www.nzz.ch/panorama/
airtag-stalking-hat-apple-die-gefahr-unterschaetzt-ld.1688765

[6] M. Gault, “Woman Allegedly Used Apple AirTag to Track
and Kill Her Boyfriend,” Jun. 2022, [Accessed 14-06-
2025]. [Online]. Available: https://www.vice.com/en/article/xgy8qz/
woman-allegedly-used-apple-airtag-to-track-and-kill-her-boyfriend

[7] “Apple Tracker Detect,” February 2022, accessed 10-06-2025.
[Online]. Available: https://play.google.com/store/apps/details?id=com.
apple.trackerdetect&hl=de

[8] C. Silva, “Google and Apple are closer to making AirTags
stalker free,” Dec. 2023, [Accessed 16-06-2025]. [Online]. Available:
https://mashable.com/article/protection-privacy-airtag-google-apple

[9] A. Heinrich, N. Bittner, and M. Hollick, “Airguard-protecting android
users from stalking attacks by apple find my devices,” in Proceedings
of the 15th ACM Conference on Security and Privacy in Wireless and
Mobile Networks, 2022, pp. 26–38.

[10] K. O. Müller, L. Bienz, B. Rodrigues, C. Feng, and B. Stiller, “Home-
scout: Anti-stalking mobile app for bluetooth low energy devices,”
in 2023 IEEE 48th Conference on Local Computer Networks (LCN).
IEEE, 2023, pp. 1–9.

[11] “IoT Connected Devices by Technology
2030,” https://www.statista.com/statistics/1194688/
iot-connected-devices-communications-technology/, [Accessed 19-03-
2025].

[12] A. Catley, “Apple AirTag Reverse Engineering,” February 2022,
[Accessed 10-06-2025]. [Online]. Available: https://adamcatley.com/
AirTag.html

[13] T. Yu, J. Henderson, A. Tiu, and T. Haines, “Privacy Analysis
of Samsung’s Crowd-Sourced Bluetooth Location Tracking System,”
October 2022, [Accessed 15-06-2025]. [Online]. Available: https:
//arxiv.org/abs/2210.14702

[14] G. M. Mendoza-Silva, M. Matey-Sanz, J. Torres-Sospedra, and
J. Huerta, “BLE RSS Measurements Dataset for Research on Accurate
Indoor Positioning,” Data, vol. 4, no. 1, p. 12, 2019.

[15] E. Sansano-Sansano, F. J. Aranda, R. Montoliu, and F. J. Álvarez, “BLE-
GSpeed: A new BLE-based Dataset to Estimate User Gait Speed,” Data,
vol. 5, no. 4, p. 115, 2020.

[16] M. Salimibeni, Z. Hajiakhondi-Meybodi, P. Malekzadeh, M. Atashi,
K. N. Plataniotis, and A. Mohammadi, “IoT-TD: IoT Dataset for
Multiple Model BLE-based Indoor Localization/Tracking,” in 2020 28th
European Signal Processing Conference (EUSIPCO), 2021, pp. 1697–
1701.

[17] A. N. Nor Hisham, Y. H. Ng, C. K. Tan, and D. Chieng, “Hybrid wi-fi
and ble fingerprinting dataset for multi-floor indoor environments with
different layouts,” Data, vol. 7, no. 11, p. 156, 2022.

[18] L. Bai, L. Yao, S. S. Kanhere, X. Wang, and Z. Yang,
“Automatic Device Classification from Network Traffic Streams
of Internet of Things,” Conference on Local Computer Networks
(LCN), vol. 43, 2018, accessed 20-07-2024. [Online]. Available:
https://doi.org/10.1109/LCN.2018.8638232

[19] S. Kashani, S. Sherazi, A. Khokhar, S. W. Kim, and F. Nait-Abdesselam,
“Bluetooth Low Energy (BLE) RF Dataset for Machine Learning in
WBANs,” in 2024 IEEE Wireless Communications and Networking
Conference (WCNC). IEEE, 2024, pp. 1–6.

[20] A. Jagannath, Z. Kane, and J. Jagannath, “Bluetooth and WiFi Dataset
for Real World RF Fingerprinting of Commercial Devices,” 2023.
[Online]. Available: https://arxiv.org/abs/2303.13538

[21] H. Ibrahim, R. Asim, M. Varvello, and Y. Zaki, “I Tag, You Tag,
Everybody Tags!” in Proceedings of the 2023 ACM on Internet
Measurement Conference, ser. IMC ’23. New York, NY, USA:
Association for Computing Machinery, 2023, p. 561–568. [Online].
Available: https://doi.org/10.1145/3618257.3624834

[22] H. D. Jang, H. Ibrahim, R. Asim, M. Varvello, and Y. Zaki, “A tale
of three location trackers: Airtag, smarttag, and tile,” 2025. [Online].
Available: https://arxiv.org/abs/2501.17452

[23] Nordic Semiconductor, “Bluetooth LE Advertising
Packet,” https://academy.nordicsemi.com/courses/bluetooth-
low-energy-fundamentals/lessons/lesson-2-bluetooth-le-
advertising/topic/advertisement-packet/, 2024, accessed 14-06-2025.

[24] J. Wong, “Advertising Payload Format on BLE,” August 2019,
accessed 13-06-2025. [Online]. Available: https://jimmywongiot.com/
2019/08/13/advertising-payload-format-on-ble/

[25] E. Kay, “5 ways to use the new Find My Device on Android,”
https://blog.google/products/android/android-find-my-device/, 2024,
[Accessed 15-06-2025].

[26] Nordic Semiconductor ASA, “nRF Sniffer for Bluetooth LE v4.1.0,”
Tech. Rep., 2024, [Accessed 15-06-2025]. [Online]. Available: https:
//infocenter.nordicsemi.com/pdf/nRF_Sniffer_BLE_UG_v4.1.0.pdf

[27] FuriousMAC Research Group, “An apple continuity protocol reverse
engineering project,” September 2023, [Accessed 15-06-2025]. [Online].
Available: https://github.com/furiousMAC/continuity

2025 21st International Conference on Network and Service Management (CNSM)

