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Abstract—The problem of Core Network (CN) autoscaling
is evaluated with Deep Reinforcement Learning (DRL) agents.
Complex CN Network Functions (NFs) flows and data require-
ments for Reinforcement Learning (RL) agent training make
the entire training process slow. Trained models can become
inefficient when workloads change over time. Meta-RL has been
introduced and one of its goals is to train models that can adapt
to unseen tasks. This paper introduces CoreNetTwin, a Network
Digital Twin (NDT) of a CN that can train RL models and
compare their performance in a time-efficient manner. Using a
NDT allows to train a model faster and enables training on
synthetic data. A methodology to build a dataset to train a RL
model with a NDT to help the model learn the dynamics of the
environment is introduced. The CN autoscaling problem is then
mapped to a Meta-RL setting characterized by a Meta-RL task.
The performance of the RL? Meta-RL algorithm is evaluated,
using Proximal Policy Optimization (PPO) as the base-learner,
and compared to a baseline. The results show that CoreNetTwin
enables the rapid evaluation of RL algorithms and that RL? can
better adapt to unseen patterns of traffic, maintaining a level of
performance equivalent to a model trained for a specific task.

Index Terms—Reinforcement Learning, Autoscaling, Packet
Core Network Functions, Meta-RL, Network Digital Twin

I. INTRODUCTION

Precisely scaling the resources used on their infrastructure
according to the workload allows telecommunications operator
to reduce their costs, power consumption and carbon footprint.
The scaling of NFs can be performed at different layers, on
the baremetal infrastructure itself or, since the introduction
of Network Function Virtualization (NFV), on the virtual
resources like Virtual Machines (VMs) or containers.

The Network Management Community has adopted Ma-
chine Learning (ML) controllers to multiple management
tasks. RL is one of the ML paradigms where optimal control
policy could be learned via interactions with the environment
and help to achieve dynamic control over multiple tasks.

Previous work [1] using RL to address the autoscaling of
NFs shows that training a RL model on live traffic is a lengthy
process that can last for several days [1]. The work presented
here introduces a first version of a NDT, called CoreNetTwin,
that can be used to train a RL model in several minutes,
making it easier to develop and tune models.

Another challenge faced when training a RL model to
scale NFs is that the workload can change over time. This
paper shows a 2-step solution to address this problem. First
it explains how to build a workload for the training process
that helps the model learn possible patterns in the workload.
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Then it explores the use of Meta-RL algorithms, a class of
algorithms that learn to learn and can adapt to unseen patterns
of traffic.

The CN autoscaling problem is to scale up or down the num-
ber of available instances of NFs according to the workload,
e.g., Session Management Function (SMF). In the scope of this
paper’s experiments only control-plane traffic is considered.

Section II defines RL and Meta-RL. Then Section III
provides a state of the art of CN autoscaling, RL for Network
Management as well as Meta-RL. The contributions of this
paper are detailed in the other sections:

1) CoreNetTwin, a NDT of an open-source CN, is intro-
duced in Section IV along with the process of creating
a training workload to improve the trained model,

2) Formulation of the CN autoscaling problem as Meta-RL
tasks is done in section V,

3) Section VI details the experimental results for the evalu-
ation of the performance of the RL? Meta-RL algorithm
for the CN autoscaling problem against a classic DRL
algorithm as the baseline.

II. RL AND META-RL DEFINITIONS

This section introduces RL and Meta-RL. It gives some
details on the algorithms used in the experiments detailed in
Section V: Dueling Double Deep Q-networks (D3QN), that is
used as the baseline, as well as RL? and PPO that are used
together in the Meta-RL experiments.

A. Reinforcement Learning

RL consists of an agent exploring an environment for
Horizon (7T') time steps with some reward r; at each step .
This interaction is rooted in a series of actions a; applied
by the agent according to a policy my parameterized by 6
that leads the environment to new states S;. The goal of the
RL agent is to obtain the maximum discounted (v € [0, 1])
return 7 through the sequence of interactions over the horizon
(T). This horizon can either be finite or infinite without a
predefined endpoint. 7n(my) = E[ZtTO Yiri(se, ar)] or n(me) =
E[Zf: Vre(se, ar)]

A RL problem can be modeled as a discrete time discounted
Markov Decision Process (MDP) that can be defined as:

M:(S7A,P,T,p0,’y,T) (1)

where P represents the state transition probability and pg
depicts the initial state distribution [2].
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The overall training goal of any RL agent is to derive an
optimal policy 7*(a|s) describing the action(a) € A (Action
space) taken in each state s € S (State space). RL can be
categorized into two different approaches based on how the
optimal policy is computed [3]:

1) Value-based methods that estimate a value function.

7* is computed from the value functions by evaluating
either the state values V:

V(s) =E[Y_~'rilso = s]
to
or the state-action values Q):
Q(s,a) = E[Z yry | so = 8,a0 = al
t=0

In the particular case of Dynamic Programming or
Monte Carlo method, the state value functions are esti-
mated and an optimal policy is derived from the state
values as:

m*(s) = arg mgxz P(s'|s,a)[r(s,a,s") + V()]

and from action values as:

m*(s) = arg maxz Q(s,a)

in State Action Reward State Action (SARSA) [4] or
Q-learning method. These methods are useful in simple
and discrete (state/action) environments but harder to
compute in complex and continuous environments.

2) Policy Gradient (PG) methods that help to directly
optimize a parameterized policy instead inferring from
state or action values. Policy is modeled as probability
distribution over action space, P(a|s;6). PG methods
find the parameterized policy 7(f) by computing the
gradient ascent of the objective function that leads to
the direction in which parameter 6 is to be changed
to maximize the cumulative total return. The policy
gradient § is:

G = B[V logmg(ay|s:) Ay

where 7(6) is a stochastic policy and Ay is an advantage
function estimator at timestep ¢ that scales the gradient
and log probability to steer the direction toward the best
actions. The advantage is a relative measure of goodness
of action compared to other actions in the same state:

T—t
At = Z ’7k7"t+k - V(St) (2
k=0
The PG can be obtained by an optimization loss function
or an objective function LF¢ :
LPC = Eq[logme(as|s:) As] 3)

Some of the most common PG methods are REIN-
FORCE [5], Actor-Critic [3], Trust region policy op-
timization (TRPO) [6] and Soft Actor-Critic (SAC) [7]

We use DRL as Deep Neural Networks (NNs) are good
function approximators that can enable generalization across
similar states and tasks which is crucial for Meta-RL. The next
two sections introduces the two DRL algorithms D3QN and
PPO.

B. D3ON

Q-learning belongs to the class of value-based and off-
policy RL methods. D3QN [8] is an architectural enhancement
over Double DQN (DDQN) [9] and Deep Q-Network (DQN).
It splits the stream of fully connected layers in a typical
DQN into value V(.5; 0, 8) stream and advantage A(s, a; 0, «)
stream. Contrary to DQN and DDQN where the network
directly outputs the Q-value of each action, in D3QN the
Q-function is estimated by the linear combination of value
function V'(s) and advantage function A(s,a) as below:

Q(s,a;0,a,8) = V(s;0,8) + (A(s,a;0,a)
1 /
7@;14(570‘ ,0,0[))

Equivalent form of cf. Eq. (2) is used, ie., A(s,a) =
Q(s,a) — V(s). The target Q-value is computed using the
online network to select the best action, like in DDQN, and
the target network computes the Q-value of the selected action.

Experience replay buffer is a key component in off-policy
methods, used during training to approximate the Q-function.
It stores the agent-environment interactions (s,a,s’,r) in a
buffer, collectively referred to as experiences. Mini-batches
are sampled from this buffer to train the network. Mainly,
two kinds of replay buffer are discussed in the literature,
distinguished by their sampling technique - Uniform and
Prioritized [10] experience replay buffer. Experience replay
improves sample efficiency by breaking temporal dependence
from the data and making data closer to being independent
and identically distributed (i.i.d.).

C. PPO

PPO [11] is an actor-critic based PG method. It is sample
efficient, stable, and scalable compared to other actor-critic
methods. It is designed to address the instability issue with
the vanilla policy gradients where large updates can deviate
the policy significantly from optimal region making recovery
difficult. PPO makes use of surrogate clip objective instead of
the aforementioned loss function L¥Y (cf. Eq. (3)) to ensure
stable updates:

LE = E,[min(r (0) Ay, clip(r¢(0),1 —€,1+ €)A;)]

o (at]st)

where: r4(0) = o (at]s) The probability ratio r¢(f) quan-
tifies the change in the new policy compared to the older
one and the clipping function allows for control over policy
update by restricting it within the range [1 — €, 1 + €. It uses
advantage estimation, namely Generalized Advantage Estimate
(GAE) that balances the bias-variance tradeoff using parameter
Ae0,1]:
T—t—1
Ay = QLI

>
Il
=)
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where §; = r4 + vV (st41) — V(s¢). The advantage A, scales
the policy updates. If A > 0 the likelihood of the action
increases, and it decreases if A < 0. It ensures that the
policy shift towards better than expected actions and away
from worse ones. Effectively PPO optimizes the following loss
function :

“4)

where ¢;, ¢y are the coefficients, LV is the critic loss
function, (Vy(s;) — V;/*"9)? where V,*"9 is computed from
empirical return or advantage estimate, and H(mp) is an
entropy bonus to ensure proper exploration. Reduction and
stabilization of the value of entropy is indicative of policy
convergence and actions that could be trusted.

PPO starts by sampling data from the environment for
a specific Horizon (7') as per current policy and uses it
to optimize the surrogate objective, cf. Eq. (4), using the
gradient ascent method. PPO, being on-policy, collects fresh
data everytime according to the latest policy and discards it
after optimization step.

LPPO — By[LS — e, LY F + oM (mp)]

D. Meta-RL

Meta-Learning [12] has been introduced with the goal of
quick adaptation to new tasks for which they were not trained
initially. The ability to adapt quickly to new tasks is facilitated
by leveraging the prior knowledge on similar tasks. Few shot
classification [13] is a classical example of Meta-Learning
where a model is trained on a limited set of examples to
learn a shared structure which enables rapid adaptation to
unseen tasks. While classical learning techniques are trained
on a single task using large number of training examples and
expected to perform well on the same, yet to generalize well
on structurally similar but unseen tasks they often requires
training from scratch. In contrast, humans are able to adapt
to new tasks by using prior knowledge gained from unrelated
previous tasks, Meta-Learning is built upon the same idea.
The motivation of using Meta-Learning often arises from the
lack of sufficient training data, when the cost of retraining is
very high or the learning method is sensitive to the change in
training data.

A regular supervised learning method uses predefined meta-
knowledge w [14] to guide the learning of optimal parameters
that minimize/maximize it’s objective function. w can be the
choice of optimization algorithm (Stochastic Gradient Descent
(SGD), Adam ...), weight initialization or regularization,
etc. In contrast, Meta-Learning doesn’t assume that meta-
knowledge is given rather it learns the same via meta-learner.
Thus it is commonly said, learning how to learn.

Meta-RL is a particular case of Meta-Learning applied to a
RL problem. It is viewed as a bi-level optimization problem,
where the outer-loop or meta-learner learns the algorithm that
is being optimized in the inner-loop called as base-learner.
While the base-learner is concerned with the task specific
learning, meta-learner accumulates knowledge from range of
tasks presented to the base-learner.

Generally to train a Meta-RL algorithm, an MDP is sampled
from a distribution P(M) and the RL algorithm (base-
learner) is optimized on it. This interaction of base-learner
with the tasks is known as trial, a trial can consist of
multiple episodes which together forms a meta-trajectory.
In case of continuous control, a single trial can be said as
a meta-trajectory. While parameters of meta-learner (meta-
parameters) are updated between the trials based on the
performance of base-learner. Hence, we wish to find optimal
meta-parameters w* representing meta-knowledge:

w* = argmax Eaiopn) [Ermmas [R(T)]]

Such that it enables a RL agent (base-learner) to quickly
adapt and maximize reward across different MDPs rather than
a single one. During test, the meta-knowledge gained by meta-
learner is what enables the RL agent to adapt to new tasks
requiring only a few iterations.

It is essential to note that Generalization [15] refers to
the capability of a ML model to perform well on unseen
tasks that were not used for the training but usually train and
test tasks are assumed to come from the same distribution.
Additionally, Adaptation is quantified by the amount of data
required to update a ML model to be able to generalize on
new tasks. Meta-Learning or Meta-RL algorithms are designed
to incorporate the capability of rapid adaptation in regular
learning methods resulting in generalization across tasks and
improved sample efficiency during test time.

E. Types of Meta-RL techniques

According to [16], few-shot, multi-task Meta-RL techniques
are of special interest that can be classified into 3 categories
based on inner-loop adaptation mechanism or meta-knowledge
representation:
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Fig. 1: RL? algorithm with PPO as the base-learner
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o Black box methods: in these methods the policy is
modeled via recurrent learners and meta-knowledge is
captured in the internal memory (e.g., hidden state in
RNN). Adaptation occurs through changes in internal
memory rather than updates in the weights. Examples
include RL? [2] and SNAIL [17].

o Gradient based: learns the shared initialization parame-
ters. Meta-knowledge is represented as a set of initial
parameters that can be fine tuned via gradient descent.
Adaptation is enabled by the parameter updates. e.g.,
MAML [18] and REPTILE [19]

o Task inference or latent variable based: learns the latent
task embedding from agent interactions using encoders.
The embedding captures meta-knowledge about task dis-
tribution and the policy is conditioned on it. During test,
the agent can identify the nature of the task within few
interaction with new task that enables quick adaptation.
Examples include PEARL [20] and VariBAD [21].

In this work we focus on the black-box method RL2.

F RL?

Duan et al. [2] introduced RL?. This Meta-RL algorithm
has two components called fast and slow. The fast component
stores the experiences in the activations of a Recurrent Neural
Network (RNN), enabling the fast task specific adaptation,
whereas the slow component is the RL algorithm that shapes
and updates the RNN weights across a distribution of tasks.
It acquires a general adaptation strategy allowing RNN to
effectively handle new tasks. Fig.1 shows the schematic im-
plementation of RL? with PPO as base-learner and Gated
Recurrent Unit (GRU) as meta-learner that is used for the
RL? experiments described in Section V. It also outlines the
interaction of RL? with the environment, i.e. CoreNetTwin
described in Section IV. The implementation of the agent re-
sembles that of PPO where actor-critic architecture is followed
with the difference being that the policy layer and the value
layer are preceded by the meta-learner. In RL?, a policy is
represented as a RNN, both the actor and critic receive the
tuple (s¢, S¢—1,a¢—1,7¢—1,d¢—1) as input (where d; is a flag
set to 1 when the episode is done), this is preprocessed by
the embedding layer where the discrete actions are one-hot
encoded, then all the inputs are combined into a vector. The
outputs of actor and critic (RL?) agent are conditioned on the
context vector (meta-knowledge accumulated by the GRU),
and the current observations. The actor models the categorical
probability distribution, and the action is sampled from it.
The entropy bonus H is derived from the same probability
distribution that is added to the actor’s loss, encouraging policy
exploration. The chosen action is executed in the environment,
resulting in a new state S;y; and a reward R, as feedback
to the agent. The critic essentially outputs the value estimate
based on S; and makes use of rewards to form an advantage
estimate colloquially VF error, which is later used by the actor
to guide policy updates.

III. STATE OF THE ART

The possibilities of RL when it comes to the realm of
network management seem to be unbounded. As a matter of
fact, RL is indeed considered by 3GPP standard consortium
as one of the ML techniques for the management of 5G and
beyond networks [22]. Several solutions [23]-[25] have been
suggested to use RL in one of the RAN Intelligent Controllers
(RIC) of the O-RAN alliance!. RL has been applied to
Software-Defined Networking (SDN), whose key feature is
that the forwarding decision are centralized in controllers.
For e.g., [26] proposed Meta-RL to deal with the dynamic
resource allocation and load distribution in SDN. This Meta-
RL approach adapts its learning policy to the current task
by analyzing the load congestion. It is based on a Bayesian
Network that updates the posterior probability distribution
from the SDN characteristics like the congestion load.

Another example, proposed by [27] is a Flow-based Service
Time optimization based on DRL to cope with Rule placement
problem due to the Ternary Content Addressable Memory
constraints in SDN switches. Galliera et al. in [28] proposed
an actor-critic RL algorithm, namely MARLIN to control
and optimize congestion in distributed environments. The key
idea was to use RL to cope with heterogeneous workloads in
distributed environments. Later on, they embedded MARLIN
in a framework [29] to be able to apply their RL solution
on Tactical Environments such as Satellite communications
and UHF radio links, proving RL versatility when it comes
to dealing with heterogeneous conditions. [30] proposed an
Inverse RL method to optimize the way power is allocated
in wireless communication systems. Inverse RL automati-
cally derives reward functions from expert policies, avoiding
the bias of manual design. RL is also considered in the
field of Cybersecurity. [31] proposed DRL as an intrusion
detection mechanism for smart vehicular networks, whereas
[32] proposed a scenario-agnostic zero-trust defense Meta-RL
approach which was proven to be generic enough to a portfolio
of defense strategies. Their approach is conceived for POMDP
(Partially Observable MDP) and the Meta-RL technique is
based on a gradient-based adaptation and more specifically
a SGD algorithm.

RL is also a solution explored for resource allocation. Ma-
jumbar et al. in [33] proposed the usage of RL for two different
purposes: (i) to autoscale Virtual CPU resources in network
slices, and (ii) to distribute intelligence for autoscaling. The
work done in [1], [34] tackles the autoscaling problem for core
NFs using DRL on Magma. This work goes indeed beyond
this to compare multiple more efficient RL algorithms and
introduces a NDT that allows simpler and faster experiments
before deploying them to an actual network.

Training a RL model on actual NFs is a complex and lengthy
process, and takes longer due to several attempts required for
the tuning of hyperparameters. To make this process simpler
and faster, the de facto standard for the training of the RL

Uhttps://www.o-ran.org/
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model is the Open-Source Gym framework, now Gymnasium?,
originally introduced by OpenAl in 2016>. It provides multiple
environments that simulate the behavior of cyber-physical
systems.

RL has been adopted as an optimizer of the location of
different networking functions in cloud environments. Santos
et al. used RL for two main purposes in complex microservice-
based applications in Kubernetes: (i) for an efficient auto-
scaling [35], and (ii) for microservice deployment as shown in
[36]. In [35], the authors introduced the gym-hpa environment
for the autoscaling of microservice-based applications. It does
not however specifically mimics the behavior of NFs and fo-
cuses on Kubernetes services, whereas our solution specifically
targets NFs and is agnostic of the infrastructure which can
also be VM-based. [37] proposed a Gym-based toolkit named
Optical RL-Gym to apply RL in a flexible manner to problems
related to optical networks, such as assigning resources in a
Wavelength Division Multiplexing (WDM), known as Routing
and Wavelength Assignment (RWA).

Building upon the concept of Digital Twin (DT) [38],
the notion of NDT has been introduced [39] and Standard
Development Organizations (SDOs) have started working on
creating standards for them, e.g. IETF [40]. The goal of
a NDT is to mimic the behavior of a network and enable
several applications like troubleshooting, network planning,
anomaly detection, etc. Having a single NDT that enables
all applications is an ongoing challenge. Recent work has
outlined a network sampling scheme with zoom-in/zoom-out
operations to build accurate and scalable NDT for large-scale
5G/6G networks [41]. Instead of tackling this larger problem,
the solution presented here provides a Gym-based environment
that mimics the behavior of core NFs in the context of training
a RL model for the autoscaling problem.

IV. CORENETTWIN: A NETWORK DIGITAL TWIN FOR
CORE NETWORK AUTOSCALING

This section describes the experimental environment
CoreNetTwin, a NDT based on the Gym framework. The
hyperparameters are detailed and some feedback on how to
tune them is given along with the values selected for the
experiments. CoreNetTwin is then used in Section VI for the
evaluation of the performance of the Meta-RL algorithm RL>
introduced in Section II.

A. CoreNetTwin: a Network Digital Twin environment

CoreNetTwin is a Gym-based experimental testbed for the
evaluation of RL algorithms which is a NDT of Magma [42],
an open-source operator-grade packet CN. Magma packages
the 3GPP NFs of LTE and 5G core in a single component
called the Access Gateway (AGW).

We run our Physical Twin (PT) on a cloud-based envi-
ronment. User Equipments (UEs) and Radio Access Net-
work (RAN) are simulated using SIAPTester* alongside with

Zhttps://gymnasium.farama.org/
3https://openai.com/index/openai-gym-beta/
“https://github.com/magma/S 1 APTester

custom-made scripts to generate and load balance a workload
across multiple instances. Each session attaches a UE for
a random duration, modeled with a log-normal distribution.
The average duration of sessions is 3 minutes, which is the
average duration observed on the live network for Voice calls.
Worloads are detailed in the next section.

In order to understand the behaviour of the AGW, a
workload is run for few hours leveraging these scripts and the
S1APTester. The impact of the workload on the AGW is then
analyzed. We use the standard metrics provided by Magma
but also one additional metric: the memory consumption of
the Mobility Management Entity (MME) application running
on the AGW that we collect with a custom-made workflow.

Correlation between metrics was used to select the metrics
for the modelling of CoreNetTwin. It showed that the attach
rate of UEs and the memory usage of the MME process have
the highest correlation with dropped sessions, which is the
metric that is the closest to the Quality of Service (QoS) in
the considered use case.

Section V describes the mapping of the RL environment
to the CN autoscaling problem and details how CoreNetTwin
metrics are used as variables by the RL algorithms.

1) Motivation: As mentioned in [1], the total time to train
a DRL algorithm for 10k steps on Magma VEPC can take up
to an entire week. This is due to (i) long simulated traffic
sessions (= 3 minutes) and (ii) inherited delay in the NFs
provisioning. Consequently, RL based CN autoscaling suffers
from slow interaction cycles, creating bottlenecks in hyperpa-
rameter and NN architecture search as well as reward tuning.
The aggregated time required can be difficult to manage in a
project and may result in sub-optimal models

2) Modelling of the NDT: The NDT of Magma is designed
as a Gym environment, following the principles of an RL
environment. A Magma AGW instance is represented by a
Python class where the properties or state of an AGW is
represented by attributes. The AGW simulates workloads and
simulates the value of the observed metrics. The metrics which
represents the behavior of AGW are modeled mathematically
and they are detailed in Section V-A. Observation of load
tests on Magma shows that the attach rate is the main reason
why sessions can’t be established [1] and that a single AGW
can handle approximately 3.33 new sessions per second.
Accordingly CoreNetTwin considers that all the sessions above
this threshold cannot be established because of the overhead.
The probability of a crash is also simulated and increases with
the attach rate.

B. Training workload description

The model’s performance and capacity for generalization
are significantly influenced by the training workload.

In the CN autoscaling problem the workload has a direct
impact on the attach rate, which in turn impacts other metrics
like the number of dropped sessions or whether the system
crashes. Training an agent with a workload closely approxi-
mating the real-word situations exposes it to a wide range of
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state-action combinations prepares it to perform effectively on
unseen data.
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Fig. 2: sinewave and multi-pattern training workloads

The initial workload that was considered used a sinusoidal
function (cf. Fig. 2), as per [1], to match the natural daily
cycles observed in most digital services, where user activity
follows predictable everyday patterns, with very limited num-
ber of connections at night and peaks during mornings and
afternoons. To increase the variety, several steps were taken
to create a multi-pattern workload:

o modify the shape of the sinusoid to have a flat curve for
the high and low values of the number of UEs to simulate
period where no scaling is needed,

« alternate amplitude and frequency of the sinusoid, to add
more variety to the attach rate metric and to the min and
max number of VMs required,

« append a subset of a production traffic dataset (taken from
[43]).

This hybrid approach incorporates the required dynamic
variations while maintaining the workload’s overall structure.
Fig. 2 shows final multi-pattern workload. Fig. 3 compares
the performance of the D3QN algorithm when trained on
these two different workloads. The evaluation is performed
on the same workload than for the experiments described
in V. The figure illustrates the evaluation results for the
number of sessions dropped at different steps. Initially, both
training workloads exhibit high session drops, exceeding 300.
However, after approx 250k steps, the performance with the
final (multi-pattern) workload stabilizes, maintaining near zero
session drops whereas, the initial workload continues to show
instability, with session drops persisting beyond 250k steps.
Results show that tuning the training workload improved the
performance of D3QN which was able to scale the platform
to avoid most dropped sessions.
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Fig. 3: Impact of the training workload on D3QN performance

C. Hyperparameter tuning

The performance of the aforementioned algorithms depends
on a few hyperparameters (HPs). Tables I and II describe the
HP values used in the experiments in the next section. HP
tuning is carried out using Optuna °.Furthermore, only for
D3QN, these values were manually tuned to lower the dropped
sessions D metric.

TABLE I: HPs For D3QN TABLE II: HPs For RL?

HP D3QN HP PPO RL2

Initial LR le-5 Horizon (T) 284 12

Exploration Steps 4000 Episodes N/A 22

Mini Replay 4000 per Trial (n)

Buffer Size Adam step 2.95 21.9

Target Netw. 1000 x10—°

Update Freq. Mini Batch 4 60

Initial 3 0.628 Num. epochs 10 5

B Inc. per Step 0.001 Clipping 0.1 0.1

PER « 0.6 parameter €

Discount (y) 0.99 VF coeff. cl 1 0.5

Batch 32 Entropy coeff. | 0.01 0.01
Discount (y) 0.99 0.99
GAE () 0.95 0.95
Units 64 64 (GRU)
Gradient clip - 5

Table I shows the values for the HPs for D3QN. Table II
shows the values of the HPs for both algorithms used in the
experiments described in Section VI. For PPO, the policy is
updated using the Mini-batch size. The clipping parameter is
used to avoid the large policy update step size. The Value
Error function coefficient VF coeff. ¢1 and Entropy Coeff. co
help to optimize the surrogate losses, cf. Eq. (4). Discount
~ and GAE )\ parameters help to estimate the advantage A
Units is the number of hidden units of the NN layers. Gradient
clip manages the exploding gradient problem during training
of NN. Following early experiments, only one HP required
tuning for RL?, the Step per Meta-episode (SPM), i.e., after
how many steps the meta-learner is updated from the base-
learner. Tuning the other HPs show no improvement of the
performance and the selected values are common ones. PPO
and RL? both use a fixed learning rate.

V. PROBLEM DESCRIPTION AND EXPERIMENT SETUP

This section shows how the CN autoscaling problem can
be modeled as a discrete control problem where NFs can be
scaled-up or scaled-down depending on resource requirements.

A. Core Network platform as a RL environment

The components of a RL system can be mapped with the
autoscaling problem variables:

State space. The state of the CN platform is continuous
and designed as a set of 4 NFs metrics including (i) Memory
Usage (M) of the MME process of the AGW, (ii) number of
simultaneously connected UEs (U), (iii) the attach rate R and
(iv) the number V' of running instances or VMs. The ranges
of possible values of these metrics during the experiments are
listed in Table III.

Shttps://github.com/optuna/optuna
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TABLE III: State Space Of CoreNetTwin

State Metrics Range
Memory Usage (M) | 0-512 (MB)
Connected UEs (U) | 0-250 (per NF)

Attach rate (R) 0-5 (per NF)

Count of NFs (V) 0-100 (count)

Action space. It is discrete with 3 possible actions: scale-
up (+1 NF instance), scale-down (—1 NF instance), and do-
nothing.

Reward function is designed to guide the agent toward
guaranteeing QoS by minimizing the dropped sessions while
using as few resources as possible. It observes the state as
well as other metrics like if any crash has occured.

The reward is computed sequentially according to the order
mentioned in Eq. (5), with mutually exclusive conditions
evaluated in a prioritized manner. The reward is in the range
[—1, 1], the higher the better.

The ideal VMs (V;) is calculated based on instances needed
to handle the current load efficiently, maintaining 70% utiliza-
tion per VMs and adding a small offset of 1.25 to account
for uncertainties and overhead. If the system crashes, a fixed
penalty of (—1) is applied to discourage actions that lead to
system failure. Dropped sessions are penalized logarithmically
to scale the penalty based on severity. Overprovision occurs
when the number of active VMs exceeds a computed ideal
VMs count.

To ensure optimal performance and avoid resource satura-
tion, there is a 70% utilization cap on the total capacity. If the
service performance is within this acceptable limit (< 0.7), the
reward is proportional to how close the service performance
is to 0.7 and if it exceeds it, a penalty is applied based on the
deviation from the ideal value.

-1 if C' = True else

—log(D) if D> 0 else
r=91-20 iV < Velse (5)

1-10.7— M| if M < 0.7 else

—(1—-M) otherwise

Where C is Crash, D is Dropped Sessions and V,, is
Maximum number of VMs.

The CN autoscaling problem can be modeled as a discrete
control problem and can be solved by time-step MDPs with
continuous states and discrete actions, cf. Eq. (1).

B. CN autoscaling as a Meta-RL problem

Task is sampled as the CN with workloads at different
clock times. CN represents a different MDP at clock time with
variable workload and a base-learner has to learn a optimal
policy to solve these workload requirements.

Meta-task is to generalize the learning of base-learner
of a task across the different workload patterns or network
situations so that the agent can quickly adjust the policy ac-
cordingly with a few training steps to service the requirement.

Episode is a finite length sequence of n steps. During
an episode the base-learner interacts with the environment

with actions as per current policy, environment states, and
immediate rewards. Episode length in Meta-RL training is
generally lower than for RL training.

Trial is composed of multiple meta-episodes where RL?
hidden states access the multiple states within the trial that
accelerate the learning process of the base-learner. The objec-
tive of RL? is to optimize the policy maximum expected return
over the trial. The hidden states are reset after the completion
of trials but the learning is stored in the weights of RNN
network of RL? layers.

VI. RESULTS AND DISCUSSION

This section details the results of the experiments run on
CoreNetTwin, the Gym-based NDT described in Section IV.

500
@ 3000&,}
2 400 =)
% 300 2000_5
o e
& 200 3
9 10005
© 100 &
(7]
0 0
0 200 400 600 800 1000
Steps

—— Scaled-down Workload —— Production Workload

Fig. 4: The evaluation workloads: Production and Scaled-down

For the experiments, D3QN is used as a baseline, using a
Prioritized Experience Replay buffer. It is appropriate for an
environment with a discrete action space like the one described
above. Then it is compared with the Meta-RL RL? algorithm
with PPO as base-learner since RL? requires a PG-based
algorithm as base-learner.

Training Process. The PPO and RL? agents are trained
with the multi-pattern workload and configured with the HPs
detailed in Section I'V-B.

Evaluation Process The trained models are then evaluated
against two different workloads that are shown in Fig. 4. A
production workload, which is based from data collected on
a live network from one location of Orange in France [43],
and a scaled-down workload, which is calculated from the
first to have a similar shape but a lower maximum number of
connected UEs U, closer to the value of U in the training data.
A subset of this same data was removed and integrated into
the training dataset as described in IV-B. These 2 workloads
allow to compare the performance on similar patterns but
with different scales of traffic, trying to mimic unseen peak
days. One evaluation is performed every 13200 steps. Each
evaluation lasts for 7200 steps and metrics are averaged over
this duration. Each point on the graph represents the mean
value of the metric over all these 7200 steps. Fig. Sa-5f show
the experimental results of both D3QN and RL? algorithms
when trained models on the multi-pattern workload and
evaluated on these two workloads.

Fig. 5a-5c show the performance of both algorithms when
evaluated on the scaled-down workload. In this test, we can
see that both algorithms converge to a model that is able to
preserve the QoS, i.e. no dropped sessions after 8 evaluations
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(or 105k steps) for RL? and after 2 evaluations for D3QN.
Overall RL? uses 4% less VMs to handle the load : around
3.97 VMs when D3QN uses 4.12 in average. It also achieves
a Reward = 7.5% higher which is expected since the Reward
and the number of VMs used are correlated per definition, cf.
Eq. (5). The performance of D3QN here is consistent with
prior work [1] where it was evaluated on Magma, showing
that CoreNetTwin is able to behave like Magma in the context
of this usage.

Fig. 5d-5f show the performance of both algorithms against
a different workload, called production, which has a shape
similar to the previous one but with a higher number of
connected UEs U. Here D3QN does not perform as well as
before. It largely avoids dropped sessions but consumes a large
number of resources (VMs) to do so and never learns to reduce
the resource usage. Meanwhile RL? learns to use significantly
less VMs, around 7 when D3QN uses 18 in average. It also
manages to reduce the number of dropped sessions over time
albeit in the tests is not able to reduce it to 0. This is also
visible when comparing the mean reward of both algorithms:
RL? consistently has a higher reward and reaches a high
average reward around 0.75 when D3QN reaches average

rewards between 0.24 and 0.35.

Fig. 6 shows the loss of both algorithm during training. It
shows that the entropy loss of RL? is decreasing steadily while
the loss D3QN shows that it is not able to improve the model
further.

These results showcase that a Meta-RL algorithm like RL?
is able to adapt better to some types of unseen traffic compare
to a traditional DRL algorithm like D3QN. It is able to learn
from different datasets, here workloads, to compute a model
that can adapt to unseen data. The results also show that when
used on data that is closer to the training data, it is also able
to converge albeit slower than D3QN.

RL agents are known to be data-hungry, slow to train,
complex to manage in production which limits their real
world applicability. In telecom setting, NFs scaling depends
on dynamic workload which can change with geography, time
and service provider. Meta-RL provides a promising avenue
by enabling generalization across tasks, paving the way for
agents that are scalable, adaptive, interoperable and closer
to production-grade given the training scenarios sufficiently
represent real-world conditions.

VII. CONCLUSION AND FUTURE WORKS

This paper introduces the use of Meta-RL to address the
autoscaling of NFs according to the workload. The experi-
mental results show that the RL? model is able to adapt to
an unseen workload when the DRL algorithm D3QN fails to
do so. This is only a first step, other Meta-RL algorithms
have been introduced since which could also be explored. RL,
DRL and Meta-RL are interesting techniques that could be
applied to other network use cases, future work includes the
identification of these use cases.

The performance of the RL? algorithm is evaluated on
CoreNetTwin, a NDT which is also introduced in this article.



2025 21st International Conference on Network and Service Management (CNSM)

Experiments conducted for this work showed that training a
model on a NDT requires a significant work on the data that is
fed to the model so that it can learn the largest possible number
of action-space combinations. Currently it is a basic NDT that
allows to mimic only the behavior of Magma, which is an
all-in-one box CN. Work is ongoing to improve it to emulate
all the NFs of a CN, using the Open-Source Open5GS CN as
the PT, for the training of RL models.
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