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Abstract—The Cloud Continuum Framework (CCF) extends
computing capabilities across near-edge, far-edge, and extreme-
edge nodes beyond the traditional edge to meet the diverse
performance demands of emerging 6G applications. While Deep
Reinforcement Learning (DRL) has demonstrated potential in
automating Virtual Network Function (VNF) migration by learn-
ing optimal policies, centralized DRL-based orchestration faces
challenges related to scalability and limited visibility in distributed,
heterogeneous network environments. To address these limitations,
we introduce MARC-6G (Multi-Agent Reinforcement Learning
for Distributed Context-Aware Service Function Chain (SFC)
Deployment and Migration in 6G Networks), a novel framework
that leverages decentralized agents for distributed, dynamic, and
service-aware SFC placement and migration. MARC-6G allows
agents to monitor different portions of the network, collaboratively
optimize network control policies via experience sharing, and make
local decisions that collectively enhance global orchestration under
time-varying traffic conditions. We show through simulations
that MARC-6G improves SFC deployment efficiency, reduces
migration costs by 34%, and lowers energy consumption by 12.5%
compared to the state-of-the-art centralized DRL baseline.

Index Terms—Multi-Agent Reinforcement Learning, Dis-
tributed Service Orchestration, Distributed Intelligence, Service
Function Chain

I. INTRODUCTION

The Sixth Generation (6G) mobile communication network
is expected to leverage the concept of the Cloud Continuum
Framework (CCF), which provides more flexible computational
resources closer to end users beyond traditional edge com-
puting, thereby meeting diverse application requirements [1].
However, realizing the full potential of this continuum requires
scalable and intelligent orchestration of distributed resources
across a heterogeneous, multi-tier infrastructure.

Network services are provisioned as sequences of heteroge-
neous, predefined, and ordered Virtual Network Function (VNF)
in the form of SFC on standardized, general-purpose servers
enabled by Network Function Virtualization (NFV) technol-
ogy [2]. VNFs are software-based implementations of network
services such as Network Address Translation (NAT), Firewalls
(FW), Intrusion Detection and Prevention Systems (IDPS),
WAN optimizers (WO), Video Optimization Controllers (VOC),
Traffic monitors (TM), and encoding/decoding functionalities.
Those network functions provide a wide range of emerging ap-
plications, including video streaming, virtual/augmented/mixed
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reality, Industry 4.0, holographic communication, smart facto-
ries, autonomous vehicles, tactile industrial internet [3].

Optimal VNF deployment is one of the design requirements
of modern mobile networks to ensure sustainable long-term
performance and minimize operational costs. This, in turn,
enables fast, reliable, and cost-effective delivery of network
services. Several studies have proposed machine learning based
approaches for the centralized orchestration of network func-
tions [4], [S]. Deep Reinforcement Learning (DRL) is employed
for network state awareness by leveraging Deep Learning
(DL) to extract complex, high-dimensional network patterns
and using Reinforcement Learning (RL) to optimize decision-
making through interactions with dynamic network states.

A Service Orchestrator (SO) is a network management
system designed to automate the provisioning, scaling, and
lifecycle management of network services [6]. Despite being
effective in small-scale networks, centralized service orchestra-
tors exhibit several limitations in large-scale environments due
to their limited visibility of the global network state. These limi-
tations include a single point of failure, high signaling overhead
for network-wide data collection, and reduced responsiveness
in real-time decision-making, which degrade the performance
of latency-sensitive applications, and often lack the flexibility
and scalability required to efficiently manage dynamic and
heterogeneous workload demands [7].

The main research question addressed in this work is: How to
optimally deploy and dynamically reconfigure multiple SFC
requests in large-scale 6G networks, while adapting to time-
varying traffic demands and heterogeneous infrastructure
resources, to satisfy end-to-end performance requirements?

To address this challenge, we introduce MARC-6G (Multi-
Agent Reinforcement Learning for Distributed Context-Aware
SFC Deployment and Migration in 6G Networks). In MARC-
6G, agents monitor portions of the CCF and collaboratively
learn VNF placement and migration policies from real-time
network metrics, enabling scalable and dynamic orchestration
across heterogeneous 6G infrastructures. The key contributions
of this paper are summarized as follows:

o We model the problem of scalable and distributed service-
aware orchestration of VNF deployment and migration for
multiple SFC requests in large-scale 6G networks.

o We design multi-agent RL—based distributed orchestrators
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that use local state to jointly learn deployment and mi-
gration policies, minimizing delay, energy consumption,
and VNF migration cost under dynamic traffic and re-
source conditions, while concurrently provisioning mul-
tiple SFCs.ovisioning multiple SFCs.

o We evaluate MARC-6G against baseline methods and
demonstrate higher request acceptance, improved energy
efficiency, and reduced migration costs, validating its ef-
fectiveness for dynamic SFC management in 6G networks.

The remainder of the paper is organized as follows: Section
IT describes the related works. Section III presents the system
model and problem formulation. Section IV outlines the pro-
posed methods. Section V presents the performance evaluation.
Finally, Section VI draws the conclusions.

II. RELATED WORKS

Existing adaptive centralized provisioning techniques address
VNF deployment as an elastic resource provisioning problem,
aiming for flexible and on-demand resource allocation to meet
network service requirements and service level agreements [4],
[8], [9]. However, they often overlook the fact that multiple
service requests may arrive at the orchestrator simultaneously,
with varying performance requirements.

Tang et al. [10] employ a digital twin powered by an
attention model to guide an RL agent by predicting resource
requirements a priori. However, because prediction is decoupled
from action selection, the system’s ability to adapt in real time is
compromised. Onsu et al. [8] apply DRL for VNF placement
using fixed data center priorities based on residual capacity,
but static scoring overlooks context and traffic, resulting in
suboptimal placement.

Dynamic priority assignment enables more adaptive and
scalable orchestration under resource variability. Tanuboddi
et al.[11] addressed VNF migration by leveraging software-
based network functions to enable dynamic scaling, facilitating
seamless migration in response to user mobility, load variations,
and hardware failures. Chen et al. [12] and J.Chen et al. [13] ad-
dress cost-efficient and fault-tolerant SFC migration using DRL
and optimization techniques, respectively, but both approaches
overlook key aspects such as fairness, realistic service lifetimes.
Table I provides a comparison of the parameters considered in
this study with those reported in the literature.

III. SYSTEM MODEL AND PROBLEM FORMULATION
A. Distributed Service Orchestration in 6G Networks

We envision the 6G cloud network architecture that con-
sists of three frameworks: the CCF, the Management and
Orchestration Framework (MOF), and the Artificial Intelli-
gence and Machine Learning Framework (AIMLF), as shown
in Fig. 1 [15]. The CCF provides logically unified resource
management across cloud-to-edge environments by dynamically
integrating resources into Cloud, Near-edge, Far-edge, and
Extreme-edge. A portion of CCF is highlighted in a different
color to illustrate that VNFs of a single network service can be
deployed across heterogeneous CCF nodes.

TABLE I: Comparison of Related Works.

Reference Concurrent ~ Multiple Stateful Migration
VNF SFC VNF Cost
Migration Requests Migration
Tang et al. [10] v X v X
J.Chen et al.[13] v X v v
Onsu et al. [8] X v X X
Tanub. et al. [11] X v X v
Zhang et al [14] X v v X
S.Long et al [4] X v X X
Chen et al. [12] v X v v
Liu et al. [9] v v X X
MARC-6G v v v v
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Fig. 1: Al-native 6G network architecture with distributed service
orchestrators for scalable network state adaptive VNF deployment [15].

The MOF provides distributed orchestration capabilities to
enable scalable orchestration, interfacing with the CCF for
infrastructure control and with the AIMLF for learning-based
decision support. It comprises two components: the Master Ser-
vice Orchestrator (MSO) and the Distributed Service Orchestra-
tors (DSOs). The MSO is responsible for the initial deployment
of Network Services (NSs) and DSOs across the CCF, while
the DSOs manages runtime operations and the network service
lifecycle management. Each DSOs contains multiple SO to
address the dynamic workloads and scalability challenges posed
by the heterogeneous 6G network infrastructure.

The AIMLEF is the intelligent control framework, supporting
real-time monitoring and continuous learning in dynamic net-
work environments. It ensures autonomous orchestration and
adaptive service management by cooperating with the CCF
and MOF. DSOs comprise intelligent agents that leverage the
AIMLF to manage the CCF in real time, enabling context-
aware decisions. DSOs monitor resource availability to support
autonomous VNF allocation, predictive scaling, and proactive
SFC migration. This ensures low latency, energy efficiency, and
enhanced resilience and fault tolerance.
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B. System Model

We model distributed orchestration over the CCF at a high
level (Fig. 2), where service orchestrators manage batches of
SFC requests in a queue. We consider CCF network infras-
tructure that comprises heterogeneous physical nodes v;, each
with CPU/GPU capacity C; [cycles/s], distributed across four
tiers: (i) centralized cloud data centers, (ii) near-edge nodes,
(iii) far-edge nodes, and (iv) end-user devices.

We represent the network infrastructure as a weighted undi-
rected graph G = (V, E, W), where V is the set of physical
nodes, £ C V x V denotes the set of links connecting them,
and the weight function W E — RT represents each
link’s available bandwidth. Each node v € V represents a
physical network entity, such as an extreme-edge device (e.g.,
smartphone, electric vehicle, or drone), an edge or near-edge
server, or a centralized cloud data center within the CCF.
Each link e € E represents a high-speed communication path,
typically implemented via fiber connections. We denote the
bandwidth capacity between nodes v;,v; € V as B;; [bit /sl.

We consider a scenario involving multiple SFC re-
quests arriving at the orchestrator. Each SFC request is
modeled as a Directed Acyclic Graph (DAG) f; =
(Ki, L, 6;, iy Ay, BMn, DM 5,), where K; denotes the set
of VNFs for the ¢-th SFC; L; denotes the set of logical links
between VNFs; 6; and (; denote the source and destination
endpoints, respectively; A; signifies the traffic arrival time; B
[bit/s] is the minimum bandwidth requirement; D [s] is
the maximum tolerable end-to-end delay; and o; [cycle/s] is
the total computational demand across all VNFs. Each VNF
k € K, represents a softwarized network function that can
process incoming packets. The logical links (k;, k;) € L;
represent the connections between successive VNFs k; and k;,
which represent a sequential dependency between VNFs.

To support concurrent deployment, we consider a batch of
N active SFC requests simultaneously for deployment, denoted
by F = (f1, fo,..., fn). These requests, predefined according
to application-specific requirements and submitted by tenants,
are orchestrated in parallel over the physical infrastructure. The
topology f; of an SFC is determined by the application it serves
and is assumed to be specified by the tenant and forwarded to
the network management plane for processing and deployment.

Each VNF k € K, maintains an internal state, making state-
ful migration essential to preserve session continuity and avoid
service disruption during reallocation. Given user mobility and
fluctuating link quality, proactive resource management and
adaptive state transfer are essential. The selection of a target
node for migrating a stateful VNF can be modeled as a tuple
Sk = (M, D, Q., Ps, T,,) where M; is the size of the context
to be migrated, D, represents the deployment cost of the service
on the target node, @), denotes the SLA violation impact during
migration, P indicates the congestion level along the selected
migration path, and 7, is the total migration time.

C. Problem Formulation

We formulate the problem of simultaneous, elastic self-
scaling placement of VNFs for a batch of IV active SFC requests
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Fig. 2: Several SFC requests arrive at the orchestrator in queues, while
multiple intelligent agents concurrently deploy VNFs over CCE.

over a shared physical network, with the goal of determining
the optimal placement that minimizes end-to-end SFC latency.
The total end-to-end delay of an SFC typically comprises
propagation, communication, queuing, VNF computing, and
virtualization delays. For tractability, we simplify our formu-
lation by considering communication delay, VNF computing
delay, and queuing delay. Our objective is to determine an
optimal allocation that minimizes overall system latency, energy
consumption, and migration cost.

For each SFC request f;, we define the allocation vector
as o = (1,42, .., |K,|) € VIKil | where each element
oy ; € V represents the physical node on which the j-th
VNF for the SFC request f; is deployed. The complete set
of allocation vectors for a batch of N SFC requests is denoted
by A={aj,as,...,an} € Q, where Q = Hf\il VIEil s the
generalized cartesian product of allocation vectors. Specifically,
Q = {(o,...,an) |y € VIKl Vi€ {1,...,N}} defines
the feasible solution space comprising tuples of allocation
vectors over heterogeneous domains V1511 V1Kl yIKN]
corresponding to the variable number of VNFs across the N
SFC requests.

The communication latency for an SFC request
fi» given the allocation ¢y, is modeled as T'(a;) =
Z(km’kn)eLi et m, i), where  I(cm,n) denotes
the shortest-path transmission delay between VNF deployment
locations «; ,, and «;,. We define the processing latency for
an SFC request f; as P(a;) = Zf:il(Pc(ai’j) + P9y 5)),
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where P°(q; ;) and P9(w; ;) represent the computing delay
and queuing delay waiting for processing of the j-th VNF
at its assigned node, respectively. The total SFC delay for
a request f; is then T(a;) = P(o;) + I'(oy), comprising
the communication, processing, and queuing delays. We
therefore define the total delay for a batch of N requests
as T(A) = > ., caT(i), representing the aggregate delay
across all SFCs in the batch.

The energy consumption at time ¢ given an allocation «; is

modeled as
t) = Z wy(ai) - Pr(t) + Z(l — wy(a;))
veV

veV

PY(t) (1)

where w,(a;) € {0,1} indicates whether node v is active
under allocation «;. The active processing energy consumption
is defined as P*(t) = PN(t) + B,(t) - (P™(t) — PN(¢)),
with PN(t) representing baseline energy usage and P™(¢) the
energy drawn under full utilization [16]. The utilization factor
By (t) according to [13] is given by

ay, () - vi(t) - of ay, () - vi(t) oy

Bo(t) = w, - —2 CP o Cu

@)

where z* f(t) indicates whether flow f* is processed on node
v, V’J?(t) is the flow’s processing rate, of and o% are the
resource demands per unit of computing and storage capacity,
respectively, and CP, C* are the corresponding available ca-
pacities. The weights w,, and w,, reflect the relative importance
of CPU and storage utilization. Let us define P (t) as the
transmission energy required to migrate VNF £ from one node
to another. We therefore define the total energy consumption for
a batch of IV requests as P(A) = > 4 P, (t), representing
the cumulative energy usage induced by the current allocation
across all requests in the batch.

The VNF migration cost comprises both time and energy
components. The total migration time for a VNF k£ € K is
defined as t;, = E(i, fel %’;, which represents the sum of
the transmission times required to transfer the VNFs’ state
size My over each physical link (4,7) with bandwidth B;;
along the shortest path [ from the VNFs’ current deployment
location to its new candidate node. The associated energy
consumption to migrate VNF k along the shortest path [
is ex = >_(; jel, Fo (t). We then define the SFC migration
cost M(a;) = Zkem’\ ty + (1 — X) - ex as the sum
of all VNF migration cost, where A € [0,1] is a tunable
parameter used to balance the trade-off between time and energy
costs, expressing different units as percentages. We therefore
define the fotal migration cost for a batch of N requests as
M(A) =3_,,ca M(a;), representing the aggregate migration
costs across all SFCS in the batch.

Let us define n* as the CPU cycles per second required by a
VNF k when deployed on a physical node v € V. Similarly, let
b¥! denote the bandwidth consumed by the logical link (k1)
of an SFC when mapped onto the physical link (i, ) € E. We
assume a total of M SFC requests atrive over time. To support
scalable orchestration, we divide these into m batches, each

consisting of NV concurrent requests, such that m = M/N. In
each batch, VNFs are allocated jointly for the N SFCs.

Given that the optimization problem is multi-objective, we
define B8 = (B4, 02,03) as the weight vector balancing the
trade-offs between aggregated delay, energy consumption, and
migration cost. Recall that T(A), P(A), and M(A) denote
the total delay, energy consumption, and migration cost, re-
spectively, aggregated over the batch of N SFC requests under
allocation A. The objective is to minimize the scalarized cost
function 3T C(A), where C(A) = (T, P, M)(A) captures the
three cost components. The goal of the optimization problem
is to determine the optimal allocation A* € Q for a batch of
N SFC requests such that system-wide resource utilization is
efficient and constraint-satisfying, as shown in Equation 3.
Energy consumption

Total SFC delay Migration cost
—

migierrglzize B1-T(A) + pBo-P(A) +p35-M(A) 3)
subject to
ZZ Yonk<ao,, Wwev (3a)
r=14e[N]keK;
Z Z Z b < Bi;, V(i.j)€E (3b)
r=14€[N] (k,l)eL;
T(a;) < D™, Vie{l,...,N} (3¢)

Constraint 3a ensures that for each node in the network, the
total processing demand of all VNFs assigned to that node does
not exceed its available computational capacity. Constraint 3b
ensures that for each logical link, the combined bandwidth
requirements of all SFC requests do not exceed the link’s
available bandwidth capacity. Constraint 3c ensures that for
each SFC request, the aggregate processing and communication
delay does not exceed its E2E delay tolerance required for
successful service completion.

IV. MULTI-AGENT DEEP REINFORCEMENT LEARNING FOR
DISTRIBUTED SFC DEPLOYMENT AND MIGRATION

We present MARC-6G, a distributed cooperative MARL
framework that orchestrates VNF deployment and migration
in dynamic networks. We redefine the optimization equation
1 in the context of the Multi Agent Reinforcement learning
(MARL) problem, where each agent operates under a Partially
Observable Markov Decision Process (POMDP), observing a
local portion of the CCF, acting independently, and exchanging
state, action, and reward to learn a joint policy that anticipates
future conditions. The policy selects physical nodes for VNFs
by accounting for inter-VNF delay, deployment cost, SLA con-
straints, congestion, energy, and migration cost. Agents refine
strategies from experience and peer sharing, enabling scalable
management of heterogeneous, time-varying workloads.

The broader system-wide objective is to jointly learn a set of
optimal policies, denoted as 7* = {nf,..., 7} }, which collec-
tively maximize the performance of all agents in a cooperative
manner.
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A. Modeling VNF Deployment as Markov Decision Process

We model the distributed SFC deployment and migration
task as a cooperative MARL problem, where the detailed
formulation is expressed in terms of the joint state space S,
joint action space A, and joint reward function R; at a given
time ¢, as described below.

1) Joint State Space S; describes the current situation
of each agent in the environment. The global state at
time ¢ is the collection of local states observed by
each agent. The individual state of agent i is S} =

Vl.{fi,xg{f?, L“fh‘, G™P M, f; ] where fo indicates
that VNF K is deployed on physical node V; at time ¢, and
L|‘f< ,|L represents the link delay between node V; (hosting
K;) and node V}, (hosting | K;|). The state information also
includes the observed network topology (G'°P°), the num-
ber of SFC requests in the queue M, and the characteristics
of the SFC request f;.

2) Joint Action Space A; explores optimal physical-node
placements for hosting VNFs.Each action corresponds to
selecting a sequence of physical nodes that meet the
performance requirements of incoming SFC requests. At
each time step t, each agent ¢ selects a sequence of physical
nodes to deploy the VNFs of its SFC. The action of agent ¢
is defined as: o = (1,2, ..., K,|) € VIKil where
each element oy i, € V represents the selected physical
node on which the i-th VNF for the SFC request f; is
deployed.

3) Joint Reward Function R; assigns a numerical score
to each agent’s decision on the network performance.
The agent evaluates each physical node’s placement by
interpreting patterns it learns from the environment. At
time ¢, the reward for agent 7 according to Equation 3 is
given as follows. R! = _Z?:o Y (81 - T(A) + Be -
P(A)+ 3 - M(A)) where T is the maximum time-step
at which an agent learn optimal deployment ]\Policjes. The
collective reward is then defined as: R = ) ;" | R}, where
a; is the joint action across all agents.

B. Multi-Agent Proximal Policy Optimization for Autonomous
VNF deployment

In Multi Agent Proximal Policy Optimization (MAPPO),
distributed learning via experience sharing employs separate
policy networks, each parameterized by mp,, and separate
value networks, each parameterized by Vj,. The RL agents
exchange experiences through their value networks and policy
networks to learn coordinated deployment policies. Each agent
7 observes a local state s;‘; (e.g., a subset of the network
topology, current VNF placements, resource utilization, and KPI
requirements for incoming traffic) and selects a deployment
action al ~ mp,(a]|si). After agent i executes its action, it
receives a reward 7¢ 11> which is weighted by 3; and exchanged
with its neighboring agents. Based on this reward, each agent
i updates its value function Vj,(s!) and the policy network
parameters 6;.

In each training epoch, agents also share their latest policy
7o, (- | s¢) with neighbors, enabling them to anticipate others’
behaviors and coordinate VNF placements across the network.
Thus, by exchanging weighted reward signals 3;r? 11 (e,
experience of an agent), MAPPO ensures that each agent’s value
network gains a more global perspective on performance.

Algorithm 1: MARC-6G Operation

Input: F = (f1, f2,..., f~N), Tmas G, U1(3,5), M, N
/1 Initialize policy, value, replay buffer
1 Initialization: ¢f, 7, Dy
/I Randomly place Initially VNF
2 S = (v;fji,vif?, L‘VK)L)
/I Initialize the reward to zero

3R+ 0
4 for t € T} do
5 for i € N do
/I Each agent selects one SFC request
6 fi < Sample(M, 1)
7 § < MeasureCPUrequirment (fi)
3 E) < MeasureBandwidth (f;)
9 l + MeasureLatency (f;)
10 q < MonitorLinkquality (G"")
/I Translate f; & number of SFC requests in a queue
as state
1 Sy« (1,b,2,9,G*™, M)
/I Execute Aj ~ my based on the current policy
Al mg(AL|SE AT : .
2 5y Dm0, S Ria
/I Deploy K; new location
13 SZ+1 — ‘/tK7 o ]
/1 Store each sy, ai, R} in replay buffer
14 DtF{SB,G%,T%,...,S;,CL;‘,T;}
15 if 1(fi) < l(4,7) then
16 Ap ~ (A | Si, ATy B B Si
/I ' Each agent calculates advantage estimate
17 A™0: (st,at) + Q'(s,a) — Vdf(s)
/I Update 0; and ¢; parameters
18 0i,, = arg maxg: 7|D1\T > ep, Soieo
min (Z2k 4701 (51, 00), gle, A" (51, 01)))
19 Pti1 = .
: 1 2
| Argmily 57 Z-revt > im0 (Vo(st) — Re)
20 else
/I Relocate VNF
2 IGRE
// Assign VNF K optimally
1 i
22 B K; —)Dep oy VtK

23 return ¢;(s;), mo, (s¢)

C. MARC-6G Algorithm

The step-by-step workflow of Algorithm 1 is described below
in detail. The inputs to the MARC-6G algorithm are the
physical network topology G'P°, the corresponding resource
capacities (e.g., link bandwidth, link delay, node CPU), and a set
of SFC requests f; with their characteristics. Each agent selects
a single SFC request from the pool M, based on its traffic
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arrival time A; and E2E delay requirement D**(lines 5-7).
Each agent constructs the state s; by measuring the SFC request
KPIs f; (bandwidth, CPU, latency) and the current physical
resource availability (lines 7-12). Next each agent execute the
deployment action a; ~ mg(s¢) by considering the deployment
action of others, following current policy 7y, update the system
to state s;1, and set the new VNF placement S; 1 = Vi’C store
st al,ri trajectory in replay buffer D; (lines 13-14). Then the
requirements of I(f;) are compared with available infrastructure
resources: [(f;) < l(i,j) for the given allocation vector. The
reward R, and the advantage A™ (s;,a;) are then computed
(lines 11-15). Then update 6 ,(the policy) and ¢}, (value
parameters), and repeat this iteration until the optimal policy
is developed (lines 14-21). The decision about the SFC request
deployment or migration to another node (lines 21-22). Finally,
return the value parameter ¢;(s;) and the policy parameter
7o, (s¢) (line 23).

V. PERFORMANCE EVALUATION
A. Experimental Setup

We performed the simulation experiments using a custom
simulator developed in Python with the NetworkX [17] to
generate USA NET [18] network topologies that represent
the underlying network infrastructure. For the MARC-6G im-
plementation, we employ the open-source libraries Gymnasium
v1.0 and RLIib v2.4.0 to train and evaluate RL agents within a
custom environment. Given the variability of incoming traffic,
each SFC request f; is managed in a way that preserves
better link quality. Multiple PPO agents operate in parallel,
continuously monitoring network conditions and adjusting VNF
placements in response to traffic patterns and system dynamics.
We model both the state space S and the action space A
as multi-discrete, making PPO a suitable choice due to its
robustness, stability, and convergence properties, and update its
policy online in discrete control tasks.

B. Baselines and Evaluation Metrics

The performance of MARC-6G, compared with centralized
orchestration from the previous work [19] and baseline greedy-
based VNF allocation. The Greedy allocator, deploying VNFs
immediately without considering long-term impacts, often leads
to suboptimal resource utilization. Centralized orchestrator
Single Agent Proximal Policy Optimization (SAPPO), suffers
from scalability limitations due to its reliance on a single
global controller, preventing real-time adaptability in large-
scale, dynamic network environments.

MARC-6G is evaluated using: (i) Reward, the weighted ob-
jective function that combines total E2E delay, energy consump-
tion, and migration cost (Equation 3); (ii)) Number of Accepted
Requests, the fraction of VNF requests successfully deployed
with the required performance relative to all incoming requests;
(iii) Energy Consumption, highlighting energy-efficient VNF
placement that minimizes usage by aggregating workloads from
underutilized nodes onto a minimal set of active servers in
real time; and (iv) Migration Cost, include the computational,

energy, and bandwidth overhead incurred when migrating VNF
instances to optimize resource utilization and service quality.

C. Discussion and Simulation Results

Figure 3a compares learning curves for MARC-6G, SAPPO,
and a greedy (non-learning) allocator: rewards fluctuate during
exploration and SAPPO leads early (no coordination over-
head), but once a shared state emerges, MARC-6G’s multi-
agent cooperation accelerates learning past SAPPO, ultimately
outperforming both SAPPO and the greedy baseline with more
stable, efficient VNF placements.

Figure 3b shows that across the SFC types in [3] (ID4.0,
MIoT, CG, AR, VS), MARC-6G with five agents consistently
outperforms SAPPO and the greedy allocator in terms of the
number of accepted requests. For ID4.0, SAPPO and MARC-
6G are comparable because ID4.0 has few VNFs, reducing
contention. MARC-6G deploys SFCs concurrently with five
agents, whereas SAPPO and the greedy baseline place one per
step; the greedy is further hindered by random VNF placement.

Figure 3c shows energy consumption rising with the number
of devices because VNFs are spread across many servers
without accounting for over- or underprovisioning. MARC-
6G lowers energy consumption by up to 12.5% and 39.2%
compared to SAPPO and greedy across device scales by
learning utilization-aware, energy-efficient VNF placements.

Figure 4a shows that as the number of physical devices
grows, migration cost decreases: a larger pool of nodes enables
optimal nearby node selection, and MARC-6G’s multi-agent
monitoring further minimizes cost by up to 34% and 41.25%
compared to SAPPO and greedy approaches, respectively. Fig-
ure 4b reports E2E delay for 40/70/100-node networks under
concurrent SFC loads of 3, 6, 9, and 12; delay drops across all
loads as node count grows, indicating that MARC-6G learns
scalable, resource-aware deployments that minimize latency
even under heavier traffic.

Figure 4c illustrates the scalability of MARC-6G: as the num-
ber of SFC requests and hence agents increases proportionally,
the end-to-end delay decreases, since each agent, managing
only a segment of the network, and deploy multiple requests
concurrently.

VI. CONCLUSION

This paper addresses distributed, context-aware VNF place-
ment and migration under time-varying traffic for 6G networks,
with the objective of minimizing end-to-end delay, energy con-
sumption, and migration cost. We present MARC-6G, a MARL
framework for concurrent SFC deployment that adapts online
to network dynamics, placing and migrating VNFs to meet
the strict delay requirements of fluctuating applications. Unlike
centralized orchestration, characterized by slow, global state
collection as request volume and topology size grow, MARC-
6G monitors the local portion of the CCF, shares experience
among agents, and updates policies in real time. Experimental
results show that MARC-6G has higher request acceptance,
better energy efficiency, lower migration cost, and improved
scalability compared to baseline approaches.
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