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Abstract—The ability to centrally control network infrastruc-
ture using a programmable middleware has made Software-
Defined Networking (SDN) ideal for emerging applications,
such as immersive environments. However, such flexibility in-
troduces new vulnerabilities, such as switch misreporting led
load imbalance, which in turn make such immersive environment
vulnerable to severe quality degradation. In this paper, we
present a hybrid machine learning (ML)-based network anomaly
detection framework that identifies such stealthy misreporting
by capturing temporal inconsistencies in switch-reported loads,
and thereby counter potentially catastrophic quality degradation
of hosted immersive application. The detection system combines
unsupervised anomaly scoring with supervised classification to
robustly distinguish malicious behavior. Data collected from a
realistic testbed deployment under both benign and adversarial
conditions is used to train and evaluate the model. Experimental
results show that the framework achieves high recall in detecting
misreporting behavior, making it effective for early and reliable
detection in SDN environments.

Index Terms—Software-defined networking, load balancing,
virtual reality, quality of experience, misreporting attacks.

I. INTRODUCTION

Software-Defined Networking (SDN) has become a key
technology for next-generation networks due to its central-
ized control, real-time programmability, and dynamic flow
management. Such flexibility enables intelligent orchestration
of resources, making SDN attractive for performance-critical
applications. Immersive 3D applications, such as Virtual and
Augmented Reality (VR/AR), is a prominent domain which
can leverage SDN to enhance situational awareness in ar-
eas such as cyber-training, healthcare, and emergency re-
sponse [1]. For instance, SDN has been applied to improve
VR streaming through MCTS-based routing [2], multipath
delivery for tiled content [3], and ML-driven network slicing
for latency-sensitive VR [4].

However, SDN’s centralized design and hardware-software
coupling create a broad attack surface. Known attacks include
flow table overflow, packet injection, and traffic flooding,
which can destabilize both SDN systems and hosted critical
applications. A particularly subtle vulnerability is misreport-
ing, wherein a malicious switch(s) falsifies load statistics to
bias the controller’s flow assignments. This leads to unfair
traffic distribution and performance degradation in latency-
sensitive workloads. In VR, such manipulation can degrade
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quality of experience (QoE) by redirecting tasks to com-
promised servers. Such manipulated pose updates may lead
to visually inconsistent rendering, emphasizing the need for
timely detection.

While defense mechanims, such as rDefender [5], counter-
flow [6], and SDN-Guard [7] address rule-based vulnerabili-
ties, effective strategies against switch misreporting attacks are
fewer to almost none. Detection of such attacks is challeng-
ing because misreported statistics mimic historical patterns,
evading threshold-based or anomaly filters. Recent work [8]
shows how compromised switches can attract traffic without
triggering alarms, exposing a gap in current SDN defenses that
largely assume a trusted data plane.

In this paper, we study stealthy misreporting in SDN
and its impact on latency-sensitive applications. Using VR
offloading as a case study, we deploy our setup on the NSF
FABRIC testbed [9], replicating the misreporting model of
[8] to show how falsified load reports can redirect workflows
to a malicious edge server that perturbs VR pose updates.
Integrated with the ILLIXR environment [10], our setup traces
the attack’s effect from network telemetry to application-
level QoE. To counter this, we propose a hybrid detection
framework combining statistical features with temporal mod-
eling to reveal anomalies that appear plausible individually
but suspicious over time. A transformer-based autoencoder
trained on benign telemetry yields unsupervised anomaly sig-
nals—reconstruction error, Mahalanobis distance, and rolling-
window statistics (z-score, skewness, kurtosis). These signals
are then fused with lightweight supervised models—an MLP
and calibrated LightGBM—balancing generalization with pre-
cision in detecting subtle misreporting.

We evaluate the proposed framework on an SDN testbed
built on FABRIC with controlled misreporting. ILLIXR envi-
ronment serves as a VR layer, offloading head pose estimation
to edge servers hosted on FABRIC, letting us measure QoE
degradation when workflows are steered to a compromised
server. The setup demonstrates higher Absolute Trajectory
Error (ATE) and Relative Pose Error (RPE), confirming impact
on user experience. Benchmarks, such as precision, recall, F1,
and ROC AUC, show up to 20% F1 gain over unsupervised
baselines with latency suitable for real-time deployment. Sys-
tem robustness is also assessed under varying window sizes,
strides, VR durations, and attack persistence, providing early
evidence of effective misreporting detection in SDN-hosted
immersive environments.
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The remainder of this paper is organized as follows. Section
II reviews relevant prior work. Section III presents the system
and threat models. Section IV outlines the proposed detection
framework. Section V presents our evaluation methodology
and experimental results. Section VI concludes the paper and
discusses future work.

II. RELATED WORKS

Falsification-based threats remain a major challenge in SDN
and cyber-physical systems (CPS), where accurate reporting
from distributed components is critical. These attacks exploit
trust in telemetry—whether switch statistics, sensor readings,
or link metrics—to mislead controllers or higher-level logic. In
SDN, the consequences are especially severe given centralized
control. The Marionette attack [11] shows how high-priority
flow entries can redirect LLDP packets and fabricate a fake but
plausible topology. Similarly, the Link Latency Attack (LLA)
[12] manipulates latency estimates through ARP flooding and
LLDP relaying. Such examples highlight the fragility of data-
driven decision-making in programmable networks.

Within this broader class of falsification attacks, misreport-
ing attacks at the SDN data plane are particularly insidious:
compromised switches falsify traffic statistics to deceive the
controller. Our work builds on [8], which introduced a trivial
zero-reporting attack and a stealthier variant drawing fake
values from historical distributions. Both significantly skew
load balancing, with misreporting switches attracting over
200% more traffic while staying within a 2–10% deviation.
Further analysis in [13] shows such attacks can be tuned via
reconnaissance and achieve provable stealth under bounded
perturbations, bypassing threshold-based anomaly detectors.

Misreporting led deception also appears in other domains,
where diverse defenses have been proposed. SPHINX [14]
offers an FSM-based model that captures expected SDN
control plane behavior and detects deviations caused by unau-
thorized rule insertions or topology manipulations. Statistical
approaches include Kalman filters [15], z-score filtering [16],
and autoencoders for CPS anomaly detection [17]. More
advanced methods apply GANs [18], explainable ensembles
[19], and hybrid statistical-ML designs [20]. While promis-
ing, most assume adversarial data lies outside historical
distributions. Stealthy misreporting instead mimics legitimate
behavior, evading outlier-based detection.

In centrally controlled VR systems, the implications are pro-
nounced. VR requires ultra-low latency and high throughput to
sustain immersion, with motion-to-photon (MTP) latency—the
time between a user’s movement and corresponding visual
feedback—typically constrained below 20 ms [21] to avoid
dizziness and disorientation. To meet this, compute-intensive
tasks such as Visual-Inertial Odometry (VIO) or rendering
are increasingly offloaded to edge servers [22]. This creates
dependencies on SDN-based routing and switch telemetry,
where controller decisions determine task placement. Recent
work like XRgo [23] and RemoteVIO [22] show clear per-
formance benefits in power and stability. Yet none of these
systems consider adversarial SDN behavior: a misreporting

Fig. 1: VR pipeline offloading to remote edge servers using
SDN infrastructure

switch could bias selection toward a compromised server,
injecting subtle pose perturbations or spatial drift while still
meeting latency budgets—producing degradations invisible to
conventional QoS metrics. Although multipath and ML-driven
optimizations for VR/AR traffic have been explored [2], [3],
[4], the risks of stealthy misreporting in latency-sensitive
immersive applications remain underexplored.

III. SYSTEM AND THREAT MODEL

A. The application pipeline

We consider a VR system deployed over an SDN infrastruc-
ture, where compute-intensive components such as rendering
or pose estimation are offloaded from the client to remote
edge servers. The system runs in fixed-length workflows (e.g.,
15 seconds), each dynamically routed by the SDN controller
based on real-time network conditions. As shown in Fig. 1,
the VR client initiates workflows and exchanges data with
selected servers through a wireless access network. Edge
servers perform the offloaded tasks and return results via SDN-
managed switches. These OpenFlow switches forward packets
and report per-port statistics (e.g., byte counters) that guide
controller decisions. The controller, beyond standard functions,
polls switches periodically and assigns each new workflow to
the server behind the switch reporting the lowest load, aiming
to balance traffic and prevent congestion.

B. Misreporting attack model

While this architecture enables efficient offloading, it relies
on trusted switch statistics. An attacker who compromises a
server and its switch can exploit this trust to degrade VR
QoE. Attack vectors (e.g., malware, Trojans) are beyond our
scope. Once compromised, the attacker falsifies port-level
load statistics [8] to influence controller decisions, redirecting
workflows. Subtle pose manipulations then accumulate across
routing intervals, reducing visual coherence and overall VR
experience.

We adopt the stealthy misreporting model of [8] as a re-
producible adversarial mechanism to stress-test detection. The
SDN controller polls edge switches for port-level byte counts
and assigns workflows to the switch reporting the lowest load.
A compromised switch falsifies reports, with probability φ,
replacing its true load with a value from the bottom ρ-th
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Fig. 2: Reported and actual load values across 100 epochs during a misreporting interval

percentile of its historical loads—blending into natural traffic
variation. To attract a target fraction τ of workflows, the
attacker sets:

φ =
τ − 1

S

(1 − ρ)S−1 − 1
S

(1)

where S is the number of switches and ρ controls stealthi-
ness. The attack persists for a bounded epoch window ϵ, after
which misreporting stops.

Fig. 2 shows a 100-epoch window from our dataset with
τ = 0.6, ϵ = 1000, and ρ = 0.01. It compares actual
and reported loads at the compromised switch alongside
controller decisions. Misreporting occurs when reported load
falls below the true load, biasing selection. Red “×” markers
denote epochs where the compromised switch was chosen,
and black “△” markers indicate other switches. The results
show misreporting raises the compromised switch’s selection
probability while preserving stealth.

Our goal is to design a detection mechanism that identifies
malicious switches early in the workflow sequence, preventing
further compromise. Mitigation is beyond this paper’s scope,
though a possible response is provided in Section VI.

C. Quantitative Evaluation of QoE Degradation Under Mis-
reporting: A VR Case Study

To motivate detection, we quantify misreporting’s impact
on VR QoE. While it may seem counterintuitive that falsified
switch statistics alone degrade QoE, our experiments confirm
this. Repeated redirection of pose-estimation tasks to a com-
promised server—via stealthy misreporting—lets the attacker
inject controlled noise into pose values before returning them
to the client, similar to [24]. These perturbations disrupt
the motion-to-photon pipeline, reducing visual coherence and
introducing spatial inconsistencies that degrade immersion.

Unlike the Mininet-based setup in [8], our deployment uses
edge servers on the Internet-scale FABRIC testbed. To handle
higher control-plane latency, we adopt a 2-second polling
interval (vs. 1s) for reliable statistics without reducing attack
effectiveness. The switching fabric runs Open vSwitch on
FABRIC nodes, instrumented with a modified library sup-
porting normal and attack modes. In normal mode, switches
return true per-port byte counters via dump-ports; in attack
mode, each report follows a Bernoulli trial with frequency
φ, and falsified loads are sampled from the bottom ρ-th per-
centile of historical values to mimic plausible traffic. Attacker
parameters—τ (target share), ρ (stealth), ϵ (window), and S

(switch count)—are coded in, allowing φ to be computed
via Equation 1 and tuned manually. Redirected workflows
trigger ILLIXR server modifications that inject noise into pose
updates, degrading QoE of client-side VR. This setup forms
the adversarial baseline for detection. Impact is measured by
comparing estimated trajectories against ground truth using
standard error metrics [25]:

• Absolute Trajectory Error (ATE): Evaluates global
consistency of predicted poses. After aligning predictions
to ground truth via a rigid-body transform, ATE is the
RMSE of differences in corresponding poses:

ei = T̂
−1
i STi (2)

ATERMSE =

√√√√ 1

N

N∑
i=1

∥trans(ei)∥2 (3)

where Ti is the estimated pose, T̂i the ground truth, S
the optimal alignment using Horn’s method, and N the
number of poses. The translational component of the pose
error ei is extracted using trans(·).

• Relative Pose Error (RPE): Captures local motion
fidelity via RMSE of relative pose differences over fixed
time interval δ:

ri :=
(
T̂

−1
i T̂i+δ

)−1 (
T

−1
i Ti+δ

)
(4)

RPERMSE(δ) =

√√√√ 1

M

M∑
i=1

∥trans(ri)∥2 (5)

where M is the number of intervals and trans(·) extracts
translation.

To evaluate the impact of compromised pose estimation,
we simulate an adversary that intermittently alters edge server
pose outputs. Spoofing is applied at four levels: 0% (none),
25% (every fourth pose altered), 50% (alternate poses altered),
and 75% (three of four poses altered). These perturbations
reduce pose accuracy and rendering quality, producing artifacts
such as jitter, reduced immersion, and VR fatigue.

Fig. 3 shows rotational RPE. At 0%, errors stay flat,
indicating stable tracking. At 25%, periodic deviations emerge;
at 50%, alternating real and corrupted poses cause sharp
oscillations and perceptual jitter. At 75%, errors are smoother
but consistently high, reflecting orientation drift. Thus, mid-
frequency spoofing (50%) yields greater instability than occa-
sional (25%) or continuous (75%) corruption.
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Fig. 3: Smoothed (window = 100) RPE rotation error over
time for different levels of pose spoofing

(a) ATE RMSE and mean for
client-side trajectories.

(b) Log-scale RPE translation and
rotation errors.

Fig. 4: Evaluation metrics under edge perturbation. (a) Trajec-
tory accuracy (ATE). (b) Pose drift behavior (RPE).

Fig. 4a shows ATE increasing with spoofing, with 50%
yielding the largest trajectory error. Frequent toggling between
correct and corrupted poses accumulates misalignment, show-
ing that inconsistency—not just intensity—harms coherence.
Fig. 4b presents translational RPE (log scale): errors rise with
spoofing, with 50% and 75% reaching similar levels, while
rotational RPE peaks at 50%. Overall, mid-frequency spoofing
causes the greatest rotational disruption, and higher spoofing
worsens translational accuracy.

IV. DETECTION MODEL

To illustrate detection challenges, we show how stealthy
misreporting biases controller decisions while evading simple
threshold filters. The attacker substitutes true byte counts with
values from the lower tail of its history, which appear plausible
in isolation. As Fig. 2 shows, with τ = 0.60, ρ = 0.01, and
φ ≈ 0.48, misreporting can dominate most epochs yet remain
statistically believable. This underscores the need for models
that exploit temporal patterns and switch-specific baselines
rather than point-wise thresholds.

ML offers tools to capture such subtle behaviors across
domains. In healthcare, hybrid methods combining isolation
forests with supervised classifiers improved anomaly detec-
tion in electronic records [26]. In autonomous driving, LIFE
exploited sensor correlations to detect spoofing [27], while
smart grid defenses used autoencoder–GAN hybrids to classify
attacks [28]. IoT systems applied fog-based adaptive learning
for real-time detection [29].

Fig. 5: Pipeline of hybrid detection model

Motivated by these works, we design a hybrid ML frame-
work for misreporting detection in SDN. Since only reported
switch values are observable and Fig. 2 shows no per-point
distinction between real and fake reports, we extract temporal
features to amplify deviations. Features span four groups:
basic load statistics (raw load, deltas, rolling mean); distri-
butional indicators (percentiles, z-score, skewness, kurtosis);
temporal stability (recent standard deviation, autocorrelation,
Mean Absolute Deviation); and peer context (load ratios, mean
delta across peers, unique counts within a window).

Features are computed per switch over overlapping sliding
windows. A window is labeled FAKE if any timestep is
misreported, otherwise REAL, enabling detection of localized
anomalies. This representation preserves temporal continu-
ity and supports sequential models such as Transformers or
LSTMs. As shown in Fig. 5, our pipeline uses a Transformer
autoencoder trained on REAL windows to capture benign dy-
namics and output two unsupervised cues: reconstruction error
and Mahalanobis distance. In parallel, a statistical autoencoder
produces deviation scores against rolling statistics. These three
signals—reconstruction, Mahalanobis, and statistical—form
the fused anomaly feature triplet.

Scores are refined using lightweight classifiers—a one-layer
MLP and a calibrated LightGBM. LightGBM is calibrated
on the validation set with three fused features (reconstruc-
tion error, statistical deviation, Mahalanobis distance) via 5-
fold cross-validation and sigmoid scaling. This hybrid design
adapts to varied attack profiles and improves detection fidelity.
Tab. I highlights the limitation of relying only on the Trans-
former autoencoder: reconstruction error achieves high F1 and
accuracy for REAL samples, but F1FAKE falls from 0.71 at the
90th percentile to ¡0.5 at the 96th as thresholds tighten. This
decline shows stealthy misreporting evades detection under
reconstruction loss alone, motivating our hybrid approach that
augments latent-space (Mahalanobis) and statistical deviation
cues with supervised refinement.

TABLE I: Transformer autoencoder performance

Percentile Threshold F1REAL F1FAKE ACCREAL ACCFAKE
90 0.000049 0.9545 0.7125 0.9215 0.9215
92 0.000076 0.9466 0.6264 0.9065 0.9065
94 0.000109 0.9364 0.5064 0.8873 0.8873
96 0.000146 0.9260 0.3618 0.8674 0.8674
98 0.000197 0.9161 0.1916 0.8480 0.8480
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V. EVALUATION AND RESULTS

A. Implementation

Experiments are run on the FABRIC testbed with compute
nodes emulating SDN switches, edge servers, and a VR
client. The anomaly detection dataset is generated by running
ILLIXR in headless mode with Vulkan Swapchain disabled for
CLI compatibility. We deploy Floodlight’s STATISTICS-based
load balancer, polling per-port byte counts every 2s and routing
flows to the switch with the lowest delta. The pool comprises
four Open vSwitch instances, each linked to an edge server
performing pose estimation, similar to [22].

All components—controller, switches, edge servers, and
traffic generator—run on separate FABRIC nodes (Fig. 1).
A fifth node generates the ILLIXR-driven VR workload and
ICMP background traffic with exponential inter-arrival time.
Each epoch is labeled REAL or FAKE based on misreporting
configuration. The workload uses ILLIXR’s Offload VIO
client, offloading pose data every 15s. Edge servers (2-core
CPUs, 4 GB RAM, 100 GB disk, NVIDIA A30 GPUs) execute
the VIO pipeline; switches use similar nodes without GPUs.
The SDN controller (4-core CPU) runs Floodlight, coordinat-
ing flow decisions over FABRIC’s internal network.

B. Experimental Configuration

We collect about 48 hours of VR activity data on the
FABRIC testbed using ILLIXR. Each session begins with
normal load reporting, followed by a period where one switch
performs stealthy misreporting. Four sessions are recorded
with varying attack parameters ρ, τ , and φ, summarized in
Table II.

TABLE II: Attack parameter combinations

ρ τ φ

0.01 0.48 0.31
0.01 0.29 0.06
0.10 0.48 0.48
0.10 0.29 0.09

Each load-balancing action is followed by a 15s window
where the headset offloads pose estimation, so misreporting
can influence server selection and QoE. The dataset is shuffled
and split into training (60%), validation (20%), and testing
(20%), each with 1000 epochs. Misreporting is modeled via
Bernoulli sampling to match φ. Models are trained offline on
a 24-core CPU, 32 GB RAM, and NVIDIA RTX 2000 Ada
GPU, but are lightweight enough for real-time deployment on
the SDN controller.

C. Results

1) Classifier Effectiveness: The MLP and calibrated Light-
GBM achieve high accuracy (0.9659, 0.9661) and AUC
(0.9845, 0.9873) as shown in Tab. III. FAKE detec-
tion is robust, with precision [0.9178, 0.9198] and recall
[0.8779, 0.8768], while REAL precision and recall both exceed
0.97. These results show that shallow classifiers, combined
with unsupervised features (reconstruction error, Mahalanobis
distance, statistical deviation), provide strong separability. The

(a) t-SNE: partial separation in
latent space.

(b) PCA: broader FAKE variance
on PC1.

Fig. 6: Low-dimensional projections of latent and fused
anomaly features. Purple = REAL, Orange = FAKE

hybrid design enables accurate, low-latency misreporting de-
tection for real-time SDN use.

TABLE III: Test-set performance of MLP and LightGBM

Metric MLP LightGBM

REAL Precision 0.9753 0.9750
REAL Recall 0.9839 0.9843
REAL F1-score 0.9796 0.9796
FAKE Precision 0.9178 0.9198
FAKE Recall 0.8779 0.8768
FAKE F1-score 0.8974 0.8978
Accuracy 0.9659 0.9661
ROC AUC 0.9845 0.9873

2) Latent Embedding Analysis: t-SNE projections of la-
tent features show FAKE samples clustering more tightly
and REAL more dispersed (Fig. 6a), indicating that the
autoencoder captures some class-relevant structure. However,
substantial overlap shows latent embeddings alone lack clear
separation. PCA on fused features reveals PC1 explains most
variance, with FAKE spanning a wider range than REAL
(Fig. 6b), highlighting greater variability in FAKE embeddings
and their value for detection.

3) Model Explainability via SHAP: We use SHAP (SHap-
ley Additive exPlanations) to interpret contributions of the
fused anomaly features. Fig. 7 shows the global SHAP sum-
mary ranking features by impact on FAKE. Reconstruction
error (recon) dominates, with high values strongly pushing
predictions toward FAKE. Mahalanobis distance (mahal) pro-
vides moderate, consistent support, while statistical deviation
(stat) has weaker, symmetric influence—high values often
favor REAL, low values give mild FAKE support. Overall,
recon leads, mahal supports, and stat plays a minor role.

Instance-level attributions illustrate this further. In the true
positive case (Fig. 8, left), strong recon (+8.54) with mahal
(+0.45) outweighs weak negative stat (−0.11), pushing the
logit above the FAKE threshold. In the false negative case
(right), all features are positive—recon (+2.21), mahal
(+1.34), stat (+0.68)—but the combined signal is insufficient
to cross the boundary. This reflects a failure mode where
anomaly cues exist but lack strength for detection.
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Fig. 7: Global SHAP summary plot showing top contributing
features towards classification.

Fig. 8: SHAP waterfall plots from the hybrid model explaining
a true positive and false negative prediction. Purple = REAL
Orange = FAKE. Dashed = E[f(x)], Solid = f(x).

4) Comparison with Unsupervised Methods: For compar-
ison with a fully unsupervised variant, we replace super-
vised classifiers with Isolation Forest, One-Class SVM, GMM
(Combined and Latent), LOF, and KMeans (Latent). These
models use either fused anomaly scores (reconstruction error,
statistical deviation, Mahalanobis distance) or Transformer
latent features, ensuring fairness against the hybrid baseline.

Tab. IV summarizes results. Isolation Forest performs best
among unsupervised models with F1FAKE = 0.6984 and
AUC = 0.9339, capturing high-dimensional deviations but
with many false positives from uncalibrated thresholds. One-
Class SVM maintains precision but recalls only 32.26% of
attacks. GMM (Combined) achieves recall 0.7776 but low pre-
cision (AUC = 0.6567), while LOF and KMeans show very
low F1. Overall, Isolation Forest detects subtle anomalies but
remains unreliable, whereas our Transformer-calibrated hybrid
reaches F1FAKE > 0.80, combining anomaly sensitivity with
supervised calibration, interpretability, and real-time viability
for SDN defense.

TABLE IV: Performance comparison between the proposed
hybrid approach and unsupervised anomaly detectors

Model Accuracy Precision FAKE Recall FAKE F1 FAKE ROC AUC
GMM (Combined) 0.5159 0.2283 0.7776 0.3531 0.6567
Isolation Forest 0.9058 0.7651 0.6425 0.6984 0.9399
One-Class SVM 0.8400 0.5495 0.3226 0.4066 0.6778
LOF 0.8249 0.0344 0.0011 0.0022 0.4261
KMeans Latent 0.7198 0.1323 0.1169 0.1241 0.4802
GMM Latent 0.4992 0.1691 0.4977 0.2524 0.4927

5) Deployment Cost and Inference Latency: Tab. V shows
that the MLP, statistical autoencoder, Mahalanobis scorer, and
LightGBM all meet sub-millisecond budgets. The only excep-
tion is the Transformer autoencoder, which records 1.745,s on
a resource-constrained FABRIC controller. In realistic deploy-

ments, modern edge controllers (e.g., Edgecore AS7326-56X
with Intel Xeon D-1518 CPU and 16GB DDR4 RAM) are far
more capable, so this latency would be greatly reduced.

TABLE V: Per-sample inference latency across modules

Model Time (s)
MLP 0.0010
Statistical Autoencoder 0.0050
Mahalanobis 0.0147
Calibrated LightGBM 0.0311
Transformer Autoencoder 1.7451

6) Fusion Component Ablation Study: We evaluate the
contribution of reconstruction error, statistical deviation, and
Mahalanobis distance, reported in Tab. VI using an ablation
study. Using reconstruction alone gives the strongest signal
(F1FAKE = 0.880, AUC = 0.980), while Mahalanobis offers
moderate performance (F1FAKE ≈ 0.73, AUC > 0.94).
Statistical deviation collapses (F1FAKE = 0, AUC ≈ 0.658).
Fusion of all three boosts LightGBM to F1FAKE = 0.898,
AUC = 0.987, with MLP trailing by < 0.02. Across branches,
LightGBM slightly outperforms MLP, especially under fusion.

TABLE VI: Ablation study
Model Precision FAKE Recall FAKE F1 FAKE AUC
MLP (Recon) 0.8936 0.8666 0.8799 0.9796
LightGBM (Recon) 0.8988 0.8563 0.8771 0.9786
MLP (Stat) 0.0000 0.0000 0.0000 0.6582
LightGBM (Stat) 0.0000 0.0000 0.0000 0.6568
MLP (Mahalanobis) 0.7274 0.7394 0.7334 0.9503
LightGBM (Mahalanobis) 0.7381 0.7166 0.7272 0.9488
MLP (Fusion) 0.9177 0.8779 0.8974 0.9845
LightGBM (Fusion) 0.9198 0.8768 0.8978 0.9873

7) Cross-Dataset Generalization Benchmark: Tab. VII
benchmarks cross-dataset generalization. With longer ses-
sion intervals, performance drops sharply: in interval_25,
FAKE F1 drops to 0.21, REAL F1 to 0.17, and AUC to
0.45. interval_20 recovers REAL F1 (0.79) but leaves
FAKE F1 low (0.24) due to class imbalance and attack stealth.
In contrast, epoch_500 remains strong (FAKE F1 = 0.65,
REAL F1 = 0.96, AUC = 0.90), showing robustness to attack
window variation but sensitivity to session timing.

TABLE VII: Cross-dataset benchmarking metrics

Dataset FAKE F1 REAL F1 AUC Accuracy
Dataset interval 25 0.206571 0.174460 0.451225 0.190834
Dataset interval 20 0.243271 0.787129 0.562899 0.667727
Dataset epoch 500 0.646173 0.957318 0.896945 0.923825

8) Sliding Window Sensitivity - Window vs. Stride: Finally,
Tab. VIII reports sensitivity to window and stride. Larger
windows (15–20) with moderate strides (5–10) give the best
results, with FAKE F1 > 0.91 and REAL F1 > 0.98 under
settings like (20, 10). LightGBM consistently edges out MLP
in AUC and accuracy. Stride = 15 causes slight degrada-
tion from under-sampling, confirming that over-aggregation
reduces anomaly sensitivity. Overall, performance depends
strongly on temporal context length and overlap. All evaluation
related codes and data are available through Github [30].
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TABLE VIII: Sliding window sensitivity: MLP vs LGB (val-
ues reported as MLP/LGB).

Window Stride FAKE F1 REAL F1 AUC
5 5 0.774 / 0.751 0.963 / 0.962 0.960 / 0.961

10 5 0.887 / 0.884 0.978 / 0.977 0.978 / 0.978
10 10 0.833 / 0.830 0.965 / 0.966 0.971 / 0.971
15 5 0.892 / 0.899 0.978 / 0.979 0.981 / 0.981
15 10 0.867 / 0.875 0.972 / 0.974 0.978 / 0.979
15 15 0.830 / 0.847 0.965 / 0.969 0.963 / 0.963
20 10 0.911 / 0.916 0.981 / 0.982 0.986 / 0.986
20 15 0.885 / 0.883 0.975 / 0.975 0.982 / 0.982

VI. CONCLUSIONS AND FUTURE WORK

This paper examined stealthy misreporting attacks in SDN-
hosted VR systems. Using the FABRIC testbed and ILLIXR
framework, we built a realistic SDN-VR pipeline, reproduced
misreporting, and demonstrated its impact on pose tracking
and scene stability. To counter this, we proposed a hybrid
detection framework that combines a Transformer-based au-
toencoder with statistical and latent-space features, fused into
a lightweight supervised classifier, improving F1 by up to
20% over baselines. Future work will explore coordinated
multi-switch attacks and application-layer feedback to further
strengthen detection in immersive SDN environments.
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