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Abstract—Extending multivariate time series forecasting to
resource-constrained edge devices is essential for enabling intel-
ligent and sustainable IoT services. A common scenario involves
vertically partitioned data across devices, where each device
must forecast its own variables while benefiting from others’
information. This paper studies a resource-efficient solution for
this scenario based on vertical federated learning (VFL). Prior
VFL frameworks are designed for situations where only one
party holds the labels and would struggle to meet the demand of
the targeted scenario, as storage resources usage would increase
dramatically with the number of devices. Going beyond VFL, we
design multivariate vertical federated learning (MVFL) as a novel
federated learning framework, where we separate communication
features and local features in an embedded feature space. This
design enables MVFL to utilize storage and communication
resources more efficiently by eliminating redundant models.
On four real-world benchmarks, MVFL outperforms the VFL
approach in both efficiency and accuracy, demonstrating its
practical value for distributed IoT systems.

Index Terms—vertical federated learning, multivariate time
series forecasting, resource-limited devices

I. INTRODUCTION

Sustainable and intelligent service management in IoT sys-
tems increasingly relies on efficient edge intelligence. Among
these, time series forecasting on end devices plays a central
role in enabling predictive services such as energy schedul-
ing, traffic optimization, weather alerts, and disease outbreak
warnings. As emerging technologies such as digital twins [1],
multimodal modeling [2], and ubiquitous IoT connectivity [3]
continue to evolve, the demand for real-time, distributed, and
privacy-preserving forecasting grows rapidly.

In these scenarios, accurate predictions require the aggre-
gation of diverse and often non-overlapping signals held by
distributed, heterogeneous devices [4]. At the same time,
protecting local data privacy remains a foundational constraint
[5]. Federated learning (FL), particularly vertical federated
learning (VFL), has emerged as a promising solution for en-

abling collaborative intelligence across devices with vertically
partitioned features [6].

However, practical deployments expose a critical sustain-
ability gap: VFL imposes significant computational, stor-
age, and communication burdens on devices that are inher-
ently resource-constrained [7]. For IoT-based service infras-
tructures that prioritize long-term deployment, energy effi-
ciency, and minimal maintenance, such overhead is unsustain-
able—especially when scaling up. Furthermore, conventional
VFL often fails to support autonomous local service provision,
where each device must forecast based on its own data stream,
while still benefiting from relevant knowledge across the
network.

To address this challenge from a sustainability-driven ser-
vice management perspective, we propose a simple but pow-
erful idea: enable each device to identify and share only
the useful information it holds—namely, the components of
its knowledge that are beneficial to others. For example, in
an urban climate network, a rise in local temperature may
simultaneously inform humidity or wind patterns in the same
area. Instead of maintaining one model per communication
partner (as in classical VFL), we hypothesize that a unified
local model with structured internal representation can achieve
the same collaborative effect at a fraction of the cost.

Based on this insight, we introduce Multivariate Vertical
Federated Learning (MVFL), a new framework tailored for
sustainable, distributed time series forecasting. MVFL decom-
poses model representation into local features (for on-device
prediction) and communication features (for shared learning
across devices). Each device maintains only one compact
model, significantly reducing storage and training overhead.
Unlike prior VFL methods that rely on predefined commu-
nication roles (e.g., active/passive parties), MVFL allows for
symmetrical, privacy-preserving exchange of internal features,
learned dynamically throughout training.

Extensive experiments on four real-world datasets show that
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Fig. 1. Illustration of MVFL with a simple example of three devices separately holding data of temperature, wind, and h2o density. They exchange
communication features in order to make predictions of own data.

MVFL delivers strong predictive performance while achieving
major improvements in resource efficiency: compared to con-
ventional VFL, MVFL could drastically decrease the storage
and communication usages while maintaining the accuracy.
These results demonstrate MVFL’s potential as a sustainable,
scalable, and service-friendly learning framework for next-
generation IoT forecasting systems.
• We identify the challenges that classical FL approaches

face in a new research scenario of multivariate time
series forecasting, where the variables of the dataset are
vertically distributed across different devices, and each
device must predict its own future data.

• We propose MVFL with a compact structure and the
separation of communication features and local features.
We adopt an approach a posteriori rather than a priori,
meaning the features evolve throughout the training pro-
cess rather than being predefined.

• MVFL achieves up to 87.9% of VFL’s loss while using
only 83% of its storage and 57% of its communication.
In more constrained settings, MVFL maintains accuracy
with just 25% of the storage required by VFL.

II. RELATED WORK

A. Federated learning & vertical federated learning

Federated Learning (FL) has emerged as a powerful
paradigm to enable decentralized machine learning, where
devices collaboratively train a model without sharing raw data,
thereby preserving privacy [8]. Early foundational works [9]
introduced a framework that reduces communication costs

by averaging model updates across devices. Since then, FL
has been extensively applied to domains where data privacy
is crucial [10][11], including healthcare, financial services,
and IoT [12][13]. Notably, a hierarchical organization for
split federated learning to improve efficiency is proposed in
[14]. However, traditional FL techniques primarily assume
horizontally partitioned data, where different devices hold
different samples of the same features.

In contrast, VFL is designed for scenarios where differ-
ent parties hold different features for the same set of data
instances [15][16]. VFL has proved to be effective in domains
like finance and healthcare, where features are naturally dis-
tributed across different organizations [17][18]. Yang et al. [6]
presented a comprehensive overview of VFL methodologies
and challenges, highlighting issues such as communication
efficiency, model design, and privacy concerns when multiple
parties collaborate under a vertically partitioned data frame-
work.

Nevertheless, current VFL frameworks are primarily de-
signed for scenarios where only one party holds the labels
[19][20], incompetent when dealing with the targeted scenario.
From the best of our knowledge, there is one single work [21]
that deals with a similar scenario with the targeted scenario,
where labels are horizontally partitioned and the parties only
hold partial labels. However, in the targeted scenario, both
labels and data are vertically distributed. Besides, in the above
mentioned work, there is still the distinction of active parties,
passive parties and a collaborator, since the framework isn’t
specially designed for time series forecasting tasks. As a result,

2025 21st International Conference on Network and Service Management (CNSM)



none of the parties are equipped with sufficient labels to
perform a complete local training, which is not the case in
the targeted scenario, as local future data are natural labels
for time series forecasting tasks.

B. Multivariate time series forecasting

Multivariate time series forecasting is becoming increas-
ingly important in IoT contexts. Recent approaches include
transformer-based models[22] and other approaches [23][24]
that further integrate decomposition methods. However, many
of these devices are resource-limited, with constraints on pro-
cessing power, memory, and energy [7]. Federated Learning
(FL) has been applied to IoT systems to mitigate the challenges
of decentralized data processing. Specially, Chen et al.[25]
introduces a prompt learning mechanism to accommodate the
communication and computational constraints of low-resource
sensors, Seo et al. [26] combines federated learning with
SDN to enhance resource efficiency in network management.
However, most research has not adequately addressed how
to handle multivariate forecasting with vertically distributed
variates: For example, Chen et al. [25] only consider the
scenario where the time series data are horizontally distributed
(any client would hold a complete set of variates and would
not need data from other clients to perform local forecasting)
and could not serve as comparable baselines for the targeted
scenario.

Efforts have been made to reduce FL’s resource footprint
[27][28], but these methods do not address the redundancy
issues inherent in VFL (see Section 3) for large-scale multi-
variate time series forecasting with vertically partitioned data,
where each device needs to build separate models for any
other variate. The lack of research addressing these specific
challenges represents a critical gap in the literature.

To the best of our knowledge, our study addresses
this gap by proposing a novel framework, Multivariate
Vertical Federated Learning (MVFL), which is tailored
for the targeted scenario. Unlike previous methods, MVFL
improves both storage efficiency and forecasting accuracy by
eliminating redundant models and efficiently utilizing device
resources.

III. LIMITATIONS OF VFL

In a typical VFL setting with n devices [29], each device
holds its local private data Xi, where i ∈ {1, 2, . . . , n}. Only
one device (we denote it as device k ∈ {1, 2, . . . , n}) contains
the labels Yk and is referred to as the active party. The active
party is equipped with a model Mk with parameters θk. The
other devices are called passive parties. For these passive
parties, each device i also maintains a local model Mi with
parameters θi. During the forward propagation, the device i
would compute the communicated features Ci = Mi(Xi) and
send them to the active party. The active party would aggregate
the communicated features received from passive parties with
its own local data (a common practice is concatenation) and
compute Ŷk = Mk(aggregation(Xi)). Define the loss as
ℓ(Ŷk, Yk), then during the back propagation, the active party

would compute gk = ∂ℓ
∂θk

in order to update its own model. It
would also compute gi,c =

∂ℓ
∂Ci

and send them back separately
to the passive parties. The passive parties would then compute
gi = gi,c · ∂Ci

∂θi
in order to update the local models.

However, in our targeted scenario, all n devices need to
perform forecasting for the local variates using useful informa-
tion extracted from other devices. Specifically, for any device
i, apart from a model intended to perform local forecasting,
which we refer to as the main model, it should also maintain
(n−1) models to extract information from its own raw data in
order to provide useful information for all other devices, which
we refer to as exchange models. Consequently, as the number
of devices increases, the total number of models that need to
be maintained also grows, leading to significant storage and
computational overhead. This reality motivates us to propose a
novel federated learning framework tailored for this scenario.

IV. MULTIVARIATE VERTICAL FEDERATED LEARNING

With the above discussions, we could now renovate the
typical VFL framework for the targeted scenario. We name the
proposed method the multivariate vertical federated learning
framework (MVFL).

Concretely, suppose that there is a multivariate time series
dataset D ∈ Rl×n, where l denotes the size of any variate
in this dataset and n denotes the number of variates in this
dataset, then the targeted scenario is where the variates are
distributed exactly on n devices, and any local dataset could
be denoted as Di ∈ Rl, i ∈ {1, 2, . . . , n}. The objective of
a device is to predict the most probable length-O series in
the future given the past length-I series of its own variate
combined with information sent from other devices. We note
the input XiI ⊆ Di and the output XiO ⊆ Di.

A simple illustrative example of MVFL for three devices is
shown in Figure 1.

A. Forward propagation

In MVFL, a device only needs to maintain one model: its
own forecasting model. What are sent to other devices are
simply the communication features on one of the hidden layers
of its own model.

Concretely, denote the model to maintain for device i as Mi.
Mi could be thought of as consisted of two parts: Mi,1 and
Mi,2. We note Ci and Li separately for communication fea-
tures and local features.The details of the forward propagation
could be described as below:

Ci, Li = Mi,1(XiI) (1)

Ci,other = concatenation(Cj , j from 1 to n, j ̸= i) (2)

X̂iO = Mi,2(Ci, Li, Ci,other) (3)

Specifically, the features Ci,other concatenate the communi-
cation features from all other devices. This is feasible because
during the forward propagation, communication features from
all the devices would be sent to a trusted server, and the
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server would do the concatenation and send those concatenated
features (Concretely, Ci,other for device i) separately to the
devices.

B. Back propagation

The back propagation of MVFL is a modified version of
the classical VFL back propagation procedure. Concretely, for
a client i, we denote θi,1 as the model parameters for Mi,1

and θi,2 the model parameters for Mi,2. We note also the loss
of the overall model as ℓi(X̂iO, XiO), then during the back
propagation, the following gradients are calculated by client
i:

g1i =
∂ℓi
∂θi,1

, g2i =
∂ℓi
∂θi,2

, goi =
∂ℓi

∂Ci,other
(4)

While the gradients g1i and g2i remain local, the client
would send goi to the server. We notice that goi =
concatenation(gi,j , j from 1 to n, j ̸= i) with gi,j denoting
the gradients from client i for communication features of client
j. After having collected the gradients from all clients, the
server would calculate:

gci =
∑
j ̸=i

gj,i (5)

and send this gradient to client i. Consequently, client i could
calculate another gradient:

g3i = gci ·
∂Ci

∂θi,1
=

∑
j ̸=i

∂ℓj
∂θi,1

(6)

Finally, the client i could update its gradients for θi,1 using
(g1i + g3i ) and the gradients for θi,2 using g2i .

C. Separation of communication and local features

A key challenge in implementing MVFL is how to distin-
guish between communication features and local features. Our
solution is more an approach a posteriori than a priori, which
ensures that we can distinguish between different features
without any prior knowledge of the dataset itself, thus greatly
improving the applicability of the method.

Concretely, at the beginning of the training process, the only
distinction between communication features and local features
lies in their positions within the embedded feature space of the
local model. However, for any round of training, for a device
i, the gradients for the communication features Ci could be
expressed as ∑

j∈ {1, 2, . . . , n}

∂ℓj
∂Cj

(7)

while the gradients for the local features Li could be expressed
as ∂ℓi

∂Li
. Consequently, as the training process progresses, the

communication features and local features will gradually di-
verge and converge into their respective identities as suggested
by their names.

D. Communication resources usage

To compare the communication resources usage of VFL and
MVFL, we could fix the size of communication features of any
client of MVFL as e. Meanwhile, for VFL, we fix the size of
the exchanged features of any client to any other client also
as e.

In MVFL framework, for every round of training, for a
client i, what are communicated with the server include:
• What are sent to the server: the communication features

Ci obtained from local model of size e and the gradients
goi for the communication features of other clients of size
e · (n− 1).

• What are received from the server: The communication
features from all other clients Ci,other of size e · (n− 1)
and the gradients for own communication features gci of
size e.

The overall communication resource usage of MVFL is thus
of size 2n · e.

In VFL framework, for every round of training, for a client
i, what are communicated with the server include:
• What are sent to the server: the communicated features

Ci obtained from local model of size e · (n − 1) and
the gradients goi for the communicated features of other
clients of size e · (n− 1).

• What are received from the server: The communicated
features from all other clients Ci,other of size e · (n− 1)
and the gradients for own communicated features gci of
size e · (n− 1).

The overall communication resource usage of VFL is thus of
size (4n− 4) · e.

We remark that under the same e, the communication
resources usage of MVFL is far below that of VFL. Concretely,
with the increase of the number of devices, the ratio of
communication resource usage of MVFL over VFL would tend
to 50%.

V. EXPERIMENTS

A. Datasets

We evaluate the proposed MVFL by comparing it to the
VFL approach on four real-world benchmarks, covering the
mainstream time series applications of energy, weather and
economics.

The datasets that we use are ETTm, ETTh, weather and
exchange. All are multivariate datasets. ETTm and ETTh each
has 7 variates. The weather dataset has 21 variates, the
exchange dataset has 8 variates. All data are normalized using
a standard scaler.

Here is a brief description [23] of the datasets used: (1)
ETT [22] dataset contains the data collected from electricity
transformers, including load and oil temperature between July
2016 and July 2018. For ETTh, the data are recorded every
1 hour. For ETTm, the data are recorded every 15 minutes.
(2) weather(https://www.bgc-jena.mpg.de/wetter/) is recorded
every 10 minutes for 2023 whole year, which contains 21
meteorological indicators, such as air temperature, humidity,
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TABLE I
COMPARISON OF MVFL AND VFL UNDER DIFFERENT INPUT SIZES FOR THE LOSS(MSE) AND THE COMMUNICATION(SIZE OF COMMUNICATED

INFORMATION PER ROUND PER CLIENT)

Datasets ETTm ETTh weather exchange
Input size 96 24 96 24 96 24 96 24

MVFL1 Loss(MSE) 1.21 1.72 2.14 2.39 4.10 3.84 0.23 0.20
Communication(bytes) 168 168 168 168 504 504 192 192

VFL Loss(MSE) 1.31 1.74 2.28 2.51 4.29 3.87 0.36 0.31
Communication(bytes) 288 288 288 288 960 960 336 336

MVFL2 Loss(MSE) 1.28 1.79 2.33 2.52 4.02 3.90 0.29 0.27
Communication(bytes) 168 168 168 168 504 504 192 192

Fig. 2. Comparison of MVFL and VFL under different input sizes for the storage (sum of model sizes) resources usage per client.

etc. (3) exchange [30] records the daily exchange rates of eight
different countries ranging from 1990 to 2016.

B. Implementation details

Our models are trained with the L2 loss (l(a, b) = (a −
b)2), using the ADAM optimizer with an initial learning rate
of 0.001. Batch size is set to 32. The training process has
its learning rate decayed if there is a stagnation of loss. All
experiments are implemented in PyTorch and conducted on a
single NVIDIA GPUs. We use mean squared error (MSE) as
the core metric to compare performances.

Both the MVFL model and the VFL main model contain
3 hidden layers. For MVFL, the 2nd hidden layer serves
as the embedded feature space to obtain the communication
features. To maximize control over variables and ensure best
performances, for VFL, the exchange models all have 1
hidden layer, and the exchanged features obtained from other
devices are concatenated with own past data. The storage
resources usage are in KB and are obtained by saving all the
models locally and adding the sizes of the models saved. The
communication resources usage is in bytes and is calculated
as shown in Section 4.D.

C. Main results

To compare performances under long and short horizons,
we fix the output length and evaluate models with two input
lengths: 96, 24. We set the communication features size to

6 and implement the VFL comparison experiments with the
same exchanged features sizes.

Note that MVFL could greatly reduce storage and com-
munication resources usage compared to VFL. Consequently,
we focus on three indexes for the experiments: loss, com-
munication resources usage and storage resources usage. The
first comparison experiments, denoted as MVFL1, control the
same storage resources usage, where the size of MVFL models
is extended in order to approach the storage resources usage
of VFL. The second set of comparison experiments, denoted
as case MVFL2, controls the same main model size, where
MVFL models are not extended and have the same size of the
VFL main models. The results are as shown in Table I.

We remark that MVFL achieves consistent advantageous
performance in all benchmarks and for both input size settings.
Overall, MVFL yields a loss that is 87.9% of that of VFL
with a 83% storage resources usage and a 57% communication
resources usage. Or in more extreme situations, MVFL could
maintain the loss to 96% of that of VFL with only 25% storage
resources usage and 57% communication resources usage.

D. Storage resources usage analysis

The benefits of MVFL over VFL are firstly related to the
number of devices involved in the process. In a general case,
a client using VFL would require an extra model for each
of the other clients, while in the MVFL case only an extra
communication features buffer is needed. Therefore, the more
devices there are, the more storage resources that MVFL saves.
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TABLE II
LOSS OF MVFL AND VFL OVER DIFFERENT EXCHANGE SIZES UNDER THE INPUT-96 SETTING

Datasets ETTm ETTh weather exchange
exchange size 3 6 9 3 6 9 3 6 9 3 6 9

MVFL 1.22 1.21 1.24 2.14 2.14 2.15 4.03 4.10 4.02 0.20 0.23 0.25
VFL 1.29 1.31 1.30 2.27 2.28 2.29 4.23 4.29 4.19 0.30 0.36 0.35

TABLE III
LOSS OF CMVFL, SMVFL AND MVFL OVER DIFFERENT EXCHANGE SIZES UNDER THE INPUT-24 SETTING

Datasets ETTm ETTh weather exchange
exchange size 3 6 9 3 6 9 3 6 9 3 6 9

CMVFL 1.88 1.87 1.85 2.60 2.63 2.62 4.15 4.13 4.13 0.21 0.23 0.25
SMVFL 1.87 1.82 1.77 2.56 2.51 2.51 3.95 3.93 3.88 0.26 0.25 0.31
MVFL 1.75 1.72 1.70 2.41 2.39 2.39 3.83 3.84 3.85 0.19 0.20 0.24

In addition, the exchange models of VFL take the same
input size of the main local model. This means that the
exchange model size m increases with the input size. As a
result, MVFL is more advantageous when the input size is
large. This could be verified by the experiment results: the
storage results could be saved more when input size is 96
than when input size is 24 (case MVFL2). In Figure 2, we
provide a more illustrative figure to show the advantage of
MVFL in terms of storage usages.

E. Ablation studies

In order to study the impact of different communication
feature sizes over the performances of MVFL and VFL, we
fix the input size and set communication features sizes to 3, 6,
9. Same storage usage is set for MVFL and VFL. The results
are shown in the Tables II. We find no clear patterns indicating
whether the performance of MVFL relative to VFL improves
or deteriorates as the exchange size increases.

We have conducted another set of ablation studies with
a more compacted version of MVFL, which we refer to as
compact MVFL (CMVFL). In CMVFL, the communication
features from different devices are not concatenated, but rather
averaged. As a result, the model size of CMVFL would always
be constant, no matter the exchange size or the total devices
number. Comparison results between MVFL and CMVFL
under the same model settings are as shown in Table III.
The results show that MVFL is advantageous over CMVFL in
all cases, indicating that merging the communication features
from all devices does not perform well.

The last set of ablation studies discusses another version
of MVFL, which we refer to as simple MVFL (SMVFL). In
SMVFL, the communication features are sent to the server, but
devices wouldn’t send the gradients for other communication
features to the server, nor would they receive the feedback
gradients of their own communication features. Consequently,
the only difference between communication features and local
features would be their relative position in the embedded
feature space. The comparison results of SMVFL and VFL
under the same model settings are as shown in Table III.

The results show that MVFL is advantageous over SMVFL
in all cases. This further proves that the MVFL framework
is valid and the approach a posteriori to separate communi-
cation features and local features could indeed improve the
performance of the framework.

VI. CONCLUSIONS

In this paper, we proposed Multivariate Vertical Federated
Learning (MVFL), a novel framework tailored for resource-
efficient multivariate time series forecasting on constrained
IoT devices. MVFL introduces a unified model architecture
that separates local features for private inference and com-
munication features for efficient inter-device collaboration,
significantly reducing per-device storage and communication
costs while maintaining or improving the prediction accuracy.
Future work may further optimize its performance under
diverse conditions.
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