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CESNET

Prague, Czech Republic
ORCID: 0009-0004-8670-7396

Martin Žádnı́k
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Abstract—Log data are valuable for monitoring system health
and security, but inconsistent preprocessing across studies makes
it hard to compare anomaly detection methods. We present
a unified framework that standardizes preprocessing through
template extraction, sequence grouping, and feature encoding,
enabling fair comparisons. The detectors are evaluated on three
benchmarks (HDFS, BGL, Thunderbird) using the Drain parser,
multiple representation modules, and both classical and modern
models with tuned hyperparameters. Our results show that
transformer-based methods perform well on randomized data
but degrade under sequential evaluation, while classical models
are more robust. We also show that minor preprocessing choices
(e.g., template merging or sequence length) can shift F1 scores by
over 10%. We release our framework as an open-source testbench
for reproducible research.

I. INTRODUCTION

Detecting anomalies in system logs is vital for the reliability,
availability, and security of modern infrastructure, as logs often
provide the first and sometimes only evidence of failures and
serve as the main forensic trace in post-incident reviews. Log-
based anomaly detection enables early identification of latent
issues, such as rising error rates or resource contention, before
they cause outages. Treating logs as proactive sensor data
accelerates root cause analysis, exposes security risks (e.g.,
bursts of authentication failures or irregular access patterns),
and improves cost management, preserving user experience by
addressing minor anomalies before they escalate.

Identifying anomalous behavior in log data is fundamen-
tally challenging. Log formats are heterogeneous, often semi-
structured or unstructured, with content varying across sys-
tems. Preprocessing steps such as parsing logs into templates
or grouping sequences are nontrivial and differ across studies.
Anomaly definitions also vary by task, from intrusion detection
to system failure prediction, further complicating design and
evaluation of methods. Evaluations often rely on unpublished
pipelines [1]–[6], making direct comparisons difficult. With
few alternatives, many authors instead compare results directly
to prior papers despite their differences [7], [8].

Many benchmarking efforts evaluate individual methods,
but not all authors publish code for replication. As a result,
researchers often rely on reimplementations or reconstruct
models from descriptions. For example, most works reimple-
mented DeepLog [6] due to the lack of an official release.
Studies also use different template extraction rules or sequence

grouping strategies, which can obscure a method’s true perfor-
mance. More reproducible and comparable evaluations require
acknowledging and standardizing these practical aspects.

In this work, we introduce a unified, extensible evaluation
framework for log-anomaly detection1. The pipeline covers
the full lifecycle: parsing logs with the Drain parser [9],
structuring sequences with consistent grouping strategies, ex-
tracting features via count-based and semantic representations,
and evaluating detectors from classical statistical models to
modern deep learning. All components are modular, enabling
easy swapping of detectors, representations, and datasets while
ensuring consistent preprocessing, tuning, and metrics.

We use the framework to study three research questions:

• RQ1: How do popular log-anomaly methods compare in
precision, recall, and F1 under a unified protocol?

• RQ2: How do preprocessing choices, such as dataset
filtering or sequence grouping, affect performance?

• RQ3: How does training on shuffled logs compare to
training on temporally continuous logs?

To answer these, we evaluate nine methods on three datasets
(HDFS, BGL, Thunderbird), covering diverse systems, log
structures, and granularities. All experiments use identical
conditions with controlled seeds, Optuna-tuned [10] hyperpa-
rameters, and standardized metrics.

We summarize our contributions as follows:

• Propose a modular, end-to-end evaluation pipeline that
unifies parsing, sequence grouping, representation, model
integration, and evaluation into one open-source frame-
work (section III).

• Benchmark nine methods on three standard datasets
(section IV), showing transformer models perform best
under randomized splits but degrade under sequential
evaluation, and that preprocessing choices can shift F1

by over 10%.
• Analyze data-size sensitivity (section IV-B) by evaluating

methods at 10% and 1% training ratios under shuffled and
sequential splits, revealing the impact of limited data and
temporal continuity.

1https://github.com/xsedla1o/LogADComp
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II. RELATED WORK

Most automated log-anomaly detection methods rely on
extracting log templates during parsing. Approaches include
clustering-based parsers such as SLCT [11] and IPLoM [12],
subsequence-based parsers like Spell [13], tree heuristics such
as Drain [9], and neural parsers including NuLog [14] and
SwissLog [15]. Clustering and subsequence parsers can over-
segment templates when parameters have few unique val-
ues, while tree and neural methods mitigate this with rules
or learned representations. Still, even tree-based and neural
parsers may misclassify semantically important tokens as
dynamic parameters [9], [16].

After parsing, log templates are converted into compact
representations. Classical event-count vectors (ECVs) record
template frequencies within a sequence, offering interpretabil-
ity but discarding order and semantics [17]. Word-embedding
representations (e.g., Word2Vec, FastText) capture semantic
relationships between log tokens, aiding generalization to
unseen events [4]. Transformer-based contextual embeddings
represent tokens in context, yielding richer representations that
capture subtle variations in log messages [1], [7].

Early log-anomaly detectors relied on rule-based systems
and invariant mining to encode domain knowledge. Tools such
as Logsurfer [18] and SEC [19] use expert-defined patterns
and real-time rules, while invariant mining discovers execution
invariants from ECVs to detect violations of expected behav-
ior [20]. These approaches require extensive manual tuning
and often miss anomalies outside predefined rules.

Unsupervised machine-learning methods reduced manual
effort by modeling normal behavior from unlabeled logs.
Principal Component Analysis on ECVs flags anomalies
via reconstruction error [17], while clustering with TF–IDF
weighting groups similar sequences to isolate outliers [21].
These methods adapt to changing log distributions but struggle
with high dimensionality and limited semantic context.

Semi- and supervised baselines improved detection by using
labeled data to separate normal and abnormal patterns. One-
class SVMs trained on normal logs define anomaly bound-
aries [7], [22], while decision-tree and SVM classifiers applied
to template-index and TF–IDF features achieve high precision
when anomaly samples are available [23], [24]. These meth-
ods, however, rely on labeled anomalies covering all fault types
and may fail to generalize to unseen events.

With deep learning, sequence models and neural em-
beddings have become central to log-anomaly detection.
DeepLog [6] trains an LSTM on template-ID sequences to
predict the next event, flagging anomalies when the true
event is outside the top predictions. LogAnomaly [4] creates
Template2Vec embeddings from GloVe vectors and applies an
LSTM over event windows for streaming detection. Robust-
Log [5] uses a bidirectional LSTM with TF–IDF–weighted
FastText embeddings and attention to classify log sequences,
improving robustness to template variation. NeuralLog [16]
employs WordPiece tokenization with BERT embeddings in
a transformer encoder for binary classification, avoiding tem-

plate parser errors. LogBERT [7] combines masked language
modeling with hypersphere minimization to cluster normal
logs and detect anomalies via masked-token prediction errors.
LAnoBERT [1] fine-tunes BERT to predict each token in a
log, aggregates token-level losses and top-k probabilities into
anomaly scores, and adds caching to accelerate inference.

However, fair and reproducible evaluation remains difficult,
as practices are fragmented along several axes. First, while
standard datasets (e.g., HDFS, BGL, Thunderbird) are widely
used, parsing and preprocessing vary greatly: many works even
rely on “official” template sets unattainable in real deploy-
ments, yielding overly optimistic results [8], [25]. Second, the
Loglizer toolkit [26], though useful as a repository of baseline
models, omits preprocessing pipelines, forcing researchers to
reimplement cleaning and parsing. Third, Loghub [27] cen-
tralizes popular datasets but documents HDFS preprocessing
poorly, as noted by Landauer et al. [8]. These gaps hinder
reproducible, end-to-end benchmarking across parsing, repre-
sentation, and model choices.

III. EVALUATION PIPELINE

We propose a modular, end-to-end pipeline that ingests
raw logs and produces comparable anomaly-detection metrics
through five stages: (1) parsing to extract templates; (2)
sequence grouping to aggregate templates via configurable
strategies; (3) representation to transform sequences into fea-
ture vectors; (4) detector integration, which wraps detectors in
a unified interface with Optuna-tuned hyperparameters [10];
and (5) unified evaluation applying consistent benchmarks.
This design allows each part to be developed and extended
independently while preserving fair performance comparisons.

Raw logs are preprocessed with regular expressions and
parsed using Drain [9], in line with prior work. As parsing
accuracy strongly impacts anomaly-detection performance [9],
[28], the pipeline is structured to accommodate other parsers
if needed.

Each parsed line is grouped into a sequence using either
time windows or sequence IDs: for HDFS we use block IDs,
while for BGL and Thunderbird we apply a sliding window
of one minute or 40 lines (see Subsection IV-A2), balancing
context and granularity. This design ensures that all methods
operate on identical sequence definitions.

Dataset Preparation

Transform representation

Download Parse templates Aggregate
Sessions

ECV
tID sequence

BERT 
embedding

GloVe Word 
embedding

Fig. 1. Pipeline architecture: Data preprocessing

Each template sequence is mapped to one of four feature
representations for fair comparison across detectors. (1) Event-
count vectors (ECVs) aggregate template occurrences into
fixed-length counts. (2) Template ID sequences preserve log
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order for sequence models. (3) Summed GloVe embeddings
yield dense representations capturing semantic similarity. (4)
Transformer-based contextual embeddings (e.g., BERT) en-
code full-line context with numeric tokens removed. By hold-
ing representation type as the only variable, we directly assess
the impact of feature choice on detection (see Figure 1).

We integrate classical detectors (PCA, SVM) and se-
quence models (LSTM predictors, transformer-based clas-
sifiers) under a common Adapter interface. Each Adapter
implements fit() for training, predict() for scoring, and
preprocess_split() for model-specific transformations.
Hyperparameters are tuned on a held-out validation split using
a two-phase Optuna search [10]: first adjusting training-related
settings to minimize validation loss, then fine-tuning method-
specific parameters (e.g., anomaly thresholds) to maximize
validation F1. This standardizes optimization across methods
while preventing test-data leakage. Final models are then eval-
uated with 10-fold cross-validation, applying preprocessing in
each fold (Figure 2).

Split Data
Training params

Model params Fit Predict

10-fold Cross-validation

Split Data

Hyperparameter tuning

Fig. 2. Pipeline architecture: Hyperparameter tuning and evaluation

In our experiments, we always hold out a 10% split for
validation and the remainder after the training split for testing.
We note precision, recall (true positive rate), true negative rate,
and binary F1 (anomalies as the positive class), reporting F1

as the primary metric given class imbalance. By fixing data
splits, sequence definitions, and metrics across experiments,
we provide a reproducible and fair benchmark of log-anomaly
detectors.

IV. EXPERIMENTS AND EVALUATION

We evaluate all anomaly-detection methods using the mod-
ular pipeline described in Section III. We first proceed to
answer RQ1, comparing log anomaly detection methods un-
der a unified evaluation protocol. We apply 10-fold shuffled
cross-validation with a 50% training ratio on each dataset.
We report the median F1 along with the interquartile range
(IQR) between folds. By fixing the sampling strategy (shuffled
splits at a 50% training ratio) and using identical sequence
definitions and hyperparameter tuning procedures, we ensure
a fair comparison.

We conduct experiments on three standard log-anomaly
datasets: HDFS, BGL, and Thunderbird, summarized in Ta-
ble I. HDFS and BGL are widely used in prior evaluations
(e.g., [1], [3], [4], [29]), while Thunderbird appears less
frequently. HDFS contains about 11.2M lines grouped into
575,061 sequences with a single anomalous label and 46–50
templates (depending on the source) [17], [27]. BGL has
about 4.7M lines and 134,975 sequences with 43 anomalous
labels across 298 templates [30]. For Thunderbird, we use the

TABLE I
USED DATASETS. Labels SHOWS THE COUNT OF ANOMALY LABELS. WE

DESCRIBE THE ONLY USED SAMPLE OF THE THUNDERBIRD DATASET.

Dataset Log lines Sequences Labels TemplatesOriginal paper Anomalous

HDFS (Xu) 11,197,705 575,061 1 50 (148)
Xu et al. [17] 16,838
HDFS (LogHub) 11,175,629 575,061 1 46
Zhu et al. [27] 16,838
BGL 4,747,963 134,975 43 298
Oliner et al. [30] 11,116
Thunderbird 20,000,000 500,965 21 1,874
Oliner et al. [30] 156,017

TABLE II
SUMMARY OF SELECTED ANOMALY DETECTION METHODS

Representation Unsupervised Semi-supervised Supervised

ECV PCA LogCluster [21] SVM [23]
tID sequence – DeepLog [6] –
Word emb. SemPCA [25] LogAnomaly [4] LogRobust [5]
Contextual emb. – LogBERT [7] NeuralLog [16]

first 20M lines due to computational limits, forming 500,965
sequences with 21 anomalous labels and 1,874 templates.

We evaluate nine anomaly-detection models (Table II)
spanning unsupervised, semi-supervised, and supervised ap-
proaches with different data representations. Table III reports
their results on all three datasets.

Supervised models achieve the highest median F1, though
the leader varies by dataset: LogRobust on HDFS, Neural-
Log on BGL, and near-identical performance across models
on Thunderbird, where SVM and LogRobust tie. Among
semi-supervised methods, LogBERT yields moderate scores
but falls behind supervised baselines on HDFS and BGL.
LogAnomaly and DeepLog show a similar pattern, stronger
on Thunderbird and weaker on HDFS and BGL. LogCluster
performs best among semi-supervised models on HDFS but
lags on the others. Unsupervised PCA-based methods diverge
sharply: SemPCA is competitive on HDFS but drops on BGL
and Thunderbird, while PCA performs worst overall.

When comparing to related work, our evaluation of Neural-
Log closely reproduces the results of Le et al. [16]. LogRobust

TABLE III
MEDIAN F1 SCORE (IQR) FOR EACH ANOMALY-DETECTION METHOD

UNDER 10-FOLD SHUFFLED CROSS-VALIDATION ON HDFS, BGL, AND
THUNDERBIRD. BEST RESULTS PER DATASET IN BOLD.

Method HDFS BGL TBird

NeuralLog 0.989 (0.005) 0.980 (0.017) 0.998 (0.000)
LogRobust 0.996 (0.002) 0.940 (0.022) 0.999 (0.000)
SVM 0.977 (0.002) 0.917 (0.003) 0.999 (0.000)
LogBERT 0.733 (0.013) 0.790 (0.009) 0.968 (0.001)
LogAnomaly 0.912 (0.024) 0.774 (0.016) 0.948 (0.001)
DeepLog 0.890 (0.085) 0.769 (0.011) 0.947 (0.001)
LogCluster 0.931 (0.004) 0.761 (0.003) 0.448 (0.147)
SemPCA 0.944 (0.015) 0.448 (0.006) 0.485 (0.001)
PCA 0.810 (0.025) 0.440 (0.003) 0.379 (0.002)
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matches the findings of Zhang et al. [5] and others [16], [25].
LogAnomaly performs near the original results of Meng

et al. [4], exceeding some later reports [7], [25]. DeepLog
does not replicate the numbers of Du et al. [6] but aligns with
related work [7], [25]. SemPCA reproduces Yang et al.’s HDFS
results [25] but differs on BGL due to preprocessing. Our
LogCluster results also match Yang et al. [25] and outperform
Meng et al. [4] and Guo et al. [7].

Despite available source code, we do not reproduce Log-
BERT’s reported results, trailing Guo et al. [7] by about 10%.

Finally, we confirm SVM as a strong supervised baseline,
though rarely emphasized in prior work, while PCA is a
competitive unsupervised benchmark on HDFS but weaker on
the other datasets.

All hyperparameters for the tested methods are published in
our released source code. We note one exception in hyperpa-
rameter tuning: for next-event prediction methods (DeepLog,
LogAnomaly, LogBERT), the number of candidates (top-k)
was originally tuned per dataset. This sometimes produced
invalid settings when k exceeded the number of unique classes.
To give each method the best chance, we instead treat k as a
learned parameter, tuning it on the training split of each fold
under full supervision. While this slightly favors these semi-
supervised methods, it ensures reported F1 scores reflect their
best achievable performance.

A. Influence of preprocessing

This section investigates RQ2: How do choices in pre-
processing, such as dataset filtering or sequence grouping,
affect anomaly-detection performance? We study two cases.
In HDFS, merging or removing problematic templates reduces
template explosion and can inflate performance by making
anomalies easier to isolate. In BGL, grouping by component
improves detection but risks long latency, while combining
line-count and time-window constraints shortens sequences for
timely detection at the cost of lower F1 scores.

1) HDFS dataset preprocessing: The original HDFS logs
(Xu) contain a complex template with a dynamic number of
parameters, which Drain cannot parse reliably. These logs
record requests to delete variable-length block lists (1–100
blocks). Because Drain partitions lines by token length, it
generates a new template for each sequence length, producing
98 templates for this event and inflating the total from 50 to
148. This template explosion increases feature dimensionality
and randomness, severely degrading next-event prediction and
masked-event models. In the Fixed version, we retain these
events but remap all scattered templates to the shortest one,
correcting the parser. As Table IV shows, next-event methods
(LogBERT, LogAnomaly, DeepLog) lose at least 20 F1 points
on the Xu logs, while PCA drops by more than 40 points
compared to the Fixed dataset.

LogHub provides an another HDFS variant that removes
the problematic “block-delete” events, nine “DataXceiver”
lines, and 34 “No such file or directory” lines, shortening the
dataset by about 22,000 lines. This filtering artificially boosts
anomaly-detection performance, as also noted by Landauer et

TABLE IV
MEDIAN F1 SCORE (IQR) FOR EACH ANOMALY-DETECTION METHOD

UNDER 10-FOLD SHUFFLED CROSS-VALIDATION ON HDFS WITH VARIOUS
PREPROCESSING OPTIONS. BEST RESULTS PER DATASET IN BOLD.

Method HDFS Xu HDFS Fixed HDFS LogHub

NeuralLog 0.971 (0.011) 0.971 (0.014) 0.989 (0.005)
LogRobust 0.994 (0.003) 0.991 (0.003) 0.996 (0.002)
SVM 0.977 (0.001) 0.986 (0.005) 0.977 (0.002)
LogBERT 0.494 (0.031) 0.710 (0.030) 0.733 (0.013)
LogAnomaly 0.698 (0.009) 0.892 (0.028) 0.912 (0.024)
DeepLog 0.607 (0.043) 0.828 (0.035) 0.890 (0.085)
LogCluster 0.799 (0.003) 0.937 (0.005) 0.931 (0.004)
SemPCA 0.909 (0.062) 0.937 (0.003) 0.944 (0.015)
PCA 0.268 (0.004) 0.724 (0.025) 0.810 (0.025)

al. [8], since many removed events appear in both anomalous
and normal sequences, making separation without them easier.
As Table IV shows, most methods score higher on LogHub
than on our Fixed variant (which only merges dynamic tem-
plates): PCA rises from 0.72 to 0.81, DeepLog from 0.83
to 0.89, while LogRobust stays near perfect (0.99–1.00).
LogCluster is the exception, dropping slightly by 0.6%.

For comparability with prior work, all remaining experi-
ments use the LogHub version. This choice yields higher F1

than raw logs but ensures alignment with existing studies.
2) BGL grouping strategies: There is no consensus on

how to group BGL log lines into sequences for anomaly
detection. Some studies adopt component-based grouping [8],
[25], [31], while others use time-based windows or hybrids
combining time and line limits [32]. For example, NeuralLog
applies sliding windows of 20 lines without component bound-
aries [16]; Guo et al. use a 5-minute time window followed
by 128-line splits [7]; and Le et al. compare fixed windows of
20, 100, and 200 lines, concluding that component grouping
performs best [31]. Other works omit their grouping strategy
altogether [1], [4], limiting reproducibility.

Fixed-line windows ensure each sequence has exactly L
log entries, but their temporal span varies widely: a 40-line
window may cover hours during low activity or millisec-
onds during bursts. Pure time windows show the opposite
imbalance: quiet periods yield many single-line sequences,
while busy periods produce extremely large ones. In our tests
with a one-hour window, we observed 150 one-line sequences
and 141 sequences with 5,000–100,000 lines; shortening the
interval increased the one-line cases to thousands without
removing the long tail. These results confirm that BGL’s event
rate is highly variable, creating sequences that either lack
context or overwhelm next-event models. Consequently, pure
time windows are impractical for anomaly detection.

Combining a line-count limit with a time limit mitigates
both extremes by capping sequences at L lines or T seconds.
However, our tests show this windowing is incompatible with
component grouping: applying a 120-line/5-minute window
with component grouping produced 1,310,188 one-line se-
quences (27% of lines, 54% of sequences).

Table V lists the evaluated window settings, alongside the
120-line fixed window with component grouping used by Yang
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TABLE V
SEQUENCE LENGTHS ON BGL UNDER VARIOUS GROUPING OPTIONS.

Grouping Lines (µ± σ) Time span (µ± σ)

Component & 120l 66.09± 43.74 27 d:19.5 h ± 7 d:14.2 h
120l & 60s 84.14± 50.88 11.4 s ± 17.7 s

40l & 60s 35.89± 11.53 4.8 s ± 12.1 s

TABLE VI
SUMMARY OF ANOMALY COUNTS WITH EACH GROUPING STRATEGY.

THE LAST COLUMN SHOWS THE COUNT OF ANOMALOUS LINES PER
SEQUENCE FOR ANOMALOUS SEQUENCES ONLY.

Grouping Sequences A. per Sequence
Total Normal Anomalous (µ± σ)

Comp. & 120l 85 577 49 094 36 483 9.56± 22.41
120l & 60s 58 124 53 533 4 591 75.95± 52.33

40l & 60s 134 975 123 859 11 116 31.37± 14.43

et al. [25]. The mixed windows yield sequences short enough
for near–real-time detection while retaining sufficient context
for anomaly detectors to learn patterns.

Beyond length and duration, grouping strategy also deter-
mines how many anomalous lines fall into each anomalous
sequence. Table VI shows the total, normal, and anomalous
sequence counts per strategy. The trend is clear: as window
granularity increases, the share of anomalous sequences falls
(42.6%, 7.9%, 8.2%), while the mean fraction of anomalous
lines per anomalous sequence rises (12.7%, 75.9%, 83.1%).

Table VII reports results for component grouping, a 120-
line/60-s window, and a 40-line/60-s window. As expected,
component grouping is the easiest: all methods achieve their
highest F1. Yet its long spans make it impractical for timely
detection, since anomalies are visible only after sequence
completion, which may take hours. Between 120- and 40-
line windows, outcomes vary by method. LogRobust, SVM,
and PCA are largely unaffected. LogAnomaly and LogCluster
favor 120 lines, while DeepLog and SemPCA perform better
with 40; SemPCA improves by nearly 20% and shows lower
variance. LogBERT loses about four points in the 40-line case
(precision stable, recall down 7–8%), reflecting sensitivity to
shorter sequences and reliance on masking. NeuralLog gains
most from 40 lines, improving by ∼10% mainly via fewer
false negatives, with slight precision gains. In sum, while
component grouping maximizes F1, mixed windows balance
realistic latency with performance.

Based on these findings, we adopt the 40-line/60-second
fixed window for all other BGL experiments. This keeps
sequences short enough for timely detection while preserving
sufficient context for classification. We acknowledge it disad-
vantages LogBERT, which struggles with short sequences [7],
though LAnoBERT mitigates this by predicting over all to-
kens [1]. Shorter windows (e.g., 20 lines as in NeuralLog’s
evaluation) are also reasonable for models sensitive to se-
quence length; we leave detailed exploration to future work.

TABLE VII
MEDIAN F1 SCORE (IQR) FOR EACH METHOD UNDER 10-FOLD SHUFFLED

CROSS-VALIDATION ON BGL WITH VARIOUS GROUPING OPTIONS.

Method Component & 120l 120l & 60s 40l & 60s

NeuralLog 0.986 (0.003) 0.863 (0.012) 0.980 (0.017)
LogRobust 0.998 (0.003) 0.930 (0.017) 0.940 (0.022)
SVM 1.000 (0.000) 0.924 (0.006) 0.917 (0.003)
LogBERT 0.983 (0.001) 0.834 (0.010) 0.790 (0.009)
LogAnomaly 0.827 (0.024) 0.781 (0.020) 0.774 (0.016)
DeepLog 0.834 (0.037) 0.729 (0.047) 0.769 (0.011)
LogCluster 0.946 (0.002) 0.789 (0.005) 0.761 (0.003)
SemPCA 0.674 (0.001) 0.294 (0.141) 0.448 (0.006)
PCA 0.599 (0.004) 0.433 (0.004) 0.440 (0.003)

B. Influence of Data-splitting Procedures

In this section, we address RQ3: how does training on a
randomly shuffled sample compare to training on a temporally
continuous block of logs, and how do these differences change
as the training set size decreases?

We use 10-fold cross-validation that preserves temporal
continuity when required (Figure 3). Each fold consists of
three continuous dataset segments: 50%, 10%, or 1% for
training, 10% for validation, and the remainder for testing.
We evaluate two sampling methods: in the shuffled setting,
sequences are randomly shuffled before splitting, as in prior
experiments and much of the literature; in the sequential
setting, sequence order is preserved so train and test data come
from disjoint time intervals, reflecting real-world deployment.

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Relative Position in Dataset (%)

1
2
3
4
5
6
7

...Cr
os

s-V
al

id
at
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n 
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ld

10-Fold Cross-Validation with 50% Train, 10% Val, 40% Test

Training (50%)
Validation (10%)
Testing (40%)

Fig. 3. Folding of datasets in 10-fold cross-validation. Folds 1-7 are shown;
folds 8-10 are omitted for brevity.

At a 50% training ratio (Table VIII), all models perform
better with shuffled than sequential sampling, though the gap
depends on the dataset. On HDFS, supervised detectors such
as LogRobust and SVM lose little under sequential sampling,
while NeuralLog drops by about 7%. On Thunderbird, super-
vised methods also degrade only slightly, whereas others fall
more sharply; PCA is the exception, improving modestly but
still performing poorly. Overall, the drop is larger on HDFS
than Thunderbird, but BGL is hit hardest: under sequential
sampling, all models fall below acceptable levels. This is
due to concept drift, shifts in normal system behavior during
data capture, which detectors misclassify as anomalies, driving
false positives, while unseen anomaly types cause supervised
methods to miss anomalies. The impact varies across folds,
reflected in high IQR values.
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TABLE VIII
MEDIAN F1 SCORE (IQR) FOR EACH ANOMALY-DETECTION METHOD ON HDFS AT 50% AND 1% TRAINING RATIOS UNDER SHUFFLED AND

SEQUENTIAL SPLITS, ALONGSIDE 50%-ONLY RESULTS FOR BGL AND THUNDERBIRD. BEST VALUES IN EACH COLUMN ARE BOLDED.

Method HDFS BGL (50%) TBird (50%)

Shuf 50% Seq 50% Shuf 1% Seq 1% Shuf Seq Shuf Seq

NeuralLog 0.989 (0.005) 0.917 (0.112) 0.000 (0.000) 0.000 (0.380) 0.980 (0.017) 0.490 (0.690) 0.998 (0.000) 0.993 (0.006)
LogRobust 0.996 (0.002) 0.954 (0.061) 0.958 (0.018) 0.517 (0.295) 0.940 (0.022) 0.189 (0.323) 0.999 (0.000) 0.993 (0.007)
SVM 0.977 (0.002) 0.931 (0.071) 0.944 (0.033) 0.788 (0.172) 0.917 (0.003) 0.570 (0.111) 0.999 (0.000) 0.997 (0.005)
LogBERT 0.733 (0.013) 0.610 (0.417) 0.603 (0.070) 0.135 (0.241) 0.790 (0.009) 0.257 (0.328) 0.968 (0.001) 0.860 (0.139)
LogAnomaly 0.912 (0.024) 0.706 (0.475) 0.933 (0.009) 0.190 (0.568) 0.774 (0.016) 0.380 (0.290) 0.948 (0.001) 0.777 (0.158)
DeepLog 0.890 (0.085) 0.577 (0.558) 0.775 (0.086) 0.421 (0.689) 0.769 (0.011) 0.350 (0.344) 0.947 (0.001) 0.808 (0.120)
LogCluster 0.931 (0.004) 0.902 (0.602) 0.931 (0.010) 0.141 (0.056) 0.761 (0.003) 0.420 (0.305) 0.448 (0.147) 0.472 (0.191)
SemPCA 0.944 (0.015) 0.693 (0.090) 0.943 (0.001) 0.099 (0.033) 0.448 (0.006) 0.176 (0.061) 0.485 (0.001) 0.214 (0.278)
PCA 0.810 (0.025) 0.795 (0.180) 0.790 (0.007) 0.147 (0.356) 0.440 (0.003) 0.279 (0.184) 0.379 (0.002) 0.522 (0.235)

TABLE IX
MEDIAN F1 SCORE (IQR) AT 10% TRAINING RATIO FOR HDFS AND BGL

UNDER SHUFFLED AND SEQUENTIAL SPLITS.

Method HDFS BGL (shuffled)

Shuf 10% Seq 10% 10% 1%

NeuralLog 0.91 (0.02) 0.27 (0.59) 0.89 (0.02) 0.00 (0.00)
LogRobust 0.99 (0.00) 0.83 (0.18) 0.90 (0.01) 0.84 (0.03)
SVM 0.99 (0.01) 0.91 (0.03) 0.91 (0.00) 0.88 (0.02)
LogBERT 0.75 (0.03) 0.20 (0.35) 0.81 (0.02) 0.76 (0.01)
LogAnomaly 0.95 (0.01) 0.46 (0.75) 0.79 (0.01) 0.75 (0.01)
DeepLog 0.82 (0.05) 0.24 (0.52) 0.79 (0.01) 0.75 (0.01)
LogCluster 0.93 (0.00) 0.21 (0.62) 0.78 (0.00) 0.71 (0.01)
SemPCA 0.96 (0.02) 0.18 (0.04) 0.38 (0.10) 0.31 (0.16)
PCA 0.79 (0.00) 0.25 (0.53) 0.44 (0.00) 0.44 (0.01)

This is underscored by the HDFS results at 1% training
ratio (Table VIII). Under sequential sampling, most methods
degrade sharply compared to both 50% sequential and 1%
shuffled benchmarks. SVM remains relatively robust with
a median F1 of 0.788 (vs. 0.944 at 1% shuffled), while
LogRobust drops by 43% and NeuralLog collapses to zero in
both 1% settings. Inspection shows NeuralLog predicts only
the normal class, indicating class imbalance rather than dataset
size is the issue. In contrast, semi- and unsupervised methods
perform on par with 50% shuffled samples, with LogAnomaly
even improving its median F1 by 2.1% at 1%. Overall, a 1%
random sample yields better median performance than a 50%
continuous block for most methods on HDFS.

Additional results are shown in Table IX. On shuffled BGL,
median F1 decreases steadily as the training ratio shrinks,
with SVM as the exception: even at 1% it loses only 3.6%
relative to 50%, reaching the best score of 88%. NeuralLog
again collapses to 0.0 at 1%. We omit sequential BGL at lower
ratios since performance at 50% is already below an acceptable
threshold. HDFS follows the same trends as in Table VIII.

These results show that models trained on shuffled logs con-
sistently outperform those trained on continuous blocks, even
with less data. On HDFS and BGL, 1% shuffled often exceeds
50% sequential (e.g., LogRobust, DeepLog, SemPCA). This
suggests that the diversity captured by shuffling outweighs the
benefit of longer windows. In practice, shuffling periodically

sampled logs for training should yield more reliable detection
than retraining only on recent continuous segments.

V. CONCLUSION

We present a modular, end-to-end log-anomaly evaluation
pipeline that unifies parsing, sequence grouping, representa-
tion, and detector integration in an open-source framework.
Our benchmarks show that transformer-based models excel on
shuffled data but degrade on time-ordered logs, while classical
methods such as SVM remain stable. We find that minor
preprocessing choices, particularly sequence grouping, sub-
stantially shift performance. These results highlight the need
for standardized evaluation: only under identical preprocessing
and splitting can gains be attributed to true improvements
rather than evaluation artifacts. Future works could improve
target system-specific dense-vector representations and explore
if optimal sequence windows depend on method or dataset.
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