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Abstract— This paper proposes a method for concisely
representing the Quality of Service (QoS) requirements
necessary to achieve user-desired Quality of Experience (QoE),
even when these requirements are distributed in a complex
shape within a high-dimensional space, in a form that can be
utilized by control systems. Conventional QoE—QoS relationship
models have been based on observations at a single node and
primarily used simple threshold-based condition expressions.
However, in control systems utilizing multiple network
observation points, more complex and flexible expressions are
required. In this study, we propose a method to obtain a set of
QoS conditions that satisfy QoE as a point cloud, approximate
its outline using as few hyperplanes as possible, and represent it
with multiple convex polytopes. The proposed method is based
on divide-and-conquer and shows superior performance in both
accuracy and representation simplicity compared to conventional
convex hull-based methods. Moreover, the resulting polytope
representation is effective for application to network control
algorithms and provides practical design guidelines.

Index Terms —QoS, QoE, mapping

I. INTRODUCTION

This study addresses the challenge of concisely
representing complex Quality of Service (QoS) conditions in
a high-dimensional space that satisfy the Quality of
Experience (QoE) required by users. Such representation is
crucial for enabling automated control in practical network
management.

Conventional QoE—QoS relationship models have
primarily been analytical based on measurements at a single
node and assuming application-specific characteristics [1][2].
However, from a network operation perspective, it is often
necessary to derive control operations based on QoS
information obtained from multiple observation nodes within
the network to achieve the QoE required by end users. In this
case, the relationship between QoS and QoE strongly depends
on the network configuration and settings, making explicit
analytical model difficult.

On the other hand, in recent years, methods that use
machine learning models to predict QoE from QoS have been
attracting attention [3][4]. By utilizing such models, it is also
possible to consider an approach in which points that satisfy
QoE conditions are sampled as a point cloud in QoS space.

However, to directly utilize the point cloud obtained from
the learning model for control tasks, further approximation
and representation of its shape are required. In particular, to
inversely derive a set of QoS conditions that satisfy the QoE,
the outer shape of the point cloud must be represented as a
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Fig. 1. Point cloud in QoS space (delays observed at three nodes)
Yellow: QoE satisfied  Purple: QoE violated

constraint region.

As shown in Fig. 1, even in a simple case, the point cloud
in QoS space that satisfies the QoE condition forms a complex
shape. Such a shape cannot be adequately represented by
hyperrectangular regions defined by per-axis QoS thresholds.

In network control, control operations to achieve QoE can
be formulated as a problem of searching for an effective
region within the QoS condition space. Many optimization-
based control methods (e.g., Model Predictive Control, MPC)
express such constraint regions as convex polytopes to ensure
computational efficiency and theoretical analyzability [5].
Therefore, methods that approximate point clouds with simple
polytopes with high accuracy can be an important component
in control system design.

In this study, we propose a method that approximates the
outline of a point cloud representing QoE-satisfying QoS
conditions with as few hyperplanes as possible and constructs
multiple convex polytopes based on these hyperplanes. This
method follows a divide-and-conquer strategy to capture local
structures of the point cloud, while merging hyperplanes as
needed to achieve a balance between simplicity of
representation and approximation accuracy.

The contributions of this study can be summarized in the
following two points.

First, we propose a novel polytope construction method
that accurately approximates the boundary of a set of QoS
measurement points satisfying a required QoE, using a small
number of hyperplanes.

Second, through comparative evaluation against
representative existing approaches, we demonstrate that the
proposed method achieves a balance between approximation
accuracy and representational simplicity—an essential
requirement for practical network control.
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This paper is organized as follows. Section II reviews
related research and clarifies the position and novelty of the
proposed method. Section III describes the proposed method's
algorithm and parameters in detail. Section IV compares the
proposed method with related methods in terms of
performance evaluation and characteristics related to
approximation accuracy and simplicity of expression.

II. RELATED WORKS

Research on the QoS—QoE relationship has mainly
addressed forward mapping (QoS—QoE). Generic models [1]
and learning-based predictors such as Pensieve [2] achieved
accurate QoE estimation, but they remain application-specific
or black-box in nature.

Recently, attention has shifted toward inverse or QoE-
driven approaches. Al-Azzeh et al. [3] directly mapped QoE
to QoS using spline approximation in cellular networks. Yan
et al. [4] optimized resource allocation in semantic communi-
cation by treating QoE as the target, and Tang et al. [6]
proposed traffic aggregation that adapts to heterogeneous QoE
requirements. These works highlight the potential of
QoE—QoS research, but they are either scenario-dependent
or lack general, interpretable region modeling.

To represent feasible QoS conditions, hyperrectangular
thresholds [7] and decision-tree partitioning [8] are widely
used due to simplicity, yet they fail to achieve both accurate
separation and concise representation. Greedy hyperplane
approximation [9] improves flexibility but suffers from
instability.

In control engineering, convex polytopes are standard in
Model Predictive Control (MPC) [5], and recent works embed
QoE into control, e.g., QoE-aware congestion control [10] or
reinforcement learning-based resource management [11][12].
However, such studies rely on implicit mappings.

Our work differs by providing a general polytope-based
representation of QoS regions satisfying user QoE, combining
approximation accuracy with interpretability and enabling
direct integration into automated network control.

III. PROPOSED METHOD

A. Overview of the Proposed Method

QoS measurement values from multiple observation nodes
are combined into a single tuple. This QoS tuple space is
uniformly distributed, and QoS values that achieve the target
QoE and those that do not are classified using the mapping
from the observation node QoS to the user-end QoE. The
classified point clusters are referred to as QOS+ and QOS-,
respectively. Next, multiple hyperplanes approximating the
boundary of the QOS+ region are sought in this high-
dimensional space. To simplify the representation, the number
of hyperplanes is kept as small as possible.

The method for finding hyperplanes is as follows. First,
the entire space is divided into small blocks. In each block, if
QOS+ and QOS- are mixed, a hyperplane that separates
QOS+ and QOS- is found using margin maximization. If the

Fig. 2. An example of applying the proposed method

slopes of the hyperplanes in adjacent blocks are similar, the
blocks are merged and the process is repeated to find
separating hyperplanes for the merged blocks. This process is
repeated to approximate the boundary using a small number
of hyperplanes.

Finally, the first-order inequalities obtained from each
boundary approximation hyperplane are combined into
multiple simultaneous linear inequalities to represent QOS+.
Fig. 2 shows an example of this method. This is a simple case
where the observation node is at a single location, the data
flow to be observed is a single stream, and the observed QoS
is delay, packet loss, and throughput. It can be seen that QOS+
and QOS- are separated by five hyperplanes.

B. Details of the Proposed Method

Here, we describe the proposed method in detail,
following its overall flow. First, in 1) and 2) below, we
describe the QoS—QoE mapping assumed by the proposed
method and the procedure for generating point clouds (QOS+)
using it. These approaches are considered reasonable based on
recent research trends and are not central to the originality of
this study. On the other hand, in 3) and beyond, we propose a
new boundary extraction method to precisely and concisely
approximate polytopes for this point cloud, which constitutes
the main contribution of this study.

1) Mapping that predicts QoE from the QoS of multiple
observation nodes

This proposed method assumes that a mapping from QoS
at observation nodes to QoE is given, where the QoE at the
user end is estimated using the measured values of multiple
types of QoS (delay, packet loss rate, throughput, etc.) for
multiple services at multiple observation nodes as input. Using
this mapping, we construct the mapping from QoE to QoS in
the opposite direction. The input of the given mapping is
expressed in the form of a tuple (qosy,...,qos,) that
combines all measured QoS values. We call this tuple
observed QoS. The output QoE is expressed as a tuple
(qo eg ) that combines all the QoE qo eg expressed in Mean
Opiniorf Score for each service q at each user end node p.

Observed QoS that satisfies the target QoE is defined as
follows. Suppose that the target value of QoE vg for node p
and service q is given. Then, the observed QoS that provides
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an output qoe;,Z that satisfies (qoeg > vg
called ‘satisfying the target QoE’.

As an example of the construction of the underlying
mapping, the following is possible under certain assumptions.
First, assume that an existing mapping from QoS to QoE is
given on the same node, and further assume that QoS
measurement is possible at not only the observation nodes but
also the user end nodes. In this case, we create a mapping from
observation-node QoS to user-end QoS by simultancous
measurement. We can also relate the user-end QoS to QoE
using the existing mapping. Then we can obtain the data of the
relation between the observation-node QoS and QoE. With
these data, we can construct the desired mapping by machine
learning.

2) Using the learning model to express the set of observed
QoS values that satisfy the target QoE as point cloud QOS+
(Monte Carlo method)

First, a point cloud is generated uniformly at random in the
n-dimensional observation QoS space. Each point is input into
the mapping from observed QoS to QoE, and the target QoE
is judged to be satisfied or not based on the output results. The
sets of all points that satisfy and do not satisfy the target QoE
are classified as QOS+ and QOS-, respectively.

3) Derivation of multiple hyperplanes that approximate the
boundary of QOS+

Here, we show a method for approximating the boundary
of QOS+ with as few hyperplanes as possible based on the
principles of margin maximization and divide-and-conquer.
The basic procedure is as described in the overview. The
pseudo-code for the algorithm is shown in Algorithm 1.
Before executing the pseudo-code, the space of observed QoS
is divided into small blocks.

a) QoS space partitioning and symbol definitions

For each tuple, which is a point in the observation QoS
space, its elements are assumed to be represented by real
values. First, the observation QoS space R" is divided into a
number of hyperrectangles with the same number of division
for each axis. Each range that can be taken by each gos; (i =

1,2, ...,n) is divided into m parts, and then R" is divided into
m™ parts. Each of these hyperrectangles is called a block. Let
[si,e;] (where s; and e; are the minimum and maximum
possible values of qos; respectively) be the interval
corresponding to each block, and let the size of each side of
the block be d; = (e; — s;)/m. Then, each block is defined by
index ji, ..., j, (j; is an integer, 0 < j; < m — 1) as follows.

bj.jn = {01, xp) ERM dyji <% < di i+ 1) }

The set of all blocks is denoted by B. The sets of QOS+
and QOS- points contained in block b are written as B(b)*
and B(b)~, respectively. For a set of blocks B, the set of all
QOS+ points contained in B is written as B+ = Upep B(b)™,
and the set of all QOS- points is written as B- = Upeg B(b)™.

b) Explanation of the behavior of the pseudo-code

) for all p and q is

The following describes the details of each step in the
pseudo-code for Algorithm 1. The algorithm uses the
hyperparameters shown in Table I. Boundaries that were

Algorithm 1 Algorithm for Separating the Boundaries of QOS+ in the
Observation QoS Space

1:  Stepl Let B be the set of all blocks, and let S be the set of

2: all boundaries. The initial state of S is defined as follows.
3 S={{b}| b €B,p <IBB)*I/(IBB)*| +1B(®) ) <1~ p}
4: Step 2 For each boundary {b} in S, we find a hyperplane

S: that separates B(b)* and B(b)~ based on the idea of

6: maximizing the margin, and call this the hyperplane

7: associated with that boundary.

8:  Step 3 Choose two adjacent boundaries Bd; and Bd, from S.

9: Let n, and n, be the unit normal vectors of the hyperplanes
10: associated with Bd, and Bd., respectively.

11:  Step 4 If the inner product n, - n, > c then

12: find a hyperplane separating

13: Bd} U BdZ and Bd; U Bd; and call it H.

14: If the separation degree of H > r then

15: replace Bd, U Bd, with Bd,, Bd, as the new
16: boundary and return to step 3.

17: else

18: return to step 3.

19: else if there is an adjacent boundary that was not selected
20: in step 3 then
21: return to step 3.
22: else
23: end processing.

finely divided are gradually integrated during the execution of
the algorithm.

Step 1) For each block » € B, if B(b)* and B(b)~
contained therein are included in nearly equal parts within an
error of |1/2 - p|, as specified by condition formula S, the block
is called a boundary block between QOS+ and QOS—. Each
set consisting of one boundary block is defined as the first set
of boundaries, S. Note that each boundary is a set of blocks.

Step 2) For each boundary block b, we find the hyperplane
that separates B(b)* and B(b)~ based on the idea of
maximizing the margin. We call this hyperplane the
hyperplane associated with the boundary block.

Step 3) To express the boundary with fewer hyperplanes,
we merge boundaries. We select a pair of adjacent boundaries
(Bd;, Bd). Here, two boundaries Bd;, Bd, are said to be
adjacent if there are two blocks b; € Bd; and b, € Bd> such
that b; and b, are adjacent. Two blocks, each with index
b,, i, and by, ;. are said to be adjacent if, for some j,
|- l]'| = 1and iy = i (for all k where k # j).

Step 4) Consider the merging of the hyperplanes associated
with the two adjacent boundaries (Bd;, Bd>), i.e., the merging
of the boundaries, as follows.

Boundaries are merged when (i) the cosine of the angle
between the two hyperplanes is greater than the threshold c,
and (ii) the separation degree is greater than the threshold r.
(1) is determined by whether the inner product of the unit
normal vectors n, and n, of each hyperplane is greater than c.
If the cosine value of the angle is determined to be greater than
¢, the two boundaries are tentatively merged. On (ii), if (i) is
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satisfied, find a hyperplane that separates Bdf U Bdj and
Bdiy U Bd; for the tentatively merged boundary. If the
merged boundary can be separated by the hyperplane with a
threshold r or more, which is predetermined as the
hyperparameter, the two boundaries merging is determined.
The hyperplane is considered to be associated with the
boundary.

By continuing the above merging operation until no new
merging of boundaries occurs, we obtain a small number of
hyperplanes that approximate the boundaries.

¢) Parameter description

The proposed method has four hyperparameters: partition
density m, mixture threshold p, plane merge threshold ¢, and
post-merge separation 7.

Partition density m: Divides each axis into m parts, yielding
m? blocks in d-dimensional space. Larger m improves
boundary resolution but increases cost.

Mixture threshold p: Identifies boundary blocks by the ratio
r of QOS+ to QOS—. A block is on the boundary if p < r <
1-p. Larger p enforces stricter detection but risks boundary
defects.

Merge threshold c: Neighboring hyperplanes with cosine
similarity above ¢ are merged. Larger ¢ demands stricter
alignment, improving accuracy but increasing plane count.
Separation r: Finalizes a merge only if the separation between
merged planes exceeds 7, controlling how smoothly curved
boundaries are approximated.

These parameters govern the trade-off between accuracy
and simplicity (number of hyperplanes) and should be tuned
to the point-cloud structure and control requirements.

4) Expression of the set of observation QoSs that satisfy the
target QoE using linear inequalities

For the hyperplanes /;, I, . . ., I, obtained in 3), and the
hyperplanes ly+s, ln+2, . . . , In+2a defined by the lower and
upper bounds of each gos;, we denote the two linear
inequalities derived from each /;, with opposite directions as
I+ and /i-. For each i, either /i+ or /- is selected, and a system
of m + 2n linear inequalities is constructed. If the ratio of
QOS+ points contained in the region defined by this system
exceeds a predefined threshold, the system is accepted. This
process is repeated for all possible combinations of selections,
and the set of accepted systems is used as the representation
of the set of observed QoS conditions that satisfy the target
QoE.

Each system of linear inequalities defines a convex
polytope, and the resulting representation is a set of such
convex polytopes.

IV. PERFORMANCE EVALUATION AND ANALYSIS

A. Performance Evaluation of the Proposed Method

1) Comparison methods
To evaluate the relative accuracy of the proposed method,
we compared it with the three existing approaches mentioned
in the introduction. (i) separation using a single hyper-
rectangle, (ii) separation using multiple hyperrectangles, and

TABLE I
LIST OF HYPERPARAMETERS USED

m  Number of partitions for each QoS
p  Ratio of QOS+ and QOS- of blocks

Maximum value of the inner product of unit normal vectors
of two hyperplanes that are judged to be close in angle

Minimum value of the separation degree of QOS+ and QOS-
of hyperplanes that allow merging

(iii) separation using multiple hyperplanes by the greedy
method.

The polytope approximation procedure for QoS point
clouds in each method is as follows:
Single hyperrectangle method: Each axis of the d-dimensional
space in which the point cloud exists is discretely divided,
and the entire space is approximated with a single
hyperrectangle. Lower and upper limits for each dimension
are explored by grid search to maximize the F1 score.
Multiple hyperrectangle method: We used DecisionTreeClassifier
from sklearn.tree to partition the space into multiple
hyperrectangular regions based on split conditions at each
node. This method can model nonlinear and complex
boundaries but is prone to overfitting.
Hyperplane separation using the greedy method: First, a single
hyperplane is used to separate QoS+ and QoS- with a linear
classifier. New hyperplanes are iteratively added to regions
with large errors, forming a polytope-based separation region.
We used scikit-learn’s LogisticRegression for implementation.

Each of these methods has different characteristics. A
single hyperrectangle is effective when the target point set has
a simple shape, but it has limitations in representing complex
boundaries. Multiple hyperrectangles allow for flexible
representation, but there is a risk of model complexity due to
overfitting. The greedy method is prone to accuracy variability
due to the order of hyperplane addition and local optima.

From these perspectives, we quantitatively evaluate the
proposed method in comparison with the others in terms of
various aspects.

2) Generation of test data

The accuracy and behavior of the proposed and
comparison methods heavily depend on the characteristics of
the input QoS point cloud. Therefore, it is important to use
evaluation data that appropriately reflect those characteristics
when comparing the methods. In this study, test data were
generated through simulation using the following procedure.
Network configuration: The network configuration to be
evaluated is shown in Fig. 3, consisting of nine intermediate
nodes (n!/ to n9), two server nodes (S/ and S2), and two user
end nodes (E/ and E2). Each node is connected by links
shown in the figure, and relay nodes and user nodes are
assigned fixed-size receive buffers, while links are assigned
fixed bandwidths.
Traffic model and simulation: Network utilization varies
depending on the amount of data transmitted from the server
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Fig.3. Structure of target network

TABLE II
OBSERVATION DESCRIPTION OF EACH OBSERVATION SUITE
Observation name Observation node (observation data flow)
Obs.1 ny(S; = E1,S1 = E3),n9(S; — Ey),
' ng(Sy = E1, S, = E1,S; = E3)
Obs.2 ny(S; = Ey, S, 2 E;,S; - E),
’ ng(Sy = E3, 52 » E1, S, = E)
Obs.3 ny(S; = Ey, 81 = E3),ny(S; = Eq),
' no(Sy = E3,S; = E1,S; = E3)
Obs.4 ny(S; = Ey, S, 2 E;,S; - E),
’ ng(Sy = Ey, S » E1,S; - E7)
Obs.5 n4(S; = E1, S, = E3),ns(Sy = Ey),
' ne(Sy = E1, S, = E1,S; = Ey)
Obs.6 ng(S1 = E1, S, = E1,S; = Ey),
n7(81 = E3),ng(S1 = E1),no(S, = Ey)
Obs.7 11 (Sy = E3), (S, = Eq),n3(S; - Ey),
’ n4(Sy = E1, S, = B, S; = E)
Obs.8 n6(Sz = E3),n7(S; = E3),ng(S; = Ey),
' ng(Sy = E3, S, = E1,S; = Ey)

to the end nodes and the routing. Traffic is modeled based on
the following probability distributions:

- Number of session occurrences: Poisson distribution

- Session duration: Weibull distribution

- Session start time: Uniform distribution

To reflect these variations, 20 types of user usage patterns
were prepared. The routing was fixed throughout the
experiment.
QoS measurement and observation patterns: QoS was
measured using a custom event-driven simulator. This
simulator is a simplified version of standard simulators such
as ns-3. In the evaluation, we used eight observation patterns
shown in Table II. In each pattern, we measured the delay for
multiple data flows (e.g., SI—E1) at specific nodes. The QoS
vector at each observation point consists of six dimensions.
Construction of QoS point clouds: In total, 160 scenarios
were generated by combining each observation pattern and
user usage pattern. In each case, a Multi-Layer Perceptron
(MLP) was trained using QoS and corresponding QoE data to
construct a model for predicting QoE. Subsequently, uniform
sampling was performed in the QoS space using the Monte
Carlo method, and the MLP was used to determine whether
QoE was satisfied, thereby generating the required QoS point
cloud.

Here, QoE is defined as “satisfied” when each service
provided at each user end node meets the specified QoS criteria.
The prediction accuracy of the MLP in each case is shown in
Table 111, and we confirmed that the prediction accuracy was
high in all cases at the selected observation points. In general,
low prediction accuracy indicates that the data flow affecting
QoE is not being properly observed, suggesting that the
selection of measurement locations and observation targets is
extremely important.

Note that various distribution parameters were empirically
determined to ensure diversity in user variation.

3) Performance comparison

Based on the experimental setup described above, we
evaluated the performance of the proposed method and three
comparison methods. The evaluation results for each method
are shown in Tables IV-VII. For each of the 160 cases, the F1
score, precision, and recall were calculated, and their mean,
variance, maximum, and minimum values were summarized.
The number of hyperplanes used to evaluate the complexity of
the representation is also shown in the same way.

These results show that the proposed method demonstrates
the highest point cloud classification performance while
keeping the number of hyperplanes low owing to the merge,
thereby achieving an accurate and simple separation boundary.

The following are our findings based on the analysis of
experimental results for the comparison methods.

Single hyperrectangle method: Precision was low, and there
was a tendency to cover a wide range of point clouds. As a
result, the F1 score was not high.

Multiple hyperrectangle method: A high F1 score was
obtained, although it was still lower than that of the proposed
method. In addition, the separation boundary became much
more complex due to the use of many hyperplanes, which
indicates a tendency toward overfitting.

Greedy method: As expected, performance varied significantly,
and overall stability was not achieved. In this experiment, the
number of hyperplanes k£ was fixed at k = 3, but increasing k
did not necessarily lead to improved accuracy. Detailed result
for k=10 is shown in the last row of Table VII.

For reference, we also attempted an approximation using
simplicial complexes based on the persistent homology
framework, separately from the comparison methods. This
method is flexible in terms of shape, but it requires a very large
number of simplices (0 (10°)) and the obtained F1 score was
only around 0.3. Therefore, it is difficult to use this method as
a practical comparison method in this study, and some
improvement is needed to reduce the number of simplices.

4) Hyperparameter characteristics of the proposed method

Tables VIII-XI summarize the robustness of the proposed
method’s hyperparameters p, ¢, r, and m in three cases.

Asterisks (*) denote baseline values, and other results vary
a single parameter while fixing the rest. On the evaluation
machine, the execution became infeasible when the number of
hyperplanes exceeded approximately 25, so some high-
precision settings were terminated.
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TABLE III
PREDICTION ACCURACY OF THE LEARNING MODEL IN EACH OBSERVATION SUITE
Observation name Obs.1 Obs.2 Obs.3 Obs.4 Obs.5 Obs.6 Obs.7 Obs.8
Accuracy 0.932 0.939 0.941 0.928 0.934 0.931 0.903 0.935
TABLE IV TABLE V
EVALUATION OF THE PROPOSED METHOD EVALUATION OF THE SINGLE HYPERRECTANGLE METHOD
F1 precision recall complexity F1 precision recall complexity
Ave 0.96 0.98 0.92 7.2 Ave 0.82 0.77 0.87 12.0
Var 0.001 0.006 0.009 24.6 Var 0.001 0.006 0.004 0.0
Max 1.0 1.0 1.0 19.0 Max 0.92 0.90 0.99 12.0
Min 0.80 0.10 0.04 1.0 Min 0.73 0.08 0.72 12.0
TABLE VI TABLE VI
EVALUATION OF THE MULTIPLE HYPERRECTANGLE METHOD EVALUATION OF GREEDY METHOD
F1 precision recall complexity Fl precision recall complexity
Ave 091 0.90 091 448.1 Ave 0.82 0.73 0.96 3
Var 0.002 0.0 0.0 3095.7 Var 0.02 0.04 0.0 0
Max 0.98 0.98 0.99 588.0 Max 0.99 0.97 1.0 3
Min 0.79 0.76 0.75 314.0 Min 0.41 0.26 0.88 3
Ave 0.77 0.67 0.98 10

The characteristics of each hyperparameter are summarized
below.
Mixed threshold p: At p = 0.5, some boundary blocks were
excluded, increasing the number of hyperplanes. A smaller p
is preferable.
Merge threshold c: Results were stable for ¢ € [0.2,0.8],
indicating robustness to this parameter.
Separation r: Merging remained stable without requiring
very strict settings (e.g., 7 > 0.95).
Partition density m: Larger m improves resolution but
exponentially increases cost (e.g., m = 6—6° blocks). High F1
was already achieved with m = 3, suggesting moderate values
are sufficient.

5) Scalability

To evaluate the performance of the proposed and
comparison methods in high-dimensional spaces,
experiments were conducted by increasing the number of
observed items and expanding the QoS space to 10 and 16
dimensions. Table XII shows the F1 scores, number of

hyperplanes, and execution times for two runs of each method.

The results show the proposed method maintains high
discrimination performance (F1 score) even as dimension
increases. On the other hand, as the dimension increases, the
computation time increases significantly, and the proposed
method tends to have a higher execution cost than the
comparison methods. In particular, in 16 dimensions, the
execution time per case exceeded 120 minutes, and it was
judged to be unsuitable for real-time processing applications.

In contrast, the greedy method had shorter execution times
than other methods, and the increase in computation time with

increasing dimension was relatively gradual. This is thought
to be because the greedy method does not perform dimension-
specific partitioning or neighborhood determination, but
instead performs low-dimensional operations such as
sequential hyperplane addition.

This experiment shows that while the proposed method
enables high-accuracy approximation, execution cost in high
dimensions is an issue. In future studies, it will be necessary
to investigate the possibility of speeding up the method by
parallelizing the processing or combining it with dimension
reduction methods.

V. Future WoRK

In this study, the performance evaluation was conducted
under a fixed network topology while varying user dynamics.
As future work, we plan to investigate how performance is
affected when network topology itself changes. Such changes
are expected to alter the geometric properties of the
corresponding QoS point clouds. Our preliminary experiments
using persistent homology indicated that geometric
characteristics, such as cluster and hole structures, can
influence the behavior of different approximation methods. A
systematic analysis of these effects, particularly under diverse
network topologies, remains an important direction for future
research.

Furthermore, addressing the challenges of scalability and
conducting evaluations with real-world data remain important
avenues for future research.
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TABLE VIII TABLE IX
PARAMETER P PARAMETER C
Casel Case2 Case3 Casel Case2 Case3
number number number number number number
p-value [ F1 c-value | F1 Fl1
of planes of planes of planes of planes of planes of planes
0.02 0.98 2 0.94 17 0.95 7 0.2 0.98 2 0.94 10 0.95 10
0.08* | 0.97 2 0.94 14 0.95 9 0.7*% | 0.98 2 0.94 14 0.95 9
0.2 0.98 11 N/A 27 0.96 20 0.8 0.99 3 0.95 17 0.93 16
0.3 N/A 46 N/A 46 N/A 28 0.9 0.99 6 0.95 17 N/A 30
TABLE X TABLE XI
PARAMETER R PARAMETER M
Casel Case2 Case3 Casel Case2 Case3
rvalue | F1 number number Fl number m-value | F1 number F1 number F1 number
of planes of planes of planes of planes of planes of planes
0.7 0.96 1 0.89 6 0.91 8 1 0.96 1 0.76 1 0.83 1
0.8 0.96 1 0.92 8 0.92 8 3 0.98 3 0.94 7 0.94 10
0.9% 0.98 2 0.94 14 0.95 9 4* 0.98 2 0.94 14 0.95 9
0.95 0.98 4 N/A 65 0.92 8 6 0.99 2 N/A 35 N/A 28
TABLE XII
SCALABILITY for QOE monitoring and increasing in cellular networks based on QOE-
t0-QOS mapping using spline approximation,” EURASIP Journal on
dim=10 dim=16 Wireless Communications and Networking, vol. 2022, no.1, 2022.
[4] L. Yan,Z. Qin, R. Zhang, Y. Li and G. Y. Li, “QoE-Aware Resource
number time number time Allocation for Semantic Communication Networks,” IEEE Global
Method FI ofplanes (mim)| ! ofplanes (min) Communications Conference (GLOBECOM), pp. 3272-3277, 2022.
[5] A. Bemporad, and M. Morari, “Control of systems integrating logic,
Proposed (m =2) 0.94 4 2 0.95 2 120 dynamics, and constraints," Automatica, vol. 35, no. 3, pp. 407-427,
1999.
Multiple 0.87 2278 1 0.90 3673 70 [6] P. Tang, Y. Dong, Y. Chen, S. Mao and S. Halgamuge, “QoE-Aware
Traffic Aggregation Using Preference Logic for Edge Intelligence,"
Greedy 0.86 10 0.2 | 0.88 10 7 IEEE Transactions on Wireless Communications, vol. 20, no. 9,

VI. CoNcLUSION

In this paper, we proposed a novel method to represent the
set of measured QoS values satisfying the target QoE at end
nodes as polytopes defined by multiple hyperplanes in a multi-
node network measurement scenario. This concise representation
enables effective control to achieve the target QoE, as well as
reliable prediction of future QoE fulfillment or violation.
Furthermore, by analyzing the volume and topological
features of the polytopes, we can identify critical nodes and
metrics for efficient QoE control and prediction.
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