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Abstract— This paper proposes a method for concisely 

representing the Quality of Service (QoS) requirements 

necessary to achieve user-desired Quality of Experience (QoE), 

even when these requirements are distributed in a complex 

shape within a high-dimensional space, in a form that can be 

utilized by control systems. Conventional QoE–QoS relationship 

models have been based on observations at a single node and 

primarily used simple threshold-based condition expressions. 

However, in control systems utilizing multiple network 

observation points, more complex and flexible expressions are 

required. In this study, we propose a method to obtain a set of 

QoS conditions that satisfy QoE as a point cloud, approximate 

its outline using as few hyperplanes as possible, and represent it 

with multiple convex polytopes. The proposed method is based 

on divide-and-conquer and shows superior performance in both 

accuracy and representation simplicity compared to conventional 

convex hull-based methods. Moreover, the resulting polytope 

representation is effective for application to network control 

algorithms and provides practical design guidelines.                                               

Index Terms —QoS, QoE, mapping 

I. INTRODUCTION  

This study addresses the challenge of concisely 

representing complex Quality of Service (QoS) conditions in 

a high-dimensional space that satisfy the Quality of 

Experience (QoE) required by users. Such representation is 

crucial for enabling automated control in practical network 

management. 

Conventional QoE–QoS relationship models have 

primarily been analytical based on measurements at a single 

node and assuming application-specific characteristics [1][2]. 

However, from a network operation perspective, it is often 

necessary to derive control operations based on QoS 

information obtained from multiple observation nodes within 

the network to achieve the QoE required by end users. In this 

case, the relationship between QoS and QoE strongly depends 

on the network configuration and settings, making explicit 

analytical model difficult.  

On the other hand, in recent years, methods that use 

machine learning models to predict QoE from QoS have been 

attracting attention [3][4]. By utilizing such models, it is also 

possible to consider an approach in which points that satisfy 

QoE conditions are sampled as a point cloud in QoS space. 

      However, to directly utilize the point cloud obtained from 

the learning model for control tasks, further approximation 

and representation of its shape are required. In particular, to 

inversely derive a set of QoS conditions that satisfy the QoE, 

the outer shape of the point cloud must be represented as a 

Fig. 1.  Point cloud in QoS space (delays observed at three nodes)  
Yellow: QoE satisfied     Purple: QoE violated 

 

constraint region. 

As shown in Fig. 1, even in a simple case, the point cloud 

in QoS space that satisfies the QoE condition forms a complex 

shape. Such a shape cannot be adequately represented by 

hyperrectangular regions defined by per-axis QoS thresholds. 

In network control, control operations to achieve QoE can 

be formulated as a problem of searching for an effective 

region within the QoS condition space. Many optimization-

based control methods (e.g., Model Predictive Control, MPC) 

express such constraint regions as convex polytopes to ensure 

computational efficiency and theoretical analyzability [5]. 
Therefore, methods that approximate point clouds with simple 

polytopes with high accuracy can be an important component 

in control system design.  

In this study, we propose a method that approximates the 

outline of a point cloud representing QoE-satisfying QoS 

conditions with as few hyperplanes as possible and constructs 

multiple convex polytopes based on these hyperplanes. This 

method follows a divide-and-conquer strategy to capture local 

structures of the point cloud, while merging hyperplanes as 

needed to achieve a balance between simplicity of 

representation and approximation accuracy.  

The contributions of this study can be summarized in the 

following two points.  

First, we propose a novel polytope construction method 

that accurately approximates the boundary of a set of QoS 

measurement points satisfying a required QoE, using a small 

number of hyperplanes.  

Second, through comparative evaluation against 

representative existing approaches, we demonstrate that the 

proposed method achieves a balance between approximation 

accuracy and representational simplicity—an essential 

requirement for practical network control. 
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This paper is organized as follows. Section II reviews 

related research and clarifies the position and novelty of the 

proposed method. Section III describes the proposed method's 

algorithm and parameters in detail. Section IV compares the 

proposed method with related methods in terms of 

performance evaluation and characteristics related to 

approximation accuracy and simplicity of expression. 

II. RELATED WORKS 

Research on the QoS–QoE relationship has mainly 

addressed forward mapping (QoS→QoE). Generic models [1] 

and learning-based predictors such as Pensieve [2] achieved 

accurate QoE estimation, but they remain application-specific 

or black-box in nature. 

Recently, attention has shifted toward inverse or QoE-

driven approaches. Al-Azzeh et al. [3] directly mapped QoE 

to QoS using spline approximation in cellular networks. Yan 

et al. [4] optimized resource allocation in semantic communi-

cation by treating QoE as the target, and Tang et al. [6] 

proposed traffic aggregation that adapts to heterogeneous QoE 

requirements. These works highlight the potential of 

QoE→QoS research, but they are either scenario-dependent 

or lack general, interpretable region modeling. 

To represent feasible QoS conditions, hyperrectangular 

thresholds [7] and decision-tree partitioning [8] are widely 

used due to simplicity, yet they fail to achieve both accurate 

separation and concise representation.  Greedy hyperplane 

approximation [9] improves flexibility but suffers from 

instability. 

In control engineering, convex polytopes are standard in 

Model Predictive Control (MPC) [5], and recent works embed 

QoE into control, e.g., QoE-aware congestion control [10] or 

reinforcement learning-based resource management [11][12]. 

However, such studies rely on implicit mappings. 

  Our work differs by providing a general polytope-based 

representation of QoS regions satisfying user QoE, combining 

approximation accuracy with interpretability and enabling 

direct integration into automated network control. 

III. PROPOSED METHOD 

A. Overview of the Proposed Method 

QoS measurement values from multiple observation nodes 

are combined into a single tuple. This QoS tuple space is 

uniformly distributed, and QoS values that achieve the target 

QoE and those that do not are classified using the mapping 

from the observation node QoS to the user-end QoE. The 

classified point clusters are referred to as QOS+ and QOS-, 

respectively. Next, multiple hyperplanes approximating the 

boundary of the QOS+ region are sought in this high-

dimensional space. To simplify the representation, the number 

of hyperplanes is kept as small as possible. 

The method for finding hyperplanes is as follows. First, 

the entire space is divided into small blocks. In each block, if 

QOS+ and QOS- are mixed, a hyperplane that separates 

QOS+ and QOS- is found using margin maximization. If the  

 

Fig. 2. An example of applying the proposed method 

slopes of the hyperplanes in adjacent blocks are similar, the 

blocks are merged and the process is repeated to find 

separating hyperplanes for the merged blocks. This process is 

repeated to approximate the boundary using a small number 

of hyperplanes.  

Finally, the first-order inequalities obtained from each 

boundary approximation hyperplane are combined into 

multiple simultaneous linear inequalities to represent QOS+. 

Fig. 2 shows an example of this method. This is a simple case 

where the observation node is at a single location, the data 

flow to be observed is a single stream, and the observed QoS 

is delay, packet loss, and throughput. It can be seen that QOS+ 

and QOS- are separated by five hyperplanes. 

B. Details of the Proposed Method 

Here, we describe the proposed method in detail, 

following its overall flow. First, in 1) and 2) below, we 

describe the QoS–QoE mapping assumed by the proposed 

method and the procedure for generating point clouds (QOS+) 

using it. These approaches are considered reasonable based on 

recent research trends and are not central to the originality of 

this study. On the other hand, in 3) and beyond, we propose a 

new boundary extraction method to precisely and concisely 

approximate polytopes for this point cloud, which constitutes 

the main contribution of this study. 

1)  Mapping that predicts QoE from the QoS of multiple 

observation nodes 

This proposed method assumes that a mapping from QoS 

at observation nodes to QoE is given, where the QoE at the 

user end is estimated using the measured values of multiple 

types of QoS (delay, packet loss rate, throughput, etc.) for 

multiple services at multiple observation nodes as input. Using 

this mapping, we construct the mapping from QoE to QoS in 

the opposite direction. The input of the given mapping is 

expressed in the form of a tuple (����, … , ����)  that 

combines all measured QoS values. We call this tuple 

observed QoS. The output QoE is expressed as a tuple 


����

�

�,

 that combines all the QoE ����



 expressed in Mean 

Opinion Score for each service q at each user end node �. 

Observed QoS that satisfies the target QoE is defined as 

follows. Suppose that the target value of QoE ��


 for node � 

and service � is given.  Then, the observed QoS that provides 
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an output ����



 that satisfies (����

 ≥ ��



) for all � and � is 

called ‘satisfying the target QoE’. 

As an example of the construction of the underlying 

mapping, the following is possible under certain assumptions. 

First, assume that an existing mapping from QoS to QoE is 

given on the same node, and further assume that QoS 

measurement is possible at not only the observation nodes but 

also the user end nodes. In this case, we create a mapping from 

observation-node QoS to user-end QoS by simultaneous 

measurement.  We can also relate the user-end QoS to QoE 

using the existing mapping. Then we can obtain the data of the 

relation between the observation-node QoS and QoE. With 

these data, we can construct the desired mapping by machine 

learning. 

2)  Using the learning model to express the set of observed 

QoS values that satisfy the target QoE as point cloud QOS+ 

(Monte Carlo method) 

First, a point cloud is generated uniformly at random in the 

n-dimensional observation QoS space. Each point is input into 

the mapping from observed QoS to QoE, and the target QoE 

is judged to be satisfied or not based on  the output results. The 

sets of all points that satisfy and do not satisfy the target QoE 

are classified as QOS+ and QOS-, respectively.  

3)  Derivation of multiple hyperplanes that approximate the 

boundary of QOS+  

Here, we show a method for approximating the boundary 

of QOS+ with as few hyperplanes as possible based on the 

principles of margin maximization and divide-and-conquer. 

The basic procedure is as described in the overview. The 

pseudo-code for the algorithm is shown in Algorithm 1. 

Before executing the pseudo-code, the space of observed QoS 

is divided into small blocks. 

a) QoS space partitioning and symbol definitions 

For each tuple, which is a point in the observation QoS 

space, its elements are assumed to be represented by real 

values. First, the observation QoS space ℝ� is divided into a 

number of hyperrectangles with the same number of division 

for each axis.  Each range that can be taken by each q���  ( � =
 1, 2, … , �) is divided into m parts, and then ℝ� is divided into 

�� parts. Each of these hyperrectangles is called a block. Let 

[�� , ��]  (where ��  and ��  are the minimum and maximum 

possible values of ���� respectively) be the interval 

corresponding to each block, and let the size of each side of 

the block be �� = (�� − ��)/�. Then, each block is defined by 

index !�, … , !� ( !� is an integer, 0 ≤ !� ≤ � − 1) as follows.  
$�%,…,�& = '((�, … , (�) ∈ ℝ�| ��  !� ≤ (� ≤ �� (!� + 1) ,  

The set of all blocks is denoted by ℬ. The sets of QOS+ 

and QOS- points contained in block $ are written as .($)/ 

and .($)0, respectively. For a set of blocks B, the set of all 

QOS+ points contained in B is written as B+ = ⋃ .($)/
2∈3 , 

and the set of all QOS- points is written as B- = ⋃ .($)0
2∈3 . 

b) Explanation of the behavior of the pseudo-code 

The following describes the details of each step in the 

pseudo-code for Algorithm 1. The algorithm uses the 

hyperparameters shown in Table I. Boundaries that were 

finely divided are gradually integrated during the execution of 

the algorithm. 

Step 1) For each block b ∈ ℬ , if .($)/ and .($)0 

contained therein are included in nearly equal parts within an 

error of |1/2 - p|, as specified by condition formula S, the block 

is called a boundary block between QOS+ and QOS−. Each 

set consisting of one boundary block is defined as the first set 

of boundaries, S. Note that each boundary is a set of blocks. 

Step 2)  For each boundary block b, we find the hyperplane 

that separates .($)/ and .($)0  based on  the idea of 

maximizing the margin. We call this hyperplane the 

hyperplane associated with the boundary block.  

Step 3) To express the boundary with fewer hyperplanes, 

we merge boundaries. We select a pair of adjacent boundaries 

(Bd1, Bd2). Here, two boundaries Bd1, Bd2 are said to be 

adjacent if there are two blocks $� ∈ Bd1 and $4 ∈ Bd2 such 

that $�  and $4  are adjacent. Two blocks, each with index 

$�%,…,�&  and $�5%,…,�5&  are said to be adjacent if, for some ! , 

6 �� − ��
56 = 1 and  �7 = �7

5  (for all 8 where 8 ≠ !).  

Step  4) Consider the merging of the hyperplanes associated 

with the two adjacent boundaries (Bd1, Bd2), i.e., the merging 

of the boundaries, as follows.  

Boundaries are merged when (i) the cosine of the angle  
between the two hyperplanes is greater than the threshold :, 

and (ii) the separation degree is greater than the threshold ;. 

(i) is determined by whether the inner product of the unit 

normal vectors �� and �4 of each hyperplane is greater than c. 

If the cosine value of the angle is determined to be greater than 

:, the two boundaries are tentatively merged. On (ii), if (i) is 

Algorithm 1 Algorithm for Separating the Boundaries of QOS+ in the 

Observation QoS Space 

1: Step1 Let ℬ be the set of all blocks, and let < be the set of  

2:  all boundaries. The initial state of < is defined as  follows. 

3:  < = ='$,| $ ∈ ℬ, � < |.($)/|/(|.($)/| + |.($)0|) < 1 − �? 

4: Step 2 For each boundary '$, in <, we find a hyperplane  

5:  that separates .($)/ and .($)0 based on  the idea of  

6:  maximizing the margin, and call this the hyperplane  

7:  associated with that boundary. 

8: Step 3 Choose two adjacent boundaries Bd1 and Bd2 from <.  

9:  Let �� and �4 be the unit normal vectors of the  hyperplanes 

10:  associated with Bd1 and Bd2, respectively. 

11: Step 4 If  the inner product �� ⋅ �4 > : then 

12:  find a hyperplane separating  

13:  .��
/ ∪ .�4

/ and  .��
0 ∪ .�4

0  and call it H. 

14:  If the separation degree of C > ; then 

15:  replace .�� ∪ .�4 with .��, .�4 as the new  

16:  boundary  and return to step 3. 

17:  else 

18:  return to step 3. 

19:  else if  there is an adjacent boundary that was not selected  

20:  in  step 3 then 

21:  return to step 3. 

22:  else 

23:  end processing. 
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satisfied, find a hyperplane that separates .��
/ ∪  .�4

/  and  

.��
0 ∪  .�4

0  for the tentatively merged boundary. If the 

merged boundary can be separated by the hyperplane with a  

threshold ;  or more, which is predetermined as the 

hyperparameter, the two boundaries merging is determined. 

The hyperplane is considered to be associated with the 

boundary.  

By continuing the above merging operation until no new 

merging of boundaries occurs, we obtain a small number of 

hyperplanes that approximate the boundaries.  

c) Parameter description 

The proposed method has four hyperparameters: partition 

density m, mixture threshold p, plane merge threshold c, and 

post-merge separation r. 

Partition density m: Divides each axis into m parts, yielding 

md blocks in d-dimensional space. Larger m improves 

boundary resolution but increases cost. 

Mixture threshold p: Identifies boundary blocks by the ratio 

r of QOS+ to QOS−. A block is on the boundary if p ≤ r ≤ 

1−p. Larger p enforces stricter detection but risks boundary 

defects. 

Merge threshold c: Neighboring hyperplanes with cosine 

similarity above c are merged. Larger c demands stricter 

alignment, improving accuracy but increasing plane count. 

Separation r: Finalizes a merge only if the separation between 

merged planes exceeds r, controlling how smoothly curved 

boundaries are approximated. 

These parameters govern the trade-off between accuracy 

and simplicity (number of hyperplanes) and should be tuned 

to the point-cloud structure and control requirements. 

4)  Expression of the set of observation QoSs that satisfy the 

target QoE using linear inequalities 

For the hyperplanes l1, l2, . . . , lm obtained in 3), and the 

hyperplanes lm+1, lm+2, . . . , lm+2n defined by the lower and 

upper bounds of each qosi, we denote the two linear 

inequalities derived from each li , with opposite directions as 

li+ and li-. For each i, either li+ or li- is selected, and a system 

of � + 2�  linear inequalities is constructed. If the ratio of 

QOS+ points contained in the region defined by this system 

exceeds a predefined threshold, the system is accepted. This 

process is repeated for all possible combinations of selections, 

and the set of accepted systems is used as the representation 

of the set of observed QoS conditions that satisfy the target 

QoE.  

Each system of linear inequalities defines a convex 

polytope, and the resulting representation is a set of such 

convex polytopes. 

IV. PERFORMANCE EVALUATION AND ANALYSIS  

A. Performance Evaluation of the Proposed Method 

1)  Comparison methods 

To evaluate the relative accuracy of the proposed method, 

we compared it with the three existing approaches mentioned 

in the introduction. (i) separation using a single hyper-

rectangle, (ii) separation using multiple hyperrectangles, and 

(iii) separation using multiple hyperplanes by the greedy 

method. 

The polytope approximation procedure for QoS point 

clouds in each method is as follows:  

Single hyperrectangle method: Each axis of the d-dimensional 

space in which the point cloud exists is discretely divided,  

and the entire space is approximated with a single 

hyperrectangle. Lower and upper limits for each dimension 

are explored by grid search to maximize the F1 score. 

Multiple hyperrectangle method: We used DecisionTreeClassifier 

from sklearn.tree to partition the space into multiple 

hyperrectangular regions based on split conditions at each 

node. This method can model nonlinear and complex 

boundaries but is prone to overfitting. 

Hyperplane separation using the greedy method: First, a single 

hyperplane is used to separate QoS+ and QoS- with a linear 

classifier. New hyperplanes are iteratively added to regions 

with large errors, forming a polytope-based separation region. 

We used scikit-learn’s LogisticRegression for implementation. 

Each of these methods has different characteristics. A 

single hyperrectangle is effective when the target point set has 

a simple shape, but it has limitations in representing complex 

boundaries. Multiple hyperrectangles allow for flexible 

representation, but there is a risk of model complexity due to 

overfitting. The greedy method is prone to accuracy variability 

due to the order of hyperplane addition and local optima. 

From these perspectives, we quantitatively evaluate the 

proposed method in comparison with the others in terms of 

various aspects. 

2)  Generation of test data 

The accuracy and behavior of the proposed and 

comparison methods heavily depend on the characteristics of 

the input QoS point cloud. Therefore, it is important to use 

evaluation data that appropriately reflect those characteristics 

when comparing the methods. In this study, test data were 

generated through simulation using the following procedure.  

Network configuration: The network configuration to be 

evaluated is shown in Fig. 3, consisting of nine intermediate 

nodes (n1 to n9), two server nodes (S1 and S2), and two user 

end nodes (E1 and E2). Each node is connected by links 

shown in the figure, and relay nodes and user nodes are 

assigned fixed-size receive buffers, while links are assigned 

fixed bandwidths. 

Traffic model and simulation: Network utilization varies 

depending on the amount of data transmitted from the server 

TABLE I 
LIST OF HYPERPARAMETERS USED 

m Number of partitions for each QoS 

p Ratio of QOS+ and QOS- of blocks 

c 
Maximum value of the inner product of unit normal vectors 

of two hyperplanes that are judged to be close in angle 

r 
Minimum value of the separation degree of QOS+ and QOS- 
of hyperplanes that allow merging 
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to the end nodes and the routing. Traffic is modeled based on 

the following probability distributions: 

- Number of session occurrences: Poisson distribution 

- Session duration: Weibull distribution 

- Session start time: Uniform distribution 

To reflect these variations, 20 types of user usage patterns 

were prepared. The routing was fixed throughout the 

experiment. 

QoS measurement and observation patterns: QoS was 

measured using a custom event-driven simulator. This 

simulator is a simplified version of standard simulators such 

as ns-3. In the evaluation, we used eight observation patterns 

shown in Table II. In each pattern, we measured the delay for 

multiple data flows (e.g., S1→E1) at specific nodes. The QoS 

vector at each observation point consists of six dimensions. 

Construction of QoS point clouds: In total, 160 scenarios 

were generated by combining each observation pattern and 

user usage pattern. In each case, a Multi-Layer Perceptron 

(MLP) was trained using QoS and corresponding QoE data to 

construct a model for predicting QoE. Subsequently, uniform 

sampling was performed in the QoS space using the Monte 

Carlo method, and the MLP was used to determine whether 

QoE was satisfied, thereby generating the required QoS point 

cloud. 

      Here, QoE is defined as “satisfied” when each service 

provided at each user end node meets the specified QoS criteria. 

The prediction accuracy of the MLP in each case is shown in 

Table III, and we confirmed that the prediction accuracy was 

high in all cases at the selected observation points. In general, 

low prediction accuracy indicates that the data flow affecting 

QoE is not being properly observed, suggesting that the 

selection of measurement locations and observation targets is 

extremely important.   

Note that various distribution parameters were empirically 

determined to ensure diversity in user variation. 

3) Performance comparison  

Based on the experimental setup described above, we 

evaluated the performance of the proposed method and three 

comparison methods. The evaluation results for each method 

are shown in Tables IV–VII. For each of the 160 cases, the F1 

score, precision, and recall were calculated, and their mean, 

variance, maximum, and minimum values were summarized. 

The number of hyperplanes used to evaluate the complexity of 

the representation is also shown in the same way. 

These results show that the proposed method demonstrates 

the highest point cloud classification performance while 

keeping the number of hyperplanes low owing to the merge, 

thereby achieving an accurate and simple separation boundary. 

The following are our findings based on the analysis of 

experimental results for the comparison methods.  

Single hyperrectangle method: Precision was low, and there 

was a tendency to cover a wide range of point clouds. As a 

result, the F1 score was not high. 

Multiple hyperrectangle method: A high F1 score was 

obtained, although it was still lower than that of the proposed 

method. In addition, the separation boundary became much 

more complex due to the use of many hyperplanes, which 

indicates a tendency toward overfitting. 

Greedy method: As expected, performance varied significantly, 

and overall stability was not achieved. In this experiment, the 

number of hyperplanes k was fixed at k = 3, but increasing k 

did not necessarily lead to improved accuracy. Detailed result 

for k = 10 is shown in the last row of Table VII.  

For reference, we also attempted an approximation using 

simplicial complexes based on the persistent homology 

framework, separately from the comparison methods. This 

method is flexible in terms of shape, but it requires a very large 

number of simplices (D(10⁵)) and the obtained F1 score was 

only around 0.3. Therefore, it is difficult to use this method as 

a practical comparison method in this study, and some 

improvement is needed to reduce the number of simplices. 

4)  Hyperparameter characteristics of the proposed method 

      Tables VIII–XI summarize the robustness of the proposed 

method’s hyperparameters p, c, r, and m in three cases. 

Asterisks (*) denote baseline values, and other results vary 

a single parameter while fixing the rest. On the evaluation 

machine, the execution became infeasible when the number of 

hyperplanes exceeded approximately 25, so some high-

precision settings were terminated.  

TABLE II 

OBSERVATION DESCRIPTION OF EACH OBSERVATION SUITE 

Observation name Observation node (observation data flow) 

Obs.1 
��(<� → G�, <� → G4), �H(<4 → G4),  

�I(<� → G�, <4 → G�, <4 → G4) 

Obs.2 
�J(<� → G�,  <4 → G� , <4 → G4), 
 �H(<� → G4, <4 → G� , <4 → G4) 

Obs.3 
��(<� → G�,  <� → G4), �4(<4 → G�),  

 �H(<� → G4, <4 → G� , <4 → G4) 

Obs.4 
�J(<� → G�,  <4 → G� , <4 → G4), 
 �I(<� → G�,  <4 → G� , <4 → G4) 

Obs.5 
�J(<4 → G�, <4 → G4), �K(<� → G4),  

�I(<� → G�, <4 → G� , <4 → G4) 

Obs.6 
�I(<� → G�, <4 → G�, <4 → G4), 

�L(<� → G4), �M(<� → G�), �H(<4 → G� )  

Obs.7 
��(<� → G4), �4(<4 → G�), �N(<4 → G4 ),  

�J(<� → G�, <4 → G�, <4 → G4) 

Obs.8 
�I(<4 → G4), �L(<� → G4), �M(<� → G� ),  

�H(<� → G4, <4 → G� , <4 → G4) 

Fig.3. Structure of target network  
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TABLE IV 
  EVALUATION OF THE PROPOSED METHOD 

 F1 precision recall complexity 

Ave 0.96 0.98 0.92 7.2  

Var 0.001  0.006  0.009  24.6  

Max 1.0  1.0  1.0 19.0  

Min 0.80 0.10 0.04  1.0  

     The characteristics of each hyperparameter are summarized 
below. 

Mixed threshold p: At p = 0.5, some boundary blocks were 

excluded, increasing the number of hyperplanes. A smaller p 

is preferable. 

Merge threshold c: Results were stable for c ∈ [0.2,0.8], 

indicating robustness to this parameter. 

Separation r: Merging remained stable without requiring 

very strict settings (e.g., r ≥ 0.95). 

Partition density m: Larger m improves resolution but 

exponentially increases cost (e.g., m = 6→66 blocks). High F1 

was already achieved with m = 3, suggesting moderate values 

are sufficient. 

5)  Scalability 

     To evaluate the performance of the proposed and 

comparison methods in high-dimensional spaces, 

experiments were conducted by increasing the number of 

observed items and expanding the QoS space to 10 and 16 

dimensions. Table XII shows the F1 scores, number of 

hyperplanes, and execution times for two runs of each method.  

     The results show the proposed method maintains high 

discrimination performance (F1 score) even as  dimension 

increases. On the other hand, as the dimension increases, the 

computation time increases significantly, and the proposed 

method tends to have a higher execution cost than the 

comparison methods. In particular, in 16 dimensions, the 

execution time per case exceeded 120 minutes, and it was 

judged to be unsuitable for real-time processing applications. 

In contrast, the greedy method had shorter execution times 

than other methods, and the increase in computation time with 

increasing dimension was relatively gradual. This is thought 

to be because the greedy method does not perform dimension-

specific partitioning or neighborhood determination, but 

instead performs low-dimensional operations such as 

sequential hyperplane addition. 

This experiment shows that while the proposed method 

enables high-accuracy approximation, execution cost in high 

dimensions is an issue. In future studies, it will be necessary 

to investigate the possibility of speeding up the method by 

parallelizing the processing or combining it with dimension 

reduction methods. 

V. FUTURE WORK  

In this study, the performance evaluation was conducted 

under a fixed network topology while varying user dynamics. 

As future work, we plan to investigate how performance is 

affected when network topology itself changes. Such changes 

are expected to alter the geometric properties of the 

corresponding QoS point clouds. Our preliminary experiments 

using persistent homology indicated that geometric 

characteristics, such as cluster and hole structures, can 

influence the behavior of different approximation methods.   A 

systematic analysis of these effects, particularly under diverse 

network topologies, remains an important direction for future 

research. 

Furthermore, addressing the challenges of scalability and 

conducting evaluations with real-world data remain important 

avenues for future research. 

TABLE III  

PREDICTION ACCURACY OF THE LEARNING MODEL IN EACH OBSERVATION SUITE 

Observation name Obs.1 Obs.2 Obs.3 Obs.4 Obs.5 Obs.6 Obs.7 Obs.8 

Accuracy 0.932 0.939 0.941 0.928 0.934 0.931 0.903 0.935 

TABLE VI 

EVALUATION OF THE MULTIPLE  HYPERRECTANGLE METHOD 

 F1 precision recall complexity 

Ave 0.91  0.90  0.91 448.1 

Var 0.002  0.0  0.0  3095.7 

Max 0.98  0.98  0.99  588.0 

Min 0.79  0.76  0.75 314.0 

TABLE V 
EVALUATION OF THE SINGLE HYPERRECTANGLE METHOD 

 F1 precision recall complexity 

Ave 0.82 0.77  0.87  12.0  

Var 0.001  0.006  0.004  0.0 

Max 0.92  0.90  0.99  12.0 

Min 0.73  0.08  0.72  12.0  

TABLE VII 

EVALUATION OF GREEDY  METHOD 

 F1 precision recall complexity 

Ave 0.82 0.73  0.96 3 

Var 0.02  0.04  0.0  0 

Max 0.99  0.97  1.0  3 

Min 0.41  0.26  0.88  3 

Ave 0.77 0.67 0.98 10 
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VI. CONCLUSION  

In this paper, we proposed a novel method to represent the 

set of measured QoS values satisfying the target QoE at end 

nodes as polytopes defined by multiple hyperplanes in a multi-

node network measurement scenario. This concise representation 

enables effective control to achieve the target QoE, as well as 

reliable prediction of future QoE fulfillment or violation. 

Furthermore, by analyzing the volume and topological 

features of the  polytopes, we can identify critical nodes and 

metrics for efficient QoE control and prediction. 
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TABLE  VIII 
  PARAMETER P  

 Case1 Case2 Case3 

p-value F1 
number 

of planes  
F1 

number 

of planes 
F1 

number 

of planes  

0.02 0.98 2 0.94 17 0.95 7 

  0.08* 0.97 2 0.94 14 0.95 9 

0.2 0.98 11 N/A 27 0.96 20 

0.3   N/A 46 N/A 46 N/A 28 

TABLE IX 

PARAMETER C 

 Case1 Case2 Case3 

c-value F1 
number 

of planes  
F1 

number 

of planes  
F1 

number  

of planes  

0.2 0.98 2 0.94 10 0.95 10 

  0.7* 0.98 2 0.94 14 0.95 9 

0.8 0.99 3 0.95 17 0.93 16 

0.9 0.99 6 0.95 17 N/A 30 

TABLE X 

  PARAMETER R 

 Case1 Case2 Case3 

r-value F1 
number 

of planes  
F1 

number 

of planes 
F1 

number  

of planes 

0.7 0.96 1 0.89 6 0.91 8 

0.8 0.96 1 0.92 8 0.92 8 

 0.9* 0.98 2 0.94 14 0.95 9 

0.95 0.98 4 N/A 65 0.92 8 

TABLE XII 

SCALABILITY 

 dim=10 dim=16 

Method F1 
number 

of planes 

time 

(min) 
F1 

number 

of planes 

time 

(min) 

Proposed (m =2 ) 0.94 4 2 0.95 2 120 

Multiple 0.87 2278 1 0.90 3673 70 

Greedy 0.86 10 0.2 0.88 10 7 

TABLE XI 

 PARAMETER M 

 Case1 Case2 Case3 

m-value F1 
number 

of planes 
F1 

number  

of planes 
F1 

number 

of planes 

1 0.96 1 0.76 1 0.83 1 

3 0.98 3 0.94 7 0.94 10 

 4* 0.98 2 0.94 14 0.95 9 

6 0.99 2 N/A  35 N/A 28 
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