

Representation of QoS Conditions at Observation Nodes

that Satisfy the Required QoE at User End Nodes

Ayumi Araragi, Akio Watanabe, Hiroki Ikeuchi, Yousuke Takahashi, Taichi Kawano and Masahiro Yokota

NTT Network Service Systems Laboratories, NTT Corporation, Tokyo, Japan

Email:{ayumi.araragi, akio.watanabe, hiroki.ikeuchi, yousuke.takahashi, taichi.kawano, masahiro.yokota}@ntt.com

Abstract— This paper proposes a method for concisely

representing the Quality of Service (QoS) requirements

necessary to achieve user-desired Quality of Experience (QoE),

even when these requirements are distributed in a complex

shape within a high-dimensional space, in a form that can be

utilized by control systems. Conventional QoE–QoS relationship

models have been based on observations at a single node and

primarily used simple threshold-based condition expressions.

However, in control systems utilizing multiple network

observation points, more complex and flexible expressions are

required. In this study, we propose a method to obtain a set of

QoS conditions that satisfy QoE as a point cloud, approximate

its outline using as few hyperplanes as possible, and represent it

with multiple convex polytopes. The proposed method is based

on divide-and-conquer and shows superior performance in both

accuracy and representation simplicity compared to conventional

convex hull-based methods. Moreover, the resulting polytope

representation is effective for application to network control

algorithms and provides practical design guidelines.

Index Terms —QoS, QoE, mapping

I. INTRODUCTION

This study addresses the challenge of concisely

representing complex Quality of Service (QoS) conditions in

a high-dimensional space that satisfy the Quality of

Experience (QoE) required by users. Such representation is

crucial for enabling automated control in practical network

management.

Conventional QoE–QoS relationship models have

primarily been analytical based on measurements at a single

node and assuming application-specific characteristics [1][2].

However, from a network operation perspective, it is often

necessary to derive control operations based on QoS

information obtained from multiple observation nodes within

the network to achieve the QoE required by end users. In this

case, the relationship between QoS and QoE strongly depends

on the network configuration and settings, making explicit

analytical model difficult.

On the other hand, in recent years, methods that use

machine learning models to predict QoE from QoS have been

attracting attention [3][4]. By utilizing such models, it is also

possible to consider an approach in which points that satisfy

QoE conditions are sampled as a point cloud in QoS space.

 However, to directly utilize the point cloud obtained from

the learning model for control tasks, further approximation

and representation of its shape are required. In particular, to

inversely derive a set of QoS conditions that satisfy the QoE,

the outer shape of the point cloud must be represented as a

Fig. 1. Point cloud in QoS space (delays observed at three nodes)
Yellow: QoE satisfied Purple: QoE violated

constraint region.

As shown in Fig. 1, even in a simple case, the point cloud

in QoS space that satisfies the QoE condition forms a complex

shape. Such a shape cannot be adequately represented by

hyperrectangular regions defined by per-axis QoS thresholds.

In network control, control operations to achieve QoE can

be formulated as a problem of searching for an effective

region within the QoS condition space. Many optimization-

based control methods (e.g., Model Predictive Control, MPC)

express such constraint regions as convex polytopes to ensure

computational efficiency and theoretical analyzability [5].
Therefore, methods that approximate point clouds with simple

polytopes with high accuracy can be an important component

in control system design.

In this study, we propose a method that approximates the

outline of a point cloud representing QoE-satisfying QoS

conditions with as few hyperplanes as possible and constructs

multiple convex polytopes based on these hyperplanes. This

method follows a divide-and-conquer strategy to capture local

structures of the point cloud, while merging hyperplanes as

needed to achieve a balance between simplicity of

representation and approximation accuracy.

The contributions of this study can be summarized in the

following two points.

First, we propose a novel polytope construction method

that accurately approximates the boundary of a set of QoS

measurement points satisfying a required QoE, using a small

number of hyperplanes.

Second, through comparative evaluation against

representative existing approaches, we demonstrate that the

proposed method achieves a balance between approximation

accuracy and representational simplicity—an essential

requirement for practical network control.

2025 21st International Conference on Network and Service Management (CNSM)

978-3-903176-75-1 ©2025 IFIP

This paper is organized as follows. Section II reviews

related research and clarifies the position and novelty of the

proposed method. Section III describes the proposed method's

algorithm and parameters in detail. Section IV compares the

proposed method with related methods in terms of

performance evaluation and characteristics related to

approximation accuracy and simplicity of expression.

II. RELATED WORKS

Research on the QoS–QoE relationship has mainly

addressed forward mapping (QoS→QoE). Generic models [1]

and learning-based predictors such as Pensieve [2] achieved

accurate QoE estimation, but they remain application-specific

or black-box in nature.

Recently, attention has shifted toward inverse or QoE-

driven approaches. Al-Azzeh et al. [3] directly mapped QoE

to QoS using spline approximation in cellular networks. Yan

et al. [4] optimized resource allocation in semantic communi-

cation by treating QoE as the target, and Tang et al. [6]

proposed traffic aggregation that adapts to heterogeneous QoE

requirements. These works highlight the potential of

QoE→QoS research, but they are either scenario-dependent

or lack general, interpretable region modeling.

To represent feasible QoS conditions, hyperrectangular

thresholds [7] and decision-tree partitioning [8] are widely

used due to simplicity, yet they fail to achieve both accurate

separation and concise representation. Greedy hyperplane

approximation [9] improves flexibility but suffers from

instability.

In control engineering, convex polytopes are standard in

Model Predictive Control (MPC) [5], and recent works embed

QoE into control, e.g., QoE-aware congestion control [10] or

reinforcement learning-based resource management [11][12].

However, such studies rely on implicit mappings.

 Our work differs by providing a general polytope-based

representation of QoS regions satisfying user QoE, combining

approximation accuracy with interpretability and enabling

direct integration into automated network control.

III. PROPOSED METHOD

A. Overview of the Proposed Method

QoS measurement values from multiple observation nodes

are combined into a single tuple. This QoS tuple space is

uniformly distributed, and QoS values that achieve the target

QoE and those that do not are classified using the mapping

from the observation node QoS to the user-end QoE. The

classified point clusters are referred to as QOS+ and QOS-,

respectively. Next, multiple hyperplanes approximating the

boundary of the QOS+ region are sought in this high-

dimensional space. To simplify the representation, the number

of hyperplanes is kept as small as possible.

The method for finding hyperplanes is as follows. First,

the entire space is divided into small blocks. In each block, if

QOS+ and QOS- are mixed, a hyperplane that separates

QOS+ and QOS- is found using margin maximization. If the

Fig. 2. An example of applying the proposed method

slopes of the hyperplanes in adjacent blocks are similar, the

blocks are merged and the process is repeated to find

separating hyperplanes for the merged blocks. This process is

repeated to approximate the boundary using a small number

of hyperplanes.

Finally, the first-order inequalities obtained from each

boundary approximation hyperplane are combined into

multiple simultaneous linear inequalities to represent QOS+.

Fig. 2 shows an example of this method. This is a simple case

where the observation node is at a single location, the data

flow to be observed is a single stream, and the observed QoS

is delay, packet loss, and throughput. It can be seen that QOS+

and QOS- are separated by five hyperplanes.

B. Details of the Proposed Method

Here, we describe the proposed method in detail,

following its overall flow. First, in 1) and 2) below, we

describe the QoS–QoE mapping assumed by the proposed

method and the procedure for generating point clouds (QOS+)

using it. These approaches are considered reasonable based on

recent research trends and are not central to the originality of

this study. On the other hand, in 3) and beyond, we propose a

new boundary extraction method to precisely and concisely

approximate polytopes for this point cloud, which constitutes

the main contribution of this study.

1) Mapping that predicts QoE from the QoS of multiple

observation nodes

This proposed method assumes that a mapping from QoS

at observation nodes to QoE is given, where the QoE at the

user end is estimated using the measured values of multiple

types of QoS (delay, packet loss rate, throughput, etc.) for

multiple services at multiple observation nodes as input. Using

this mapping, we construct the mapping from QoE to QoS in

the opposite direction. The input of the given mapping is

expressed in the form of a tuple (����, … , ����) that

combines all measured QoS values. We call this tuple

observed QoS. The output QoE is expressed as a tuple

����

�

�,

 that combines all the QoE ����

 expressed in Mean

Opinion Score for each service q at each user end node �.

Observed QoS that satisfies the target QoE is defined as

follows. Suppose that the target value of QoE ��

 for node �

and service � is given. Then, the observed QoS that provides

2025 21st International Conference on Network and Service Management (CNSM)

an output ����

 that satisfies (����

 ≥ ��

) for all � and � is

called ‘satisfying the target QoE’.

As an example of the construction of the underlying

mapping, the following is possible under certain assumptions.

First, assume that an existing mapping from QoS to QoE is

given on the same node, and further assume that QoS

measurement is possible at not only the observation nodes but

also the user end nodes. In this case, we create a mapping from

observation-node QoS to user-end QoS by simultaneous

measurement. We can also relate the user-end QoS to QoE

using the existing mapping. Then we can obtain the data of the

relation between the observation-node QoS and QoE. With

these data, we can construct the desired mapping by machine

learning.

2) Using the learning model to express the set of observed

QoS values that satisfy the target QoE as point cloud QOS+

(Monte Carlo method)

First, a point cloud is generated uniformly at random in the

n-dimensional observation QoS space. Each point is input into

the mapping from observed QoS to QoE, and the target QoE

is judged to be satisfied or not based on the output results. The

sets of all points that satisfy and do not satisfy the target QoE

are classified as QOS+ and QOS-, respectively.

3) Derivation of multiple hyperplanes that approximate the

boundary of QOS+

Here, we show a method for approximating the boundary

of QOS+ with as few hyperplanes as possible based on the

principles of margin maximization and divide-and-conquer.

The basic procedure is as described in the overview. The

pseudo-code for the algorithm is shown in Algorithm 1.

Before executing the pseudo-code, the space of observed QoS

is divided into small blocks.

a) QoS space partitioning and symbol definitions

For each tuple, which is a point in the observation QoS

space, its elements are assumed to be represented by real

values. First, the observation QoS space ℝ� is divided into a

number of hyperrectangles with the same number of division

for each axis. Each range that can be taken by each q��� (� =
 1, 2, … , �) is divided into m parts, and then ℝ� is divided into

�� parts. Each of these hyperrectangles is called a block. Let

[�� , ��] (where �� and �� are the minimum and maximum

possible values of ���� respectively) be the interval

corresponding to each block, and let the size of each side of

the block be �� = (�� − ��)/�. Then, each block is defined by

index !�, … , !� (!� is an integer, 0 ≤ !� ≤ � − 1) as follows.
$�%,…,�& = '((�, … , (�) ∈ ℝ�| �� !� ≤ (� ≤ �� (!� + 1) ,

The set of all blocks is denoted by ℬ. The sets of QOS+

and QOS- points contained in block $ are written as .($)/

and .($)0, respectively. For a set of blocks B, the set of all

QOS+ points contained in B is written as B+ = ⋃ .($)/
2∈3 ,

and the set of all QOS- points is written as B- = ⋃ .($)0
2∈3 .

b) Explanation of the behavior of the pseudo-code

The following describes the details of each step in the

pseudo-code for Algorithm 1. The algorithm uses the

hyperparameters shown in Table I. Boundaries that were

finely divided are gradually integrated during the execution of

the algorithm.

Step 1) For each block b ∈ ℬ , if .($)/ and .($)0

contained therein are included in nearly equal parts within an

error of |1/2 - p|, as specified by condition formula S, the block

is called a boundary block between QOS+ and QOS−. Each

set consisting of one boundary block is defined as the first set

of boundaries, S. Note that each boundary is a set of blocks.

Step 2) For each boundary block b, we find the hyperplane

that separates .($)/ and .($)0 based on the idea of

maximizing the margin. We call this hyperplane the

hyperplane associated with the boundary block.

Step 3) To express the boundary with fewer hyperplanes,

we merge boundaries. We select a pair of adjacent boundaries

(Bd1, Bd2). Here, two boundaries Bd1, Bd2 are said to be

adjacent if there are two blocks $� ∈ Bd1 and $4 ∈ Bd2 such

that $� and $4 are adjacent. Two blocks, each with index

$�%,…,�& and $�5%,…,�5& are said to be adjacent if, for some ! ,

6 �� − ��
56 = 1 and �7 = �7

5 (for all 8 where 8 ≠ !).

Step 4) Consider the merging of the hyperplanes associated

with the two adjacent boundaries (Bd1, Bd2), i.e., the merging

of the boundaries, as follows.

Boundaries are merged when (i) the cosine of the angle
between the two hyperplanes is greater than the threshold :,

and (ii) the separation degree is greater than the threshold ;.

(i) is determined by whether the inner product of the unit

normal vectors �� and �4 of each hyperplane is greater than c.

If the cosine value of the angle is determined to be greater than

:, the two boundaries are tentatively merged. On (ii), if (i) is

Algorithm 1 Algorithm for Separating the Boundaries of QOS+ in the

Observation QoS Space

1: Step1 Let ℬ be the set of all blocks, and let < be the set of

2: all boundaries. The initial state of < is defined as follows.

3: < = ='$,| $ ∈ ℬ, � < |.($)/|/(|.($)/| + |.($)0|) < 1 − �?

4: Step 2 For each boundary '$, in <, we find a hyperplane

5: that separates .($)/ and .($)0 based on the idea of

6: maximizing the margin, and call this the hyperplane

7: associated with that boundary.

8: Step 3 Choose two adjacent boundaries Bd1 and Bd2 from <.

9: Let �� and �4 be the unit normal vectors of the hyperplanes

10: associated with Bd1 and Bd2, respectively.

11: Step 4 If the inner product �� ⋅ �4 > : then

12: find a hyperplane separating

13: .��
/ ∪ .�4

/ and .��
0 ∪ .�4

0 and call it H.

14: If the separation degree of C > ; then

15: replace .�� ∪ .�4 with .��, .�4 as the new

16: boundary and return to step 3.

17: else

18: return to step 3.

19: else if there is an adjacent boundary that was not selected

20: in step 3 then

21: return to step 3.

22: else

23: end processing.

2025 21st International Conference on Network and Service Management (CNSM)

satisfied, find a hyperplane that separates .��
/ ∪ .�4

/ and

.��
0 ∪ .�4

0 for the tentatively merged boundary. If the

merged boundary can be separated by the hyperplane with a

threshold ; or more, which is predetermined as the

hyperparameter, the two boundaries merging is determined.

The hyperplane is considered to be associated with the

boundary.

By continuing the above merging operation until no new

merging of boundaries occurs, we obtain a small number of

hyperplanes that approximate the boundaries.

c) Parameter description

The proposed method has four hyperparameters: partition

density m, mixture threshold p, plane merge threshold c, and

post-merge separation r.

Partition density m: Divides each axis into m parts, yielding

md blocks in d-dimensional space. Larger m improves

boundary resolution but increases cost.

Mixture threshold p: Identifies boundary blocks by the ratio

r of QOS+ to QOS−. A block is on the boundary if p ≤ r ≤

1−p. Larger p enforces stricter detection but risks boundary

defects.

Merge threshold c: Neighboring hyperplanes with cosine

similarity above c are merged. Larger c demands stricter

alignment, improving accuracy but increasing plane count.

Separation r: Finalizes a merge only if the separation between

merged planes exceeds r, controlling how smoothly curved

boundaries are approximated.

These parameters govern the trade-off between accuracy

and simplicity (number of hyperplanes) and should be tuned

to the point-cloud structure and control requirements.

4) Expression of the set of observation QoSs that satisfy the

target QoE using linear inequalities

For the hyperplanes l1, l2, . . . , lm obtained in 3), and the

hyperplanes lm+1, lm+2, . . . , lm+2n defined by the lower and

upper bounds of each qosi, we denote the two linear

inequalities derived from each li , with opposite directions as

li+ and li-. For each i, either li+ or li- is selected, and a system

of � + 2� linear inequalities is constructed. If the ratio of

QOS+ points contained in the region defined by this system

exceeds a predefined threshold, the system is accepted. This

process is repeated for all possible combinations of selections,

and the set of accepted systems is used as the representation

of the set of observed QoS conditions that satisfy the target

QoE.

Each system of linear inequalities defines a convex

polytope, and the resulting representation is a set of such

convex polytopes.

IV. PERFORMANCE EVALUATION AND ANALYSIS

A. Performance Evaluation of the Proposed Method

1) Comparison methods

To evaluate the relative accuracy of the proposed method,

we compared it with the three existing approaches mentioned

in the introduction. (i) separation using a single hyper-

rectangle, (ii) separation using multiple hyperrectangles, and

(iii) separation using multiple hyperplanes by the greedy

method.

The polytope approximation procedure for QoS point

clouds in each method is as follows:

Single hyperrectangle method: Each axis of the d-dimensional

space in which the point cloud exists is discretely divided,

and the entire space is approximated with a single

hyperrectangle. Lower and upper limits for each dimension

are explored by grid search to maximize the F1 score.

Multiple hyperrectangle method: We used DecisionTreeClassifier

from sklearn.tree to partition the space into multiple

hyperrectangular regions based on split conditions at each

node. This method can model nonlinear and complex

boundaries but is prone to overfitting.

Hyperplane separation using the greedy method: First, a single

hyperplane is used to separate QoS+ and QoS- with a linear

classifier. New hyperplanes are iteratively added to regions

with large errors, forming a polytope-based separation region.

We used scikit-learn’s LogisticRegression for implementation.

Each of these methods has different characteristics. A

single hyperrectangle is effective when the target point set has

a simple shape, but it has limitations in representing complex

boundaries. Multiple hyperrectangles allow for flexible

representation, but there is a risk of model complexity due to

overfitting. The greedy method is prone to accuracy variability

due to the order of hyperplane addition and local optima.

From these perspectives, we quantitatively evaluate the

proposed method in comparison with the others in terms of

various aspects.

2) Generation of test data

The accuracy and behavior of the proposed and

comparison methods heavily depend on the characteristics of

the input QoS point cloud. Therefore, it is important to use

evaluation data that appropriately reflect those characteristics

when comparing the methods. In this study, test data were

generated through simulation using the following procedure.

Network configuration: The network configuration to be

evaluated is shown in Fig. 3, consisting of nine intermediate

nodes (n1 to n9), two server nodes (S1 and S2), and two user

end nodes (E1 and E2). Each node is connected by links

shown in the figure, and relay nodes and user nodes are

assigned fixed-size receive buffers, while links are assigned

fixed bandwidths.

Traffic model and simulation: Network utilization varies

depending on the amount of data transmitted from the server

TABLE I
LIST OF HYPERPARAMETERS USED

m Number of partitions for each QoS

p Ratio of QOS+ and QOS- of blocks

c
Maximum value of the inner product of unit normal vectors

of two hyperplanes that are judged to be close in angle

r
Minimum value of the separation degree of QOS+ and QOS-
of hyperplanes that allow merging

2025 21st International Conference on Network and Service Management (CNSM)

to the end nodes and the routing. Traffic is modeled based on

the following probability distributions:

- Number of session occurrences: Poisson distribution

- Session duration: Weibull distribution

- Session start time: Uniform distribution

To reflect these variations, 20 types of user usage patterns

were prepared. The routing was fixed throughout the

experiment.

QoS measurement and observation patterns: QoS was

measured using a custom event-driven simulator. This

simulator is a simplified version of standard simulators such

as ns-3. In the evaluation, we used eight observation patterns

shown in Table II. In each pattern, we measured the delay for

multiple data flows (e.g., S1→E1) at specific nodes. The QoS

vector at each observation point consists of six dimensions.

Construction of QoS point clouds: In total, 160 scenarios

were generated by combining each observation pattern and

user usage pattern. In each case, a Multi-Layer Perceptron

(MLP) was trained using QoS and corresponding QoE data to

construct a model for predicting QoE. Subsequently, uniform

sampling was performed in the QoS space using the Monte

Carlo method, and the MLP was used to determine whether

QoE was satisfied, thereby generating the required QoS point

cloud.

 Here, QoE is defined as “satisfied” when each service

provided at each user end node meets the specified QoS criteria.

The prediction accuracy of the MLP in each case is shown in

Table III, and we confirmed that the prediction accuracy was

high in all cases at the selected observation points. In general,

low prediction accuracy indicates that the data flow affecting

QoE is not being properly observed, suggesting that the

selection of measurement locations and observation targets is

extremely important.

Note that various distribution parameters were empirically

determined to ensure diversity in user variation.

3) Performance comparison

Based on the experimental setup described above, we

evaluated the performance of the proposed method and three

comparison methods. The evaluation results for each method

are shown in Tables IV–VII. For each of the 160 cases, the F1

score, precision, and recall were calculated, and their mean,

variance, maximum, and minimum values were summarized.

The number of hyperplanes used to evaluate the complexity of

the representation is also shown in the same way.

These results show that the proposed method demonstrates

the highest point cloud classification performance while

keeping the number of hyperplanes low owing to the merge,

thereby achieving an accurate and simple separation boundary.

The following are our findings based on the analysis of

experimental results for the comparison methods.

Single hyperrectangle method: Precision was low, and there

was a tendency to cover a wide range of point clouds. As a

result, the F1 score was not high.

Multiple hyperrectangle method: A high F1 score was

obtained, although it was still lower than that of the proposed

method. In addition, the separation boundary became much

more complex due to the use of many hyperplanes, which

indicates a tendency toward overfitting.

Greedy method: As expected, performance varied significantly,

and overall stability was not achieved. In this experiment, the

number of hyperplanes k was fixed at k = 3, but increasing k

did not necessarily lead to improved accuracy. Detailed result

for k = 10 is shown in the last row of Table VII.

For reference, we also attempted an approximation using

simplicial complexes based on the persistent homology

framework, separately from the comparison methods. This

method is flexible in terms of shape, but it requires a very large

number of simplices (D(10⁵)) and the obtained F1 score was

only around 0.3. Therefore, it is difficult to use this method as

a practical comparison method in this study, and some

improvement is needed to reduce the number of simplices.

4) Hyperparameter characteristics of the proposed method

 Tables VIII–XI summarize the robustness of the proposed

method’s hyperparameters p, c, r, and m in three cases.

Asterisks (*) denote baseline values, and other results vary

a single parameter while fixing the rest. On the evaluation

machine, the execution became infeasible when the number of

hyperplanes exceeded approximately 25, so some high-

precision settings were terminated.

TABLE II

OBSERVATION DESCRIPTION OF EACH OBSERVATION SUITE

Observation name Observation node (observation data flow)

Obs.1
��(<� → G�, <� → G4), �H(<4 → G4),

�I(<� → G�, <4 → G�, <4 → G4)

Obs.2
�J(<� → G�, <4 → G� , <4 → G4),
 �H(<� → G4, <4 → G� , <4 → G4)

Obs.3
��(<� → G�, <� → G4), �4(<4 → G�),

 �H(<� → G4, <4 → G� , <4 → G4)

Obs.4
�J(<� → G�, <4 → G� , <4 → G4),
 �I(<� → G�, <4 → G� , <4 → G4)

Obs.5
�J(<4 → G�, <4 → G4), �K(<� → G4),

�I(<� → G�, <4 → G� , <4 → G4)

Obs.6
�I(<� → G�, <4 → G�, <4 → G4),

�L(<� → G4), �M(<� → G�), �H(<4 → G�)

Obs.7
��(<� → G4), �4(<4 → G�), �N(<4 → G4),

�J(<� → G�, <4 → G�, <4 → G4)

Obs.8
�I(<4 → G4), �L(<� → G4), �M(<� → G�),

�H(<� → G4, <4 → G� , <4 → G4)

Fig.3. Structure of target network

2025 21st International Conference on Network and Service Management (CNSM)

TABLE IV
 EVALUATION OF THE PROPOSED METHOD

 F1 precision recall complexity

Ave 0.96 0.98 0.92 7.2

Var 0.001 0.006 0.009 24.6

Max 1.0 1.0 1.0 19.0

Min 0.80 0.10 0.04 1.0

 The characteristics of each hyperparameter are summarized
below.

Mixed threshold p: At p = 0.5, some boundary blocks were

excluded, increasing the number of hyperplanes. A smaller p

is preferable.

Merge threshold c: Results were stable for c ∈ [0.2,0.8],

indicating robustness to this parameter.

Separation r: Merging remained stable without requiring

very strict settings (e.g., r ≥ 0.95).

Partition density m: Larger m improves resolution but

exponentially increases cost (e.g., m = 6→66 blocks). High F1

was already achieved with m = 3, suggesting moderate values

are sufficient.

5) Scalability

 To evaluate the performance of the proposed and

comparison methods in high-dimensional spaces,

experiments were conducted by increasing the number of

observed items and expanding the QoS space to 10 and 16

dimensions. Table XII shows the F1 scores, number of

hyperplanes, and execution times for two runs of each method.

 The results show the proposed method maintains high

discrimination performance (F1 score) even as dimension

increases. On the other hand, as the dimension increases, the

computation time increases significantly, and the proposed

method tends to have a higher execution cost than the

comparison methods. In particular, in 16 dimensions, the

execution time per case exceeded 120 minutes, and it was

judged to be unsuitable for real-time processing applications.

In contrast, the greedy method had shorter execution times

than other methods, and the increase in computation time with

increasing dimension was relatively gradual. This is thought

to be because the greedy method does not perform dimension-

specific partitioning or neighborhood determination, but

instead performs low-dimensional operations such as

sequential hyperplane addition.

This experiment shows that while the proposed method

enables high-accuracy approximation, execution cost in high

dimensions is an issue. In future studies, it will be necessary

to investigate the possibility of speeding up the method by

parallelizing the processing or combining it with dimension

reduction methods.

V. FUTURE WORK

In this study, the performance evaluation was conducted

under a fixed network topology while varying user dynamics.

As future work, we plan to investigate how performance is

affected when network topology itself changes. Such changes

are expected to alter the geometric properties of the

corresponding QoS point clouds. Our preliminary experiments

using persistent homology indicated that geometric

characteristics, such as cluster and hole structures, can

influence the behavior of different approximation methods. A

systematic analysis of these effects, particularly under diverse

network topologies, remains an important direction for future

research.

Furthermore, addressing the challenges of scalability and

conducting evaluations with real-world data remain important

avenues for future research.

TABLE III

PREDICTION ACCURACY OF THE LEARNING MODEL IN EACH OBSERVATION SUITE

Observation name Obs.1 Obs.2 Obs.3 Obs.4 Obs.5 Obs.6 Obs.7 Obs.8

Accuracy 0.932 0.939 0.941 0.928 0.934 0.931 0.903 0.935

TABLE VI

EVALUATION OF THE MULTIPLE HYPERRECTANGLE METHOD

 F1 precision recall complexity

Ave 0.91 0.90 0.91 448.1

Var 0.002 0.0 0.0 3095.7

Max 0.98 0.98 0.99 588.0

Min 0.79 0.76 0.75 314.0

TABLE V
EVALUATION OF THE SINGLE HYPERRECTANGLE METHOD

 F1 precision recall complexity

Ave 0.82 0.77 0.87 12.0

Var 0.001 0.006 0.004 0.0

Max 0.92 0.90 0.99 12.0

Min 0.73 0.08 0.72 12.0

TABLE VII

EVALUATION OF GREEDY METHOD

 F1 precision recall complexity

Ave 0.82 0.73 0.96 3

Var 0.02 0.04 0.0 0

Max 0.99 0.97 1.0 3

Min 0.41 0.26 0.88 3

Ave 0.77 0.67 0.98 10

2025 21st International Conference on Network and Service Management (CNSM)

VI. CONCLUSION

In this paper, we proposed a novel method to represent the

set of measured QoS values satisfying the target QoE at end

nodes as polytopes defined by multiple hyperplanes in a multi-

node network measurement scenario. This concise representation

enables effective control to achieve the target QoE, as well as

reliable prediction of future QoE fulfillment or violation.

Furthermore, by analyzing the volume and topological

features of the polytopes, we can identify critical nodes and

metrics for efficient QoE control and prediction.

REFERENCES

[1] T. Hoßfeld, P. E. Heegaard, M. Varela, M. Sebastian, “QoE beyond the
MOS: an in-depth look at QoE via better metrics and their relation to
MOS,” Quality and User Experience, vol. 1, no.1, pp. 1-23, 2016.

[2] H. Mao, R. Netravali, and M. Alizadeh. “Neural adaptive video
streaming with Pensieve,” ACM Special Interest Group on Data
Communication (SIGCOMM), pp. 197-210, 2017.

[3] J.S. Al-Azzeh, R. Odarchenko, A. Abakumova, S. Bondar, “Method

for QOE monitoring and increasing in cellular networks based on QOE-
to-QOS mapping using spline approximation,” EURASIP Journal on
Wireless Communications and Networking, vol. 2022, no.1, 2022.

[4] L. Yan, Z. Qin, R. Zhang, Y. Li and G. Y. Li, “QoE-Aware Resource
Allocation for Semantic Communication Networks,” IEEE Global
Communications Conference (GLOBECOM), pp. 3272-3277, 2022.

[5] A. Bemporad, and M. Morari, “Control of systems integrating logic,
dynamics, and constraints," Automatica, vol. 35, no. 3, pp. 407-427,
1999.

[6] P. Tang, Y. Dong, Y. Chen, S. Mao and S. Halgamuge, “QoE-Aware
Traffic Aggregation Using Preference Logic for Edge Intelligence,"
IEEE Transactions on Wireless Communications, vol. 20, no. 9,
pp. 6093-6106, 2021.

[7] S. Balachandran, D. Dasgupta, F. Nino and D. Garrett, “A Framework
for Evolving Multi-Shaped Detectors in Negative Selection,”IEEE
Symposium on Foundations of Computational Intelligence (FOCI),
pp. 401-408, 2007.

[8] K. B. Ajeyprasaath, P. Vetrivelan, “Machine Learning Based
Classifiers for QoE Prediction Framework in Video Streaming over 5G
Wireless Networks,” Computers, Materials and Continua, vol. 75,
no. 1, pp. 1919-1939, 2023.

[9] A. Ahmad, A. B. Mansoor, A. A. Barakabitze, A. Hines, L. Atzori and
R. Walshe, “Supervised-learning-Based QoE Prediction of Video
Streaming in Future Networks: A Tutorial with Comparative Study,”
IEEE Communications Magazine, vol. 59, no. 11, pp. 88-94, 2021.

[10] J. Zhang, et al. “Bridging the gap between QoE and QoS in congestion
control: A large-scale mobile web service perspective,” USENIX
Annual Technical Conference (USENIX ATC), pp. 553-569, 2023.

[11] G. Kougioumtzidis, V. K. Poulkov, P. I. Lazaridis and Z. D. Zaharis,
“Deep Reinforcement Learning-Based Resource Allocation for QoE
Enhancement in Wireless VR Communications,” IEEE Access,
vol. 13, pp. 25045-25058, 2025.

[12] L. Yan, Z. Qin, C. Li, R. Zhang, Y. Li and X. Tao, “QoE-Based
Semantic-Aware Resource Allocation for Multi-Task Networks,”
IEEE Transactions on Wireless Communications , vol. 23,
no. 9, pp. 11958-11971, 2024.

TABLE VIII
 PARAMETER P

 Case1 Case2 Case3

p-value F1
number

of planes
F1

number

of planes
F1

number

of planes

0.02 0.98 2 0.94 17 0.95 7

 0.08* 0.97 2 0.94 14 0.95 9

0.2 0.98 11 N/A 27 0.96 20

0.3 N/A 46 N/A 46 N/A 28

TABLE IX

PARAMETER C

 Case1 Case2 Case3

c-value F1
number

of planes
F1

number

of planes
F1

number

of planes

0.2 0.98 2 0.94 10 0.95 10

 0.7* 0.98 2 0.94 14 0.95 9

0.8 0.99 3 0.95 17 0.93 16

0.9 0.99 6 0.95 17 N/A 30

TABLE X

 PARAMETER R

 Case1 Case2 Case3

r-value F1
number

of planes
F1

number

of planes
F1

number

of planes

0.7 0.96 1 0.89 6 0.91 8

0.8 0.96 1 0.92 8 0.92 8

 0.9* 0.98 2 0.94 14 0.95 9

0.95 0.98 4 N/A 65 0.92 8

TABLE XII

SCALABILITY

 dim=10 dim=16

Method F1
number

of planes

time

(min)
F1

number

of planes

time

(min)

Proposed (m =2) 0.94 4 2 0.95 2 120

Multiple 0.87 2278 1 0.90 3673 70

Greedy 0.86 10 0.2 0.88 10 7

TABLE XI

 PARAMETER M

 Case1 Case2 Case3

m-value F1
number

of planes
F1

number

of planes
F1

number

of planes

1 0.96 1 0.76 1 0.83 1

3 0.98 3 0.94 7 0.94 10

 4* 0.98 2 0.94 14 0.95 9

6 0.99 2 N/A 35 N/A 28

2025 21st International Conference on Network and Service Management (CNSM)

