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Abstract—As modern networks continue to grow in scale,
heterogeneity, and complexity, automation in Network Func-
tion Virtualization (NFV) management has become increasingly
critical. Traditional NFV management systems, which rely on
static policies and manual interventions, often fail to respond
effectively to dynamic network conditions. This leads to delayed
or suboptimal failure recovery. Moreover, the increasing diversity
of NFV deployments, spanning heterogeneous configurations,
tenants, and operational standards, restricts the flexibility and
scalability of existing policy-based solutions. Considering these
limitations, this work explores Large Language Model (LLM)
agent approaches by harnessing the advanced reasoning capa-
bilities of LLMs within NFV operational context. While LLM-
based approaches are structurally promising, LLMs often lack
explicit exposure to the diverse and domain-specific character-
istics of NFV environments, resulting in limited generalization
and reliability in real-world scenarios. We introduce NFVAgent,
an LLM-driven NFV recovery framework built on Retrieval-
Augmented Generation (RAG). It overcomes adaptation limi-
tations by continuously updating its knowledge base through
experiences gathered from both testbed and deployment envi-
ronments. This evolving knowledge, validated across diverse NFV
environments, is seamlessly integrated into the agent’s decision-
making loop, enabling it to generate appropriate recovery actions.
The framework supports dynamic reasoning over up-to-date
knowledge, allowing the agent not only to react to failures but to
continually refine its understanding of NFV failure patterns and
effective recovery strategies. We evaluate NFVAgent on an alarm
dataset comprising over 500 failure events with diverse NFV
environments, each configured based on industry standards (e.g.,
ONAP, ETSI, O-RAN). Experimental results show that NFVAgent
achieves up to 99.8% recovery accuracy, outperforming existing
policy-based methods by an average margin of 37.7% in multi-
tenant environments. This highlights the practical viability and
performance benefits of integrating LLM agents with retrieval
mechanisms that leverage NFV-specific operational knowledge in
real-world recovery tasks.

Index Terms—network function virtualization (NFV), fault
recovery, retrieval-augmented generation (RAG), large language
models (LLMs), AIOps

I. INTRODUCTION

Network Function Virtualization (NFV) significantly en-
hances scalability and resource efficiency in modern networks.
However, this advancement also increases management com-
plexity, as highlighted by ETSI [1], [2], making NFV fault
management more demanding.

AI-driven automation is gaining traction across indus-
tries [3]–[5]. In particular, Large Language Models (LLMs)
have been employed in cloud operations to analyze logs, detect
anomalies, and generate automated recovery strategies [5]–[7].
Motivated by this, we investigate LLM agents for NFV fault
recovery in complex, multi-tenant environments.

In NFV management, recovery has traditionally relied on
policy-based approaches, where experts define failure scenar-
ios and corresponding actions during system design. Such
approaches have inherent limitations, especially in adapting
to environmental changes, as static policies often fail to
generalize to evolving conditions.

We introduce NFVAgent, an LLM-driven recovery frame-
work designed to enhance adaptability in dynamic and hetero-
geneous NFV environments. Unlike rigid, predefined policies,
NFVAgent analyzes failure events, retrieves domain-specific
knowledge, and generates context-aware recovery actions,
addressing the limitations of policy-based methods.

Although LLMs can perform semantic interpretation and ac-
tion selection, their effectiveness in NFV remains constrained
by limited exposure to operational data. While fine-tuning
can embed domain-specific knowledge, it incurs high com-
putational and maintenance costs. To address this, NFVAgent
adopts a retrieval-augmented generation (RAG) mechanism
that dynamically injects external knowledge during inference.
The retrieval leverages a continuously evolving knowledge
base spanning testbed and deployment environments.

NFVAgent comprises four modules: the Context Manager,
Reasoner, Feasibility DB, and Site DB. Together, these enable
adaptation across diverse NFV environments.

II. RELATED WORK

LLMs have recently advanced AIOps tasks such as anomaly
detection, RCA, and remediation, surpassing traditional ML
approaches that require labeled data and feature engineer-
ing [5], [8], [9]. They can infer causal links and propose
recovery without explicit rules [6], [10], [11], while also
enabling tool-augmented reasoning and script generation [7],
[12]. Applications span log-based RCA [13], [14], time-series
anomaly detection [15], recovery agents [16], [17], multi-
modal orchestration [18], agent collaboration [19], [20], and
prompting-based fault inference [21].
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In NFV, fault management still relies on policy-based
orchestration in ETSI MANO, ONAP, and O-RAN [22]–
[24], which struggle with novel faults and heterogeneous
deployments. AI-driven orchestration and intent research [25]–
[27] mainly target service configuration or traffic analysis, with
extensions to 5G intent [28], healthcare and industry [29], [30],
private 5G [31], and multimodal automation [32]. LLMs for
real-time NFV fault recovery remain unexplored; NFVAgent
fills this gap with adaptive, context-aware recovery beyond
static policies.

III. OUR APPROACH

A. NFVAgent Framework

NFVAgent operates within an NFV management system,
responding to failure events by autonomously planning recov-
ery actions. It consists of four modules: the Context Manager,
Reasoner, Feasibility DB, and Site DB. The Context Manager
structures raw alarms into prompts, the Reasoner generates
candidate actions, the Feasibility DB validates their executabil-
ity across standards, and the Site DB ensures deployment-
specific grounding. Together, they enable NFVAgent to remain
robust in heterogeneous and evolving NFV environments.

B. Context Manager

The Context Manager retrieves metadata from the Site DB
and validated patterns from the Feasibility DB, assembling
them into structured prompts for the Reasoner.

The following is an example of such a prompt:

[Role declaration and action preference]
You are an NFV Management System. Generate recovery
actions that can be executed automatically by the system in
response to the failure event input. Respond with a feasible
recovery action based on the retrieved documents, prefer-
ably one that can be executed automatically without human
intervention. If the optimal action is explicitly marked as
unavailable in the retrieved documents, choose an alternative
action. If the retrieved documents do not explicitly mention
feasibility, do not assume feasibility; prefer a safe fallback
or a conservative probe validated by retrieved evidence.
[Failure event context and Site specific metadata]
Alarm : The CPU workload in the VNF is exceeding safe
thresholds in Serval NFVO v3.0, Elephant ADF 24A, and
OpenShift v11.1.
[Feasibility data]
Retrieved documents :
{ “Scale Out”: “valid”, “Restart”: “valid”, “Migrate”:
“invalid (incompatible host resources)”, “Throttle Traffic”:
“valid”, ... }
[Response format guide]
Provide your answer as a single, concise interface-level
action name (e.g., Restart VNFC, Scale Out).

C. Reasoner

The Reasoner, powered by an LLM, generates recovery
actions from the structured prompt. In our reference imple-
mentation, we used gemini-1.5-flash via API, but the
backend model is swappable without altering the pipeline.
To ensure safe execution, the Reasoner automatically retries

inference if the response format deviates from the expected
structure. It interprets the failure event in light of both
feasibility constraints and site-specific metadata, preventing
speculative or unsafe actions. The Reasoner benefits from
the structured prompt design of the Context Manager, which
encodes operational roles, failure descriptions, and feasibility
boundaries. This integration ensures that the LLM outputs are
not only semantically appropriate but also operationally valid.

D. Feasibility DB

The Feasibility DB encodes recovery feasibility as ac-
tion–environment combinations validated in both testbed
and deployment environments. For generalization, instance-
specific identifiers (e.g., UUIDs, resource names) are ab-
stracted into schema-level representations. These structured
entries support consistent encoding and efficient similarity-
based retrieval, ensuring that recovery knowledge can transfer
across tenants and standards. It is continuously updated by the
Context Manager, which records both successful and failed
recovery attempts for future reference. By reflecting empirical
outcomes, the Feasibility DB mitigates LLM hallucinations
and enforces grounding in operational constraints. This evolv-
ing knowledge base is critical to sustaining high accuracy
under diverse and dynamic NFV conditions.

E. Site DB

The Site DB maintains deployment-specific metadata, such
as NF instance IDs, host resource availability, and current
service states. It is incrementally updated when infrastructure
changes occur, ensuring that recovery actions are grounded
in live operational conditions. This enables deployment-aware
decision-making without the overhead of continuous polling.
The Site DB captures runtime configurations, platform ver-
sions, and topology information that vary across tenants. These
details allow NFVAgent to specialize generalized feasibility
patterns for concrete deployments. In combination with the
Feasibility DB, it ensures that recommended recovery actions
are both technically executable and contextually aligned with
the active site.

F. NFV Simulator and Dataset

To enable reproducible evaluation, we implemented an
NFV simulator that emulates diverse infrastructures and fault
conditions. It supports (i) configurable interface capabilities,
(ii) concurrent multi-tenant deployments, (iii) fault injection,
and (iv) API-based validation of actions. The simulator mimics
realistic orchestration while providing ground truth, allowing
us to assess both executability and operator alignment.

For benchmarking, we curated an alarm dataset of over 500
events across heterogeneous NFV environments, organized
into three subsets:

• BaseSet (100 canonical events) aligned with ETSI NFV
categories such as compute, network, and storage.

• TestSet (500 variants) generated by varying configura-
tions, parameters, and topology.
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Fig. 1: NFVAgent Architecture: The recovery process operates consistently across testbed and deployment environments. (1) A
failure event is received by the Context Manager, which (2) retrieves site data from the Site DB and (3) queries the Feasibility
DB for validated operations. (4) These are combined into a structured prompt for the Reasoner, (5) which generates recovery
actions. (6) The actions are executed by the NFV management system, and (7) the results are recorded in the Feasibility DB
for continuous refinement. When a configuration change occurs, (a) the update is propagated to the Context Manager and (b)
stored in the Site DB to keep metadata synchronized.

• NewSet (100 unseen events) representing novel alarms
for testing generalization.

Example alarms include “VNFC Memory Overload”,
“NFVI Storage Performance Degradation (IOPS < thresh-
old)”, and “Network Switch Link Failure”, spanning ONAP,
ETSI, and O-RAN to capture intra- and cross-standard varia-
tion.

IV. EVALUATION

We evaluate NFVAgent to answer four research questions:

• RQ1: Does NFVAgent outperform policy-based methods?
• RQ2: How well does it adapt to heterogeneous multi-

tenant environments?
• RQ3: Can it generalize to unseen failure events?
• RQ4: What is the impact of each architectural module?

A. Experiment Setup

1) NFV Environments: Single-tenant environments repre-
sent ONAP, ETSI, and O-RAN standards. Multi-tenant settings
(3, 6, 9 tenants) emulate heterogeneous deployments with
mixed compliance. These settings emulate the complexity of
practical NFV deployments.

2) Baselines: We implement keyword- and alarm-code-
based policy approaches aligned with NFV standards [33],
[34]. Each baseline is optimized for its respective standard.

3) Evaluation Metrics: We use Accuracy (Acc) and Proac-
tive Accuracy (PAcc), as defined in Fig. 2. Acc reflects the
share of feasible and resolvable actions, while PAcc captures
proactive or fallback actions judged acceptable.

4) Evaluation Scope: Simulations focus on semantic valid-
ity and contextual appropriateness of recovery actions.

Failure Event Input

NFVAgent Decision

Feasible?

(1) The simulator evaluates
whether the action is
executable in the current
environment.

(a)

Resolvable?

(2) Domain experts assess
whether the action is
realistically resolvable
(effective).

(a)

Proactive?
(3) Check if the action is
proactive (autonomous and
self-initiated).

(b)

Alternative Exist?
(4) If not proactive, deter-
mine whether a proactive
alternative exists.

(c)

(d)

No

Yes

No

Yes

Yes

No

Yes

No

Fig. 2: Accuracy (Acc) and Proactive Accuracy (PAcc) com-
putation. Acc = (b+c+d)

(a+b+c+d) , PAcc = (b+d)
(a+b+c+d) . (a) Invalid

actions, (b) Valid proactive actions, (c) Valid non-proactive
alternatives, (d) Justified fallback.

B. Performance in Single-Tenant Settings (RQ1)

As shown in Table I, NFVAgent consistently outperforms
policy-based baselines across ONAP, ETSI, and O-RAN en-
vironments. It achieves Proactive Accuracy above 96%, while
the best baselines remain below 84%. These results demon-
strate NFVAgent’s robustness in proactive recovery, unlike
static policies defaulting to fallbacks.

C. Performance in Multi-Tenant Settings (RQ2)

Table II shows that baseline performance degrades sharply
as the number of tenants increases. In contrast, NFVAgent
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TABLE I: Performance in Single-Tenant Settings

Method
ONAP ETSI O-RAN

Acc(%) PAcc(%) Acc(%) PAcc(%) Acc(%) PAcc(%)

Policy-Based

Keyword (ONAP) 92.2 72.0 74.8 54.6 71.2 51.0

Keyword (ETSI) 92.2 66.4 92.2 66.4 69.2 43.4

Keyword (O-RAN) 92.2 72.0 76.2 62.2 94.0 80.0

AlarmCode (ONAP) 98.0 77.0 80.0 59.0 76.0 55.0

AlarmCode (ETSI) 98.0 71.0 98.0 71.0 74.0 47.0

AlarmCode (O-RAN) 98.0 77.0 81.0 65.0 100.0 84.0

NFVAgent 98.4 98.4 96.8 96.8 97.8 97.8

maintains over 95% Proactive Accuracy even in 9-tenant
settings, outperforming baselines by up to 60 points. This
highlights scalability and adaptability to heterogeneous de-
ployments.

TABLE II: Performance in Multi-Tenant Settings

Method
3-Tenant 6-Tenant 9-Tenant

Acc(%) PAcc(%) Acc(%) PAcc(%) Acc(%) PAcc(%)

Policy-Based

Keyword (ONAP) 80.4 60.2 57.8 37.6 57.2 37.0

Keyword (ETSI) 83.6 57.8 61.8 36.0 60.2 34.4

Keyword (O-RAN) 88.4 74.4 55.4 41.4 51.2 37.2

AlarmCode (ONAP) 85.8 64.8 61.8 40.8 61.4 40.4

AlarmCode (ETSI) 89.2 62.2 66.2 39.2 64.6 37.6

AlarmCode (O-RAN) 94.0 78.0 59.8 43.8 55.2 39.2

NFVAgent 100.0 99.6 98.2 95.4 99.8 96.0

D. Generalization Performance (RQ3)

On NewSet (100 unseen events), NFVAgent achieves 99%
Accuracy, while baselines drop significantly (Fig. 3), showing
that retrieval-grounded reasoning effectively handles anoma-
lies absent from testbed or baseline mappings.

Keyword
(O-RAN)

AlarmCode
(O-RAN)

NFVAgent0

20

40

60

80

100

Ac
cu

ra
cy

 (
%

)

94.0
100.0 97.8

17.0 16.0

99.0

TestSet
NewSet

Fig. 3: Generalization Performance on NewSet (unseen events)
in an O-RAN Single-Tenant Environment

Case Study. For the unseen event “Dynamic resource scaling
anomaly detected in auto-scaler”:

• NFVAgent: Generated “Invoke AutoScaler reset API”
by retrieving similar past cases from the Feasibility DB
and verifying AutoScaler state via the Site DB, enabling
successful resolution.

• Policy-based: Produced “Trigger VM failover to backup
host” from a static keyword match, misidentifying the
anomaly as host failure and causing ineffective recovery.

This case illustrates how NFVAgent leverages feasibility
grounding and deployment metadata to generalize to novel
failures, whereas static policies remain brittle.

E. Ablation Study (RQ4)
As shown in Table III, removing Feasibility DB drops Acc

below 50%, removing Site DB reduces Acc to 75%, and
removing Context Manager collapses performance (<20%).
Structured context and feasibility grounding are essential.

TABLE III: Ablation Studies in Multi-Tenant Settings

Configuration
3-Tenant 6-Tenant 9-Tenant

Acc(%) PAcc(%) Acc(%) PAcc(%) Acc(%) PAcc(%)

Ablated Components

w/o Feasibility DB 49.0 49.0 45.2 45.2 48.2 48.2

w/o Site DB 80.4 78.8 73.8 72.8 75.0 73.2

w/o Context Manager 8.2 6.0 12.4 8.0 19.2 16.8

NFVAgent (Full) 100.0 99.6 98.2 95.4 99.8 96.0

We also test model substitution (Table IV): replacing the
Reasoner’s LLM with alternatives yields consistently >97%
Acc.

TABLE IV: LLM Substitution (in 9-Tenant Setting)

LLM Acc(%) PAcc(%)

claude-3-opus 98.2 97.4
o1-mini 97.4 97.2
gpt-4o-mini 99.0 98.6
gemini-1.5-flash 99.8 96.0

V. CONCLUSION

We presented NFVAgent, an LLM-based NFV recovery
framework with a deployment-aware RAG pipeline. It outper-
forms policy-based baselines across environments and gener-
alizes to unseen failures. Future work includes multi-alarm
correlation and tool-augmented LLM integration for greater
autonomy.
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