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Abstract—Sensing has become a fundamental component of
modern network infrastructures, powering applications from
environmental monitoring to industrial automation, and bridging
the gap between digital systems and the physical world. Given the
large amount of data generated by these systems, it is important
to find strategies that are able to intelligently manage the flow of
data between all interconnected devices, in order to reduce the
utilized bandwidth to a minimum.

In this paper, we study the use of Wireless Edge Caching
(WEC) techniques to reduce latency and optimize bandwidth
and energy consumption of sensing applications. We study a
specific sensing scenario where a network of wireless sensors
spread over a vast territory continuously collects data, part of
which must be transmitted to a central base station. To aid
and enhance the performance of this application, we employ the
use of WEC techniques. Since the frequency of data queries is
related to the sensors’ location, we introduce a novel caching
algorithm, Closest In Farthest Out (CIFQO), tailored to this
scenario. CIFO is able to capture the characteristics of the sensing
application and perform cache eviction decisions accordingly. We
demonstrate the performance of our solution by implementing
it in a simulated environment and comparing it to traditional
caching strategies, showing how our solution is able to outperform
the other strategies under multiple settings and different metrics.

I. INTRODUCTION

In recent years, sensing technologies have become the
backbone of modern data-driven systems, enabling the con-
tinuous monitoring of the physical environment without the
use of human personnel, through a wide variety of sensors.
The application of these systems can span multiple types
of applications, from smart cities, industrial automation, to
environmental monitoring; collecting a large amount of real-
time data, which can then be used to detect patterns and
make meaningful predictions. As the demand for these systems
increases, so does their complexity, along with the challenges
to achieve efficient data transmission, storage, and processing.
In particular, the amount of data that is collected by a network
of sensors distributed in the field can be several TB/day when
multiple cameras recording video are deployed for use cases
such as smart city traffic monitoring, [7], [8], seismic or
acoustic monitoring arrays [5], [6] or wildlife tracking [2].
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In all the above-mentioned use cases, the data collection is
often triggered by specific events. Event-triggered recording
is a well-known strategy used in sensor networks to reduce
data volume, power consumption, and bandwidth usage by
recording or transmitting data only when specific conditions
or events occur. In particular, when sensors are deployed over
a large area, the data collection is localized around the location
of the event that triggered the recording and transmission
activity. Therefore, after a triggering event, a central base
station starts querying data from specific sensors, i.e. the
ones localized around the one that triggered the operation.
Generally speaking, the events that triggered the transmission
activity can be of different types, and in particular, are often
moving around the sensor area. Therefore, a generic approach
to provide an efficient sensing operation requires that the base
station implement a specific algorithm to query interesting data
from the sensor network. As a consequence, the single sensor
is not aware of the importance of the data that is collected
at a specific moment. Furthermore, due to the memory and
processing restrictions of the single sensor, it is mandatory
to deploy specific edge devices that collect information from
the sensors and cache it to provide the base station with
the collected information. These nodes act as Wireless Edge
Caching (WEC) nodes that not only provide the usual features
of latency and energy consumption reduction, but also collect
data from multiple sensors and are able to select the most
important data to be retained with respect to the requests of
the base station. In fact, since the memory available in the
edge device is also limited, it is important to understand which
data must be retained from the edge device and which can be
discarded with a minimum degradation of the information that
the sensor network must collect. In this paper, we focus on the
specific use case of monitoring and tracking of wildlife [2],
even if we believe that most of the discussion presented for
this use case can also be applied in different contexts, such
as smart city traffic and seismic monitoring arrays. In this
context, sensing systems are often deployed in remote and
harsh environments in order to monitor animal movements
and their behavior. The difficulty that these systems face is
the need for a balance between the need for fine-grained data
and the limitations of battery life, bandwidth, and intermittent
connectivity.

The main contributions of this paper are the following:
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1) We investigate a specific sensing use-case scenario re-
lated to wildlife tracking, and propose a WEC approach
to improve the overall efficiency of the system.

2) We propose a novel caching algorithm: Closest In Far-
thest Out (CIFO). The proposed algorithm is directly
tied to the sensing use case.

3) In a simulated environment, we implement our CIFO
caching algorithm, along with other traditional caching
strategies such as First In First Out (FIFO), Least Re-
cently Used (LRU), Least Frequently Used (LFU), and
Random Replacement (RR). We compare their perfor-
mances under different key performance metrics, based
on HIT/MISS ratio, pertaining energy consumption, and
end-to-end delay.

II. RELATED WORK

Sensing has become a fundamental component of modern
edge and IoT systems, enabling real-time data collection and
rapid, responsive decision making in domains such as environ-
mental monitoring, smart cities [7], and wildlife monitoring
[11, [2], [4]. Wireless Edge Caching [3], [9] refers to a novel
approach to distributed architectures, aimed at storing content
at the edge of a wireless network, using devices such as
base stations and user terminals. This method is designed to
accommodate the recent surge in mobile devices and data-
hungry applications. With recent infrastructure advancements,
the deployment of WEC techniques has become an appealing
solution. Efficiently deploying WEC solutions means tackling
multiple challenges to meet specific application requirements.
The way caching should behave in this context deeply differs
from traditional caching paradigms which tend to retain data
based only on past access; effective caching in this scenario
must be context-aware and adapt to the characteristics of its
application. In the context of sensing, WEC has had limited
application. This is mainly due to the stringent requirements of
the sensing tasks, where data are typically highly sensitive to
time [10], making caching a less attractive solution. However,
the amount of data produced by such sensing applications
is often extremely high [7], [8]. An example of such re-
quirements is provided by the work of Dyo et al. [2], in
which sensing equipment was deployed to study the social co-
location patterns of European badgers. In their system, data are
organized into multiple tiers and evicted based on application-
specific priorities, such as energy availability, data freshness,
and communication likelihood. In this paper, we use local-
ization information as input for the eviction policy, showing
that this can provide a significant benefit in terms of cache
efficiency with respect to the traditional cache algorithms.
Differently from previous works, our location-based eviction
policy represents a more general and adaptable approach,
enabling support for a wider range of applications beyond the
specific scenarios considered beforehand.

III. SENSING USE-CASE SCENARIO

This work finds practical relevance in many IoT applica-
tions. A relevant example is moving object tracking, particu-

larly in scenarios characterized by limited connectivity, energy
constraints, and the need for delay-tolerant data handling.
These conditions are often common across many animal
tracking deployments, such as that described in [2], which
studied the deployment of a wireless architecture to monitor
the social behavior of badgers in a dense woodland. Similar
challenges also arise in industrial monitoring settings, for
example, in large-scale facilities where drones periodically col-
lect sensor data from spatially distributed mobile equipment.
In such cases, location-based caching can reduce redundant
transmissions by allowing data to be temporarily stored at
nodes closest to the source, improving efficiency in delay-
tolerant collection scenarios.

Our approach addresses constraints similar to those in-
troduced in [2], including intermittent connectivity, limited
energy availability, and tolerance to delayed data delivery, by
enabling location-aware adaptive caching at the edge. This
improves the efficiency of sensor data handling and extends
applicability beyond wildlife tracking to other scenarios that
exhibit comparable operational challenges.

A. Problem Formulation

This section provides a formal definition of the sensing
use case. The objective is the continuous monitoring of a set
of targets, denoted by G. To achieve this, a set of sensing
devices S is deployed. Each sensor s € S is capable of
performing sensing operations and broadcasting its collected
data within a predefined maximum range Ay. Additionally, a
set of edge devices E is deployed to interact with the sensors
and respond to requests issued by a central Base Station (BS).
Sensing operations are conducted continuously and evaluated
at discrete, fixed time intervals. At each predefined interval A,
the BS initiates a sensing request targeting a selected entity
g € G. We denote as q; the query made by the BS at time ¢ for
target g, which is translated into a request to the edge devices
for the most recent, non expired data, of the closest sensor
to g € G, ie. argmin, g s — g||, where s and g indicate
the position vectors of sensor s and target g. The request can
be fulfilled by any edge device e € E that has in its cache
the requested, non-expired, data. Each sensing data entry is
associated with a freshness value that quantifies its temporal
validity. Data are considered expired and thus unusable once
their freshness value drops below a specified threshold. We
consider the problem of optimization in terms of HIT/MISS
rate. We define a HIT event when a request from the BS for a
target g at time ¢, qg is satisfied by any caching device ¢ € F,
and a MISS event otherwise.

B. Energy Consumption Optimization

HIT and MISS events are directly tied to the energy con-
sumption of the sensing devices. In a context where sensing
data is actively requested by the base station, a MISS event
corresponds to the sensing devices performing an additional
sensing task, thus increasing energy consumption of the sys-
tem and, for battery-constrained tasks, reducing the overall
duration of the sensing application. We want to provide a
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caching strategy that manages to reduce sensors’ activation
to a minimum while maintaining optimal performance.

C. End-to-End Delay Optimization

The increase of MISS events is also perceived in additional
delay between the requests from the BS and their completion,
as fulfilling a sensing request is bound to take significantly
longer time than simply accessing a cached entry, often by
orders of magnitude. This added delay negatively impacts
application performance, resulting in increased end-to-end
latency, and significantly degrading the responsiveness and
efficiency of sensing applications, particularly those that rely
on timely data for real-time decision-making or control.

IV. LOCATION-AWARE CACHING STRATEGY

In this work, we address the problem of content caching
in the specific context of wireless sensing applications used
to track and monitor moving objects. Unlike general IoT sce-
narios, sensing tasks often involve geographically distributed
sensors whose data relevance depends heavily on spatial
and temporal proximity. To reflect this, we propose a novel
caching algorithm, Closest In, Farthest Out (CIFO), designed
to exploit the spatial locality inherent in sensing data. CIFO
makes eviction and caching decisions based on the physical
distance between sensors and the locations of recent queries,
prioritizing data that are most likely to be reused.

Algorithm 1: CIFO Caching Algorithm

1 C¢ < cache table of device e;
2 rt < latest request from BS;
3 S < set of sensors on the field;

4 Event: Data received e,

5 if s € C. then

6 | update entry for sensor s;

7 else

8 if C. is full then

9 Sfarthest <~ argmaXgcc, ”sf rtH;
10 Ce =Ce \ Sfarthest;
11 Ce = Ce Uet;

12 Event: Request received rtlast

13 rt <« rllast;

14 Sclosest — argmin g ||s — gll;
15 if S¢iosest € Ce then

16 | return Sejosest;

17 else

18 request sensing task to s ;
closest

We present the CIFO strategy in Algorithm 1. The algorithm
is run by a caching device e € E, which keeps in memory its
caching table C., the latest request from the BS r?, and a view
of the sensors on the field S. The execution of the policy is
driven mainly by two events. The first event is triggered when
a sensor broadcasts new data (line 4) . This broadcast could
either be triggered by a passive sensing activity by the sensor
or actively by an edge device previously requesting the sensing
data. When the data is received, the edge device checks if
it already has old sensing data for that sensor (line 5), and
updates it accordingly. If the data is not present, it means that
a new entry for it has to be generated. If the cache is full,
the device first finds the farthest sensing data from the latest
queried position ¢ (line 9) and evicts it. The second event is

triggered when the edge device receives a query request from
the BS (line 12). When this happens, the edge device first
updates its last queried position, and then verifies which sensor
data is needed to satisfy the BS’s request, which is given by
the closest sensor (line 14). If the data for that sensor is present
in its memory C,, then it is promptly returned; otherwise, a
sensing task is requested to that sensor. The proposed caching
solution is more computationally intensive than traditional
methods, mainly due to the linear-time calculation of s f4,thest
and s.0ses¢ With respect to the number of sensors. Optimizing
these computations could improve performance, but we leave
this for future work.

A. Expanding CIFO Algorithm for Multiple Targets

The CIFO algorithm presented is useful for tracking the
position of a single target accurately. When multiple targets
need to be tracked, requests for distant targets are likely to
result in cache misses, unless some portion of the caching
storage is reserved for them. Partitioning the cache is one
possible strategy to ensure such coverage. We hereby define
the data handling strategy used to support multiple-target sce-
narios. Note that this introduces some parametrization which is
application-specific, and needs to be tuned on a defined use-
case scenario, depending on how the main BS is interested
in querying the different targets. We partition the storage of
an edge device into multiple sections, up to |G|, where each
section behaves as a single CIFO cache table on its own. The
way memory is allocated among these partitions is given by
a focus factor A € [0, 1], which determines the normalized
amount of space allocated for the most recent requested target,
with the remaining space equally shared between other targets.
A X value of 1 means that all the space is reserved for the
latest queried target, and a value of 0 means that the space is
evenly distributed among the G targets. Formally, the fraction
for the allocated space of the latest target [, is computed as
follows: 1)\

ls =X+ I€l

The maximum allocated space for each targets expands and
shrinks, following the queries from the BS. This maximum
allocated space for each target is considered a ”soft” bound,
meaning that eviction from other targets happens only when
the latest target partition does not have enough space to store
the newly received data.

V. PERFORMANCE EVALUATION

We test our new CIFO algorithm starting with a simulation
scenario tailored to wildlife tracking use case described in [2].
We initially deploy a single target on the field, which moves
in the simulation by progressively choosing a new random
destination in the covered area. To assess the effectiveness of
the proposed CIFO caching algorithm, we conduct a series of
simulations across different scenarios. Our evaluation focuses
on key performance metrics such as energy consumption
and end-to-end delay. To highlight the advantages of our
solution in handling location-sensitive data, we compare CIFO



2025 21st International Conference on Network and Service Management (CNSM)

Parameter Default Value | Varying Range
Sim. Time 240s N/A
Edge Servers 4 [1,5]
Sensors 40 N/A
Cache Size 4 [4,8]
Query Interval Is [1,5]
Target Speed 1 m/s [1,5]
Freshness Thd. 10s N/A

TABLE I: Simulation Parameters

against other widely used standard caching strategies: Least
Recently Used (LRU), Least Frequently Used (LFU), First
In First Out (FIFO), and Random Replacement (RR). Each
simulation instance is designed to reflect the dynamics of
wireless sensing applications, where sensor-generated data is
both continuously produced and queried by a central BS via
intermediate edge devices. We vary different factors through
our testing instances: the number of edge devices and their
cache size, the rate of the BS’s queries, and also the speed
of the tracked targets. All tests are evaluated on a run of a
duration of 4 minutes, starting from the initial deployment
of the edge devices with empty cache tables. We perform 4
different set of tests, with each one varying a single parameter.
The parameters of the different configurations are reported in
Table 1. Each bar of the box-plot refers to the distribution of
15 different results.

A. Energy Consumption

We analyze the performance of all the strategies by looking
at the energy consumption of the application. We consider
the energy consumption based on the number of times the
sensing devices were activated, either by passive sensing, or
by an active request triggered by the MISS of a query from
the BS. The final results of this test can be seen in Fig. 1,
where the CIFO caching strategy consistently achieves lower
energy consumption across all evaluation settings compared
to the other policies, with a reduction of sensor activation of
roughly 30% across all cases.
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B. End-to-End Delay

The results for average end-to-end delay are presented in
Fig. 2. In this evaluation, cache HIT events are assigned
a single second delay, while MISS events incur a delay of
10 seconds, reflecting their significantly higher latency. In
line with the energy consumption analysis, CIFO consistently
achieves the lowest end-to-end delay across all configurations.

C. Multiple Targets

In this section, we evaluate the performance of the CIFO
caching algorithm when monitoring multiple targets, applying
the memory partitioning described in Section IV-A. For this
test, we deploy 40 sensors and a single edge caching device
with a memory size of 16. With these parameters, we study
how the variation of the focus value A influences the caching
results, over three different query orders from the base station:
i) Random Query: where the BS selects, at each step, a random
target, ii) Round Robin Query: where the BS selects targets in
a predefined order and in sequence, iii) Focused Query: where
the BS selects a target in a round robin fashion and keeps
monitoring that target for a duration of 10 queries. We evaluate
the performance of these tests based on the raw MISS rate.
Due to integer rounding, the size of allocated memory for each
target changes only at fixed A values, which are 0, 0.25, 0.5,
0.75, and 1.0. The results of our tests are shown in Fig. 3. The
results of the other baseline caching strategies are displayed
with horizontal dashed lines, which denote their average value
across all the experiments. Their results are fixed through the
execution, as they are not influenced by the focus value M.
For the case of random query (Fig. 3a), we can see that giving
equal space to each target yields the best results, as a A value of
0 means that every target has a reserved space of 4 in the cache
of 16 spaces. A similar trend can be observed for Round Robin
Query (Fig. 3b), where higher A values drastically increase the
MISS rate. Different results can be seen, as expected, for the
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case of Focused Query (Fig. 3c), where the best performance
can be seen for larger values of \; although too large values,
0,75 and 1.0, tend to degrade the effectiveness of the CIFO
caching strategy, which however manages to perform better
than all the other strategies, even in the worst case. It has to
be noted that these results are additionally influenced by the
density of the sensors in the covered area, the query rate, and
all the configuration variations discussed in the past sections.
We omit the results of such tests due to space constraints,
highlighting, however, how the choice of an appropriate A
value is important to achieve the optimal performance. As
stated before, the choice of the best A value is application-
specific, and therefore should be tuned only at the deployment
phase. Applications oriented towards a coverage model are
more likely to query different targets during their execution,
meaning that a A value closer to 0 is bound to return better
performances; likewise, applications with a more “focused”
approach, such as those tracking and monitoring more in-depth
single targets at once, are likely to benefit from greater values
of \.

VI. CONCLUSIONS AND FUTURE WORK

In this work, we addressed the problem of efficient data
caching in wireless sensing applications, introducing CIFO, a
location-aware caching strategy tailored to the spatial charac-
teristics of sensing data. Unlike traditional caching methods,
CIFO leverages location awareness to retain data most likely
to be reused, improving performance in scenarios where
query relevance depends on geographic proximity. Through
extensive simulations, we demonstrated that CIFO consistently
outperforms standard strategies such as LRU, LFU, and FIFO
under multiple evaluation metrics. These results highlight the
importance of domain-specific caching strategies in edge-
assisted IoT systems, paving the way for more adaptive and
efficient architectures in data-intensive sensing environments.

In future work, we aim to investigate the potential of the
CIFO algorithm as an effective solution for caching services
in mobile environments. Beyond the already mentioned use
cases of smart city, traffic monitoring and seismic monitoring
that can be easily adapted to the algorithm presented here,
we plan to explore use cases where requests originate directly
from edge devices, rather than exclusively from a central BS

or a main controller. This would involve examining how the
CIFO algorithm can be leveraged to optimize caching strate-
gies in decentralized networks, where edge devices such as
smartphones, IoT devices, or other mobile nodes dynamically
generate and request data. We will investigate use cases where
not only targets, but also sensors and edge devices may move,
leading to more complex scenarios where an edge device
may cover different sensors at any given time, and also cover
scenarios where targets may move out of reach of sensors,
creating instances where caching would be the only way to
retrieve sensing data, and the only solution for a resilient, non-
interrupted application.
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