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Abstract—In recent years, the range and volume of Internet
services utilized by an individual have significantly expanded.
This growing relationship between an individual user and di-
verse digital services has led to the emergence of Individual-
oriented Information System (IIS) that encompasses the user,
their physical devices, and the information systems they interact
with. Current security approaches within an IIS suffer from
three main limitations: (1) they are restricted to specific services,
(2) they require intrusive instrumentation of each user single
device, or (3) they rely on specific integration between client
and server components. As a result, they fail to globally protect
against attackers who possess enough information to bypass
standalone security schemes. To overcome these constraints, we
propose to (1) consider a network-oriented approach to detect
intrusions which may occur within an IIS and (2) to make sensors
taking part of the IIS contribute to the intrusion detection by
providing user-related contextual data. In the absence of any
suitable dataset that mixes network and physical contextual data,
we construct a new integrated dataset comprising benign data
captured through an in-situ experiment and intrusion traces
extracted from CIC-AndMal2017—a widely referenced dataset in
the literature. Our evaluation confirms that considering both user
physical context and network features improves the performance
of intrusion detection, thereby making IIS more resilient to
attackers.

Index Terms—Individual-oriented Information System, Intru-
sion Detection System, NIDS, Context-aware, Android, Malware,
Dataset, Explainable AI (XAI)

I. INTRODUCTION

In the digital era, people increasingly rely on a wide range
of Information Systems (IS) for everyday activities, including
social networking, emailing, online banking, e-commerce,
working, and educating. These services involve the processing,
storage, and transmission of users’ personal and sensitive data.
For instance, online banking systems require log-in creden-
tials, e-commerce platforms request credit card information,
social networks store personal images and private messages.
The close relevance of an individual’s data with such ISs
forms what we define as an Individual-oriented Information
System (IIS) [1]. We conceptualize the IIS as a composite
system comprising three components: (1) an individual user,
(2) digital elements (e.g., information systems), and (3) physi-
cal elements (e.g., a smartphone, smart watch) that enable the
user’s interaction with these digital components.

The wide variety of information systems within an IIS
results in a diversity of security solutions. These solutions

are typically limited in scope: they are either designed to
secure communication between multiple users and a single
system or tailored to protect a specific device that requires
intrusive control and management. Such isolated mechanisms
fail against attacks where the adversary has sufficient knowl-
edge to bypass them. For instance, an attacker with stolen
credentials can authenticate on the victim’s device. In this
case, the actions appear legitimate from a system-centric or
device-centric viewpoint, yet they represent clear breaches of
personal security. This highlights a critical gap in conventional
approaches: the lack of user global context in security models.

Adopting a user-centric security perspective within an IIS,
we leverage the user’s global context–where digital activities
originate from digital elements and physical activities from
physical elements–to detect inconsistencies that may signal
security threats. Since these inconsistencies can occur across
multiple devices and services, the network layer provides
a comprehensive view point to observe and correlate such
behaviors. For instance, if a device initiates network connec-
tions while the user is known to be running outdoors without
the device in use, such a mismatch between physical and
digital behavior could serve as a strong anomaly signal. We
hypothesize that incorporating user physical contextual infor-
mation improves the performance of Network-based Intrusion
Detection Systems (NIDS).

In summary, our work makes the following contributions:

1) A new dataset (ibIDS) combining network traffic and
physical sensor data collected from a real user’s activities
filling the gap in datasets that integrate user context with
network behavior.

2) A framework leveraging user physical context data in
network intrusion detection systems while ensuring user
transparency and encrypted data confidentiality.

3) An experimental validation of the hypothesis that
physical context improves NIDS performance using an
integrated dataset combining ibIDS with malicious traffic
from CIC-AndMal2017 [2].

The remainder of this paper is organized as follows. Section
II reviews the relevant literature. Section III presents our
proposed framework. Section IV describes the construction
of a novel integrated dataset. Finally, Section V evaluates the
research hypothesis using this dataset.
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II. STATE OF THE ART

In this section, we explore three major research directions
related to IIS security in the literature, with a particular focus
on the use of user contextual and biometric data.

A. Datasets for Intrusion Detection System

An Intrusion Detection System (IDS) is a security mecha-
nism that monitors network or system activities for malicious
actions or policy violations and produces alerts to a manage-
ment system [3]. It is categorized based on the data source into
two main types: Network-based IDS (NIDS) and Host-based
IDS (HIDS) [4]. NIDS monitor network traffic for signs of
malicious activity, while HIDS focus on detecting anomalies
within individual hosts.

Several recent surveys have reviewed the landscape of
datasets used in the development and evaluation of NIDS
[5, 6, 7], collectively identifying 32 datasets commonly cited
in the field. Most of these datasets are conventional in nature,
containing primarily network traffic traces (IP address, port
number, bytes sent/received, etc.,), such as KDD Cup 99,
Kyoto2006, NSL-KDD, CIC-IDS-2017, UNSW-NB15/18, and
CICDoS2019. In contrast, HIDS datasets have been explored
in many surveys [4, 8], focusing on data types such as system
calls, log files, and other low-level indicators of host activity.
These HIDS datasets offer fine-grained visibility into system
behavior. Consequently, HIDS solutions require high privileges
to monitor system-level activity.

Some datasets bridge the gap between traditional IT and
cyber-physical systems, especially in Industrial Control Sys-
tems (ICS), such as SWaT, TON IoT, and BETADAL, which
include sensor data, actuator states, and control signals.
TON IoT also adds contextual system data like environmental
sensors and system logs. However, the latter focus on system
operations rather than user context which remains largely
unexplored in mainstream IDS datasets.

B. Continuous Authentication

Biometrics and user contextual data play a pivotal role in the
field of Authentication, especially in Continuous Authentica-
tion, as evidenced by several recent surveys [9, 10, 11]. These
studies collectively examine how biometric modalities are
integrated into authentication systems to enable ongoing user
verification. In particular, Ryu et al. [9] identified two primary
categories of biometric data used in such systems: behavioural
data—including voice, keystroke dynamics, mouse move-
ments, gait, touchscreen interactions, etc.,—and physiological
data, such as iris patterns, fingerprints, palm prints and veins,
heart or blood-related signals, etc.,. Focusing specifically on
biometric authentication in smartphones, Syalevi et al. [10]
conducted a more in-depth analysis of mobile use cases and
reaffirmed the same two primary data modalities identified
by Ryu et al. Notably, 87% of the reviewed studies centered
on behavioural authentication, incorporating additional input
sources such as mouth movements and user routine activities.
Expanding the classification further, Ayeswarya et al. [11]
introduced a third category —Context-aware biometrics—

which encompasses contextual factors like IP address patterns,
browsing history, user location, and device-specific attributes,
thereby broadening the scope of data sources utilized in
Continuous Authentication systems.

C. Wireless Body Area Network (WBAN)
Focusing on user context and biometrics in security, we

investigate Wireless Body Area Networks (WBANs), where
a system links to an individual’s physiology. Since WBAN
devices monitor physiological measurements via body attach-
ment, many WBAN security solutions incorporate biometric
data as input [12]. A comprehensive review by Gautam et
al. [13] categorized WBAN security approaches into three
key areas: key management, authentication, and trust manage-
ment. Among these, biometric data plays a significant role.
Indeed, its inherent randomness makes it valuable for key
management, while its uniqueness to each user enhances au-
thentication mechanisms. Notably, Electrocardiogram (ECG)
signals have been used for cryptographic purposes, including
random sequence generation [14] and biometric key man-
agement [15, 16]. Similarly, Han et al. [17] proposed a key
generation scheme based on Photoplethysmography (PPG, a
blood volume measurement metric), highlighting the potential
of physiological data for cryptography in WBANs. Biometric
data in WBANs is used to secure the body-area network itself,
not to protect the user’s broader digital activities.

In summary, this section reviews recent advances in leverag-
ing user physical data for security. While user’s physical data
has been explored for authentication and key management, its
integration into NIDS remains unexamined. This gap presents
an opportunity to investigate how user physical context can
complement network features to enhance NIDS in an IIS.

III. GENERAL ASSESSMENT FRAMEWORK

This section introduces our framework used to examine
the integration of network and physical contextual data and
evaluate its impact within a NIDS-based detection module.

A. Overview

Data collection module

Network
metrics

Physical
metrics

Context
Recognition

module

Intrusion Detection
module

Fig. 1: Overview of our framework

The proposed framework is designed for intrusion detection
by leveraging both network and physical metrics collected
from an individual’s context. As illustrated in Fig. 1, the
architecture comprises three primary functional modules:

• Data Collection Module: This module collects raw data
from the user’s activities, including both Network metrics
and Physical metrics.
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Fig. 2: Context Recognition Module

• Context Recognition Module: This module processes the
physical inputs to determine the user’s current context.

• Intrusion Detection Module: This module combines net-
work features with other types of data from the previous
modules to detect anomalies.

B. Data Collection Module

The data collection module serves as the initial stage of the
proposed framework. This module is responsible for acquiring
a diverse set of data from the activities of an individual and
the surrounding environment. Specifically, it encompasses both
network data and physical data. Network data are flow-based
and include connection characteristics and communication
protocols associated with the user’s digital interactions, such as
IP addresses, port numbers, or the number of bytes and packets
transferred. Physical data are related to the user’s physical
state or the immediate environment, including sensor readings,
biometric data, or location information. The integration of both
network and physical data provides a contextual understanding
for subsequent analysis by the context recognition and intru-
sion detection modules.

C. Context Recognition Module

Human Activity Recognition (HAR) has emerged as a
prominent research domain across diverse applications. It aims
to classify user activities from a predetermined activity set by
analyzing multiple input data sources (e.g., vision-based and
sensor-based) [18]. Within the context recognition module, we
propose to adopt a HAR method, based on two key categories
of information: (1) the physical contexts C to be detected and
(2) the availability of physical input data p. Fig. 2 represents
our module.

First, the set of physical contexts must be carefully se-
lected to ensure meaningful correlation with network usage
behaviors. The rationale is that certain physical actions can
provide strong indicators of legitimate or suspicious network
activity. We define the set of possible contexts as a finite
set C = {c1, c2, . . . , cn}, where each ci represents a specific
context (e.g., walking, sitting, phone interacting).

Second, the framework must consider the set of available
physical input data that can vary greatly depending on the envi-
ronment and device capabilities. These data are represented as
a vector p = (p1, p2, . . . , pm), where each pi corresponds
to a different physical metric.

Using both (C and p), we select an activity recognition
method f to provide the Intrusion Detection module with
accurate, high-quality contextual insights.

D. Intrusion Detection Module

The Intrusion Detection Module receives three inputs: (1)
Network data, (2) Physical data, and (3) User context c. The
network and physical data, collected from the Data Collection
Module, are first pre-processed to create a combined dataset
of network and physical features, denoted as DN+P . Also,
we retain a dataset containing only network features, DN ,
that serves as a baseline to assess the contribution of phys-
ical features. The user context c, provided by the Context
Recognition Module, is utilized by the Model Type selection
sub-module. Then, the Detection engine sub-module considers
both a global detection model (Mg) and a context-aware multi-
model approach (Mm). The global model (Mg) is trained
on the entire dataset, while the multi-model scheme (Mm)
selects a specific detection model for each recognized context.
The detection engine, based on a machine-learning method,
chooses a scheme between Mg and Mm, selects data sources
with or without physical features, then analyzes the data and
outputs alerts when traffic deviates from normal behavior.
Fig. 3 illustrates the full pipeline of the proposed Intrusion
Detection Module, from raw data ingestion and preprocessing,
through context-driven model selection, to anomaly detecting
and alerting.

Intrusion Detection Module

Pre-
processing

Network data

context c

Physical data

DN

Model Type selection

[Mg]
Global model scheme

Detection engine

Mg with DN

Mg with DN+P

Mm with DN

Mm with DN+P

DN+P

[Mm]
Multi-model scheme

Alert

Fig. 3: Intrusion Detection Module

In the following sections, we leverage the proposed frame-
work to conduct a comparative analysis of detection efficacy
of a context-enriched model incorporating physical features
(Mg with DN+P ) against the traditional model based solely
on network features (Mg with DN ).

IV. DATASET CONSTRUCTION

To evaluate the proposed framework under realistic condi-
tions, we created a hybrid dataset that integrates both synthetic
attack traces (from CIC-AndMal2017) and real-world benign
behavior (ibIDS). This section provides a detailed description
of the integrated dataset and its constituent components.

A. Attack Scenario

Android smartphones, with their widespread use and access
to sensitive data, are prime targets for malware exploiting
software flaws and permissions through stealthy, time-based
activation strategies [19, 20]. From an IIS perspective, the
malware compromises the physical element to generate digital
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activity. To emulate this attack for evaluation, we define an
attack scenario with the following parameters:

• Threat: Android-based malware
• Attack period: 8 hours
• Operational characteristics: Covert network communica-

tions occurring at hourly intervals

B. Benign data

To collect benign user data, we experimented on an Android
smartphone (OS version 14) belonging to one of the authors,
who engaged in routine activities such as commuting, working,
walking outdoors, gaming, and sleeping. The data collection
app ran unobtrusively in the background for two weekdays,
continuously recording (1) network communications and (2)
physical sensor readings.

We captured network traffic with PCAPDroid, an open-
source Android tool validated in prior studies [20, 21], which
stores data in .pcap format along with flow-based features.
Since it only captures network packets, we extended it to
log sensor data from the device’s hardware (accelerometer,
gyroscope, gravity sensor, magnetometer, proximity sensor,
ambient light sensor, and air pressure sensor) as well as
location data from the Global Positioning System (GPS).
Sensor measurements were sampled at a 5 Hz frequency, while
GPS updates were logged every second. Network traffic was
collected continuously in real time.

As the study did not involve sensitive or personally iden-
tifiable information, formal ethical approval was deemed un-
necessary. Following the data collection phase, all acquired
information underwent processing for permanent archival and
our dataset, termed ibIDS, is available online at [22]
https://doi.org/10.5281/zenodo.15658730.

C. Malicious Data

Since our data collection was conducted on a personal
smartphone which regularly connects to a university net-
work, we were restricted from installing real malware and
directly capturing its behavior. Instead, we constructed an
integrated dataset by combining our real benign smartphone
traffic (ibIDS) with real malicious traffic samples (CIC-
AndMal2017). The CIC-AndMal2017 dataset [2] includes
network captures of 5,065 benign apps and 429 malware
samples, each capture tied to a single app. However, back-
ground and pre-installed applications introduce extra traffic, so
the captures do not reflect isolated app behavior. To address
this limitation, we implemented a filtering methodology [23]
to isolate malicious traffic by removing benign IP addresses
from the malware captures. Since each malware family was
collected under distinct scenarios, and only the Adware family
had same user interaction patterns with the benign apps, the
filtering protocol was applied accordingly:

• From the captures of benign families in CIC-
AndMal2017, we created a list of benign source IP
addresses and benign destination IP addresses.

• Within the Adware family captures, we excluded network
flows exhibiting both benign source and benign destina-
tion addresses. The remaining traffic was classified as
isolated malware communication.

Following the filtering process, we obtained isolated net-
work traffic from five distinct Adware families: Ewind, Feiwo,
Gooligan, Kemoge, and Youmi. Each family is represented
by 8 to 10 individual captures, each lasting 40 minutes,
approximately. In accordance with the approach to generate
the CIC-AndMal2017 dataset [2], we extracted a 15-minute
segment (from minute 25 to minute 40) from each capture,
corresponding to the period of confirmed malware activation.

V. EXPERIMENTS AND RESULTS

In this section, we instantiate the proposed framework to
validate the effectiveness of using physical contextual infor-
mation in detecting network intrusion, using our ibIDS dataset.

A. Evaluation Pipeline

Given our attack scenario–where malware is assumed to
activate once every hour–and the available malicious data
(specifically, five malware families, each with eight 15-minute
traffic captures), we conducted our experiments following the
procedure described in Procedure 1.

Procedure 1 Malware Injection and Evaluation Pipeline
1: for malware ∈ [Ewind, Feiwo, Gooligan, Kemoge, Youmi] do
2: for i = 0 to 23 do
3: Inject 8 samples of malware starting at hour i
4: Data pre-processing
5: for trial = 1 to 10 do
6: Randomly split the dataset into training/testing sets
7: Create a machine learning model
8: Train and evaluate the model on the current split
9: Record the evaluation metric (i.e., PR AUC)

10: end for
11: Aggregate the metrics over 10 trials for the injection i
12: end for
13: Visualize and analyze the aggregated results for the current malware
14: end for
15: Visualize and analyze overall results across all malware samples

The procedure iterates over each selected malware family.
For each malware, 24 injection scenarios are created. In the ith

scenario, 8 captures of the malware are injected from hour i
to hour i+7 (mod 24), as illustrated in Figure 4. The network
data is then transformed from a flow-based format into a
time-slice-based representation, which is more suitable for
modeling patterns.

0h 1h 2h 3h

Begin time of
malware period

i (h) i+7 (h) 23h

15 minutes

1 hour

Malware Activities

Non-Malware Activities

Fig. 4: Malware injection at time i (hour) (i = 0,1,...23)
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Each injection experiment is repeated ten times with dif-
ferent random train–test splits (11:1 benign-to-attack ratio),
training and evaluating a supervised model in each run. Results
are aggregated across runs, injection scenarios, and malware
families to assess context-dependent performance and cross-
family detection trends.

B. Data pre-processing

1) Network data - Flow-based to Time-slice-based: In this
study, we adopt a time-slice framework, in which network
and physical parameters are monitored and analyzed within
fixed temporal windows. In our experiment, each time-slice
is defined as a 60-second interval. We aggregate all net-
work flows that terminate within the interval and compute
corresponding time-slice-based features. These features are
described in Table I.

TABLE I: Network Time-slice-based Features and Descriptions

# Feature Name Description

1 flow count Total number of network flows observed dur-
ing the interval.

2 tcp flow count Number of TCP flows observed.
3 udp flow count Number of UDP flows observed.
4 unique dst ips Count of unique destination IP addresses.

5 new dst ips Number of destination IPs not seen in the
previous time interval.

6 entropy dst ip Entropy of destination IP addresses; measures
randomness/distribution.

7 entropy dst port Entropy of destination ports; captures the di-
versity in destination ports.

8 flow per dst ip Average number of flows per unique destina-
tion IP.

9 total sent pkts Total number of packets sent.
10 total rcvd pkts Total number of packets received.
11 total pkts Sum of sent and received packets.
12 pkts per flow Average number of packets per flow.
13 total sent bytes Total number of bytes sent.
14 total rcvd bytes Total number of bytes received.
15 total bytes Sum of sent and received bytes.
16 bytes per flow Average number of bytes per flow.

17 total duration Total duration of all flows in the observation
window duration (in millisecond).

2) Physical data: In our experiment, we collect data from
three physical sensors to capture user context: (1) Accelerom-
eter, (2) Ambient Light, and (3) GPS. As these sources
operate at different sampling rates, we perform preprocessing
to align them for use in both the Context Recognition and IDS
modules.

Accelerometer: The accelerometer provides 5 samples per
second, each consisting of three-axis acceleration values: ax,
ay , az (m/s2). To summarize movement intensity, we compute
the average magnitude of acceleration over one second:

m̄t =
1

5

5∑
i=1

√
a2xi

+ a2yi
+ a2zi

where axi
, ayi

, azi are the i-th sample values within second
t. The resulting value m̄t captures the movement intensity,
irrespective of direction.

Ambient Light: Ambient light readings are sampled when-
ever there is a change in lighting conditions. It may occur
within 1 second or more. To label the light value every 1
second, we take the latest value recorded. The light value at
time t is computed as:

lt = lτ

where lτ is the most recent ambient light value recorded at
timestamp τ ≤ t.

GPS: The GPS records geographic coordinates every sec-
ond. To preserve privacy, raw locations are excluded; instead,
we derive user speed, reflecting movement intensity without
revealing exact positions. Speed at time t is computed as:

vt =
∆x

∆t

where ∆x is the distance traveled between timestamps t − 1
and t, calculated using the Haversine formula [24].

The raw GPS signal introduces noise, leading to fluctuations
in the computed speed—even when the subject is stationary.
To reduce this error, we apply a Butterworth low-pass filter
to suppress rapid, noisy variations. Without any seek for
optimiality, this filtering step efficiently reduces the GPS noise.

C. Intrusion Detection

1) Experimental Setup and Evaluation Metrics: In this
section, we evaluate our detection scheme with a global model
approach (Mg) and consequently, we do not utilize context
c derived from the Context Recognition Module. Due to
time and space constraints, the multi-model approach (Mm)
is left for future work. We select the eXtreme Gradient
Boosting (XGBoost) as a supervised classification algorithm.
We aggregate the three physical signals (m̄t, lt, and vt)
and produce three new time-sliced physical features at 60-
second intervals to align with the defined time window:
count light 1 (total number of seconds where light greater
than 0), count acce 1 (total number of seconds indicating the
smartphone’s movement), and avr filtered speed (the average
speed after applying a Butterworth low-pass filter).

For each injection scenario, to ensure fair comparison, both
DN and DN+P share identical train/test instances: an 80/20
split is applied to DN , and the same row indices are used for
DN+P . This design ensures that performance differences arise
solely from the added features. The training set is used for
hyperparameter tuning and cross-validation of the XGBoost
model, which is then evaluated on the test set. This process
is repeated 10 times with different random seeds. Given the
imbalanced attack-to-normal ratio (1:11), The Area Under the
Precision-Recall Curve (PR AUC) is used as the evaluation
metric, and results are aggregated across scenarios to assess
the impact of context-aware features on detection performance.

2) Results: Fig. 5 compares PR AUC across 24 Ewind
injection timestamps. For each timestamp, two bars show
the mean and standard deviation over 10 runs using datasets
with and without physical features (DN+P vs. DN ). While
overall PR AUC values remain moderate, both exceed the
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Fig. 5: PR AUC comparisons (by mean and standard deviation values) over
24 injection scenarios with Ewind in day 1

random baseline (1/12 ≈ 8.3%, where 1/12 is the ratio between
positive and the whole samples). At certain timestamps, DN+P

achieves notably higher PR AUC than DN .
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(b) Ewind: Boxplot of PR_AUC Improvement in day 2

Fig. 6: Comparative enhancement of PR AUC when incorporating physical
features alongside network-only features, demonstrated across two 24-hour
periods: (a) day 1 and (b) day 2

Fig. 6 shows how DN+P improve PR AUC compared with
DN on Ewind-injected data. Each boxplot displays the PR
AUC improvement (AUCusing DN+P

− AUCusing DN
) across 10

runs for a given injection time. Most of the 24 timestamps
show positive shifts in PR AUC, highlighting the value of
user context in enhancing malware detection. Notably, begin-
ning timestamps of malware duration, like 00:00, 01:00, and
11:00—periods when the user is likely inactive (e.g., sleeping
or working)—show strong, consistent gains, while timestamps
in the beginning of the morning or in the evening—when the
user is more actively using the smartphone—yield minimal
or negative improvements. This indicates that context-aware
features generally help, though their effectiveness depends on
the user’s context during malware activity.
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Fig. 7: Enhancement of PR AUC across distinct malware families.

Fig. 7 shows the median PR AUC improvement over 24
hours across the five malware families. While most families
see consistent benefits–typically above 0%–the magnitude and
timing of these improvements vary. Ewind and Youmi often
exhibit the strongest gains, with several peaks exceeding 10%,
suggesting that context data is particularly helpful for detecting
these malware families. In contrast, Kemoge shows relatively
minimal improvement throughout, indicating limited benefit
from contextual features. These trends emphasize that the
impact of user context is both malware-specific and context-
dependent.

To highlight the effectiveness of user contextual features,
we focus on the 00:00 Ewind case that exhibits one of
the highest improvements in PR AUC across all periods.
The result suggests that when user contextual data indicates
a period of typical inactivity (e.g., sleeping), an observed
increase in network activities is consequently perceived as
more anomalous and thus more detectable. Fig. 8 represents
the PR curves, showing significant improvements in malware
detection when user context is included.
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Fig. 8: PR curve comparing context-aware and baseline models detecting
Ewind activities at 00:00, day 1, with same random data split. A: With DN+P

(PR AUC = 0.7393); B: With DN (PR AUC = 0.4767); C: Random guesser
(PR AUC = 0.0830)

D. Explanibility by SHAP

To identify which features contribute to the improved de-
tection performance, we utilize SHapley Additive exPlana-
tions (SHAP) [25]. SHAP is a game-theoretic approach that
quantifies feature attribution by assigning importance values
to individual variables based on their respective contributions
to specific predictive outcomes.
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Fig. 9: Feature importance according to their relative influence as quantified
on SHAP analysis with XGBoost detecting Ewind activities at 00h00, day 1

The SHAP summary plot in Fig. 9 shows that dur-
ing nighttime, physical features such as count light 1,
avr filtered speed, and entropi dst ip play a key role in the
model’s predictions. Although their relationship to the output
is not purely linear, patterns suggest that specific conditions–
like low light or changes in motion–are critical signals the
model uses to differentiate normal from anomalous behavior.
The SHAP analysis demonstrates the relevance of physical
data in the decision-making of the IDS algorithm and thus the
global relevance of our approach.

VI. CONCLUSION

In this paper, we introduced a contextual security approach
for Individual-oriented Information Systems. We proposed a
novel framework that integrates the user’s contextual infor-
mation into NIDS. To evaluate this framework, we collected
a unique dataset comprising both network traffic and physi-
cal sensor data from a personal smartphone over a 48-hour
period during normal daily activities. The dataset is publicly
available online. This benign dataset was then augmented with
malware traffic from a public dataset to enable comprehensive
evaluation. Our experimental results support the hypothesis
that incorporating user contextual data can enhance the per-
formance of a NIDS, highlighting the value of the contextual
information of a user in an IIS for intrusion detection.

Future research can focus on: (1) Exploring unsupervised
learning methods–where models learn normal data patterns
to detect anomalies–to further validate the effectiveness of
context-aware intrusion detection in practical, deployable set-
tings; (2) Evaluating multi-model approach to more thoroughly
confirm the benefits of incorporating user context in enhancing
IDS performance.
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