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Abstract—eXtended Reality (XR) and holographic telepresence
place stringent Quality of Service (QoS) demands on network
infrastructure, requiring ultra-low latency, high throughput, and
reliable connectivity. Meeting such QoS demands is critical in
dynamic, distributed cloud environments, but does not always
guarantee a satisfactory user experience. Quality of Experience
(QoE) captures the user’s perception of service performance,
which may be influenced by factors not fully reflected in system-
level metrics. Thus, novel orchestration strategies must consider
both QoS and QoE. This paper proposes a Reinforcement Learn-
ing (RL)-driven approach to edge-cloud orchestration capable
of adapting to dynamic network conditions, leveraging a multi-
objective reward function, including both QoS and QoE aspects,
to guide service placement decisions. Evaluation shows that our
RL approach reaches a 21.3% QoE gain over heuristics and
14.7% over balanced strategies, with 100% request acceptance.
The results highlight the robustness and scalability of RL-driven
orchestration, particularly for latency-sensitive 6G applications.
Our findings also reveal the limitations of traditional heuristics
under complex objectives and highlight the potential of RL
as a transformative tool for intelligent network and service
management in next-generation communication systems.

Index Terms—Quality of Experience, Reinforcement Learning,
Orchestration, Network Management, Cloud Computing

I. INTRODUCTION

The growing adoption of emerging applications, such as
eXtended Reality (XR) and holographic tele-presence, imposes
ultra-low latency and high bandwidth requirements. Thus,
ensuring seamless immersive experiences is a major challenge
[1]. These demands expose the limitations of today’s cloud in-
frastructure, which spans heterogeneous and distributed com-
puting resources, from edge nodes to the centralized cloud
Data Centers (DCs) [2].

While traditional orchestration strategies often optimize for
system-level Quality of Service (QoS) metrics, such as latency
and throughput, these do not always guarantee a satisfactory
Quality of Experience (QoE). Small variations in network con-
ditions can lead to unexpected degradations in user experience
[3]. This QoS-QoE discrepancy arises from the fact that QoE
is influenced not only by network performance but also by
other factors, including device capabilities, user context, and
individual expectations, making it more nuanced and difficult
to predict. As such, there is a growing need for novel orchestra-
tion strategies that jointly optimize for QoS and QoE, enabling
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a more human-centric approach to system management. This
is especially relevant in dynamic 6G Compute Continuum
(CC) environments, where fluctuating workloads and network
conditions require adaptive user-aware orchestration, typically
supported by cloud-native platforms such as Kubernetes (K8s)
to enable distributed scalable deployments [4].

To address this challenge, this paper presents a Re-
inforcement Learning (RL)-based approach for the or-
chestration of XR applications in distributed 6G CC
infrastructures. It uses a multi-objective reward function that
balances latency, cost, fairness, and user QoE. A key novelty is
integrating QoE models from prior subjective studies to guide
the RL orchestrator toward efficient and user-centric policies.
The main contributions of this work are: 1) the gym-qoe
framework: an open-source RL framework for QoE-aware
service placement in 6G CC enabling to evaluate orchestration
strategies under diverse scenarios; 2) featuring a Comprehen-
sive Reward Function Design that incorporates trade-offs
among cost, latency, fairness and QoE, allowing quantification
of conflicting objectives; 3) an Extensive Evaluation of RL
under different reward strategies and benchmark it against
heuristic baselines, demonstrating the advantages of RL in
managing dynamic orchestration within the CC.

The remainder of this paper is organized as follows: Sec. II
reviews related work relevant to QoE-aware orchestration in
6G CC environments. Sec. III presents an overview of the
envisioned 6G system architecture and its integration with
cloud-native technologies. Sec. IV details the design of the
RL approach, including the observation state, action space,
and multi-objective reward formulation. Sec. V describes the
experimental setup, including performance metrics. Sec. VI
presents the results obtained under different reward strategies
and compares RL with heuristic approaches. Finally, Sec. VII
concludes this paper.

II. BACKGROUND & RELATED WORK

Cloud-Native (CN) XR [5] merges XR technologies with
cloud infrastructures to deliver immersive experiences over the
internet. Unlike traditional XR relying on local infrastructure,
CN XR leverages scalability and elasticity by offloading
computationally intensive tasks (e.g., sampling, encoding) to
cloud servers, such that end users can access high-quality
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XR content on a wide range of devices without requiring
specialized hardware [5]. K8s [6] is central to this paradigm,
providing automated deployment, scaling, and management of
containerized workloads, while ensuring high availability, fault
tolerance, and efficient resource usage. Leveraging K8s allows
XR workloads to be distributed across multiple nodes, to adapt
dynamically to changing user demands, and to be continuously
updated with minimal disruption, ultimately enhancing the
scalability and reliability of immersive XR delivery [5].

Modeling QoE in interactive XR is challenging due to the
multidimensional nature of human perception [7]. Prior work
[8], [4] shows that QoE depends on a mix of technological,
contextual, and physiological factors rather than a single
parameter. While network Key Performance Indicators (KPIs)
capture aspects, such as performance and device capability,
human responses are crucial for reflecting subjective QoE
dimensions.

QoE-aware orchestration has attracted increasing attention
in edge-cloud computing and networked applications [9]. Prior
studies explored user-centric network management using per-
ception metrics [10]-[15]. Gramaglia et al. [10] designed and
validated a multi-service 5G network with QoE-aware orches-
tration, stressing open-source solutions and highlighting multi-
slice orchestration, Radio Access Network (RAN) slicing, and
local breakout for diverse services. Alencar et al. [12] proposed
FogdVR, which selects optimal fog nodes based on delay,
migration time, and resource use, improving cost, fairness,
and QoE. Bagaa et al. [11] introduced a zero-touch Software-
Defined Networking (SDN)/Network Function Virtualization
(NFV)-based orchestration system for Internet of Things (IoT),
reducing delay and ensuring trusted deployments.

Despite these advancements, existing solutions lack holistic
orchestration mechanisms that jointly consider network con-
ditions, computing resources, and user experience. In con-
trast, this paper proposes an RL-driven orchestration approach
to dynamically deploy XR microservices based on network
conditions, available computing resources, and predicted QoE
scores. We incorporate multiple performance factors into the
reward function, including deployment cost, latency, inequal-
ity, and QoE, to quantify the trade-offs among these objectives.

III. SYSTEM OVERVIEW

Fig. 1 shows the envisioned 6G CC infrastructure built on
the K8s orchestration platform. This cloud-native architecture
deploys and manages XR applications while optimizing re-
sources across edge, fog, and cloud. Unlike traditional clouds,
fog and edge provide intermediate zones closer to users,
reducing latency and improving responsiveness for XR.

In this work, XR applications are decomposed into micro-
services, each developed, deployed, and maintained indepen-
dently. These run in K8s as Pods, the smallest deployable units.
At the core of the architecture is an RL-based orchestration
component that serves as the central decision-maker for run-
time service placement and handling incoming XR requests.
The RL orchestrator leverages a real-world dataset from our
previous work [8], where the environment is dynamically

updated with network conditions and subjective quality met-
rics. This dataset stems from a collaborative VR pizza-baking
task, where participants coordinated actions via avatars under
controlled network impairments (e.g., burst traffic, delays)
to emulate latency spikes, jitter, and synchronization issues.
QoE was measured on a 5-point Likert scale [16] based on
participants’ reported immersion.

On each XR request, the RL orchestrator decides whether
to admit it and, if accepted, selects the optimal K8s cluster. A
QoE assessment module, based on Machine Learning (ML)
models trained on the dataset [8], estimates user-perceived
quality to guide these decisions. This enables the RL agent
to anticipate satisfaction, adapt policies, and establish a QoE-
driven feedback loop aligned with user expectations. The next
section provides further details about the RL design.

IV. REINFORCEMENT LEARNING DESIGN

The gym-qoe framework enables scalable and cost-effective
training of RL algorithms, building on recent open-source
environments for network orchestration [17]-[19]. Traditional
OpenAl Gym-based environments are typically designed to
speed up the training process of RL agents. As such, our gym-
goe framework supports multiple RL algorithms focused on
generating an orchestration strategy using dynamic informa-
tion from the collected dataset [8] as input. The framework
updates the RL environment with network data (throughput,
packet size, inter-arrival times) collected from a collaborative
Virtual Reality (VR) pizza-baking experiments and dynam-
ically adjusts CPU and memory at each location based on
admitted requests and RL actions. The gym-qoe framework
mimic the behavior of deployment requests within an edge-
cloud scenario, thereby providing the RL agent with pertinent
information about network conditions collected by previous
experiments. Each XR request in the framework represents
a collaborative pizza-baking session from the dataset, where
the microservice allocation corresponds to the provisioning of
an XR service instance (further details in [8]) that needs to
be deployed to a given location if the request is admitted.
The requests are randomly generated based on a given set
of requests detailed in Sec. V. These requests have different
resource requirements and latency thresholds.

A. Observation Space

Table I exhibits the observation space applied in the gym-
goe framework to characterize the environment at each step.
It contains four main sets of metrics: Request, Location,
QoE, and Network. The Request set defines the application’s
deployment requirements, including Central Processing Unit
(CPU) and memory demands (wepu and wpem), the latency
threshold (A,.) that must be satisfied by the hosting location,
and the expected duration (7;.) of each request r. Since
the RL agent is triggered with each incoming deployment
request, the time interval between consecutive steps varies
dynamically. To account for this variability, 7, is integrated
into the observation space, allowing the agent to learn and
adapt to the environment’s temporal dynamics, as shown in
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Fig. 1: High-level view of the deployment of a container-based XR application within the 6G CC.

TABLE I: Observation Space structure in gym-qoe.

Set Metric | Description
Wepu The CPU request (in millicpu (m)).
Request Wmem The memory request (in mebibyte (MiB)).
; Ar The latency threshold (in ms).
T: The execution time (in ms).
Tepu The location’s cpu capacity (in m).
ITmem The location’s memory capacity (in MiB).
Location Ocpu The CPU allocated in the location (in m).
mem The memory allocated in the location (in MiB).
) The processing latency of the location (in ms).
Tierk Jerkiness score (between 0-5).
QoE Isyne Synchronization score (between 0-5).
Tt Latency perception score (between 0-5).
4 The throughput (in Gbit/s).
Network S The packet size (in Kbits).
Sstd The standard deviation of packet size (in Kbits).
P The inter-arrival time of packets (in ms).

TABLE II: The hardware configuration of each location based on
Amazon EC2 On-Demand Pricing (Frankfurt Region - Europe) [20].

Location | Latency Amazon Cost | CPU RAM
Type (B ($/h) (r¢) | (inm) | (in MiB)
Cloud-T2 10 ms 2XL (0.3072) 64.0 8.0 32.0
Cloud-T1 8.5 ms XL (0.1536) 32.0 4.0 16.0
Fog-T2 7.6 ms L (0.0768) 16.0 2.0 8.0
Fog-T1 5.0 ms M (0.0384) 8.0 2.0 4.0
Edge-T3 2.5 ms S (0.0192) 4.0 2.0 2.0
Edge-T2 1.5 ms Micro (0.0096) 2.0 1.0 1.0
Edge-T1 1.0 ms Nano (0.0048) 1.0 2.0 0.5

previous work [21]. By explicitly incorporating inter-arrival
times, the framework captures fluctuations in resource con-
sumption across different locations, enhancing the ability of
the agent to make informed allocation decisions based on
evolving system states. The RL framework models a queuing
system in which deployment requests arrive and are processed
over time, following common practices used in previous works
[18], [21]. Inter-arrival and service times follow exponential
distributions to reflect realistic workload dynamics. The arrival
time of the request is generated by adding a sampled inter-

arrival interval to the current time, while the departure time
is determined by adding a service duration to the arrival time.
This queuing mechanism ensures realistic request behavior and
efficient handling without overlapping requests.

The Location set represents the metrics describing the
current state of the infrastructure, capturing both resource
availability and network conditions. These metrics include
the total CPU and memory capacities (Ilp, and Ilper), the
currently allocated CPU and memory resources (Ocp, and
Omem), and the processing latency at each location (J;). The
allocation of CPU and memory resources for each location is
dynamically adjusted based on the number of hosted requests.
As the number of deployed requests grows, the allocated
CPU and memory increase proportionally to the specified
requirements for each request. Similarly, when a request is
terminated, the allocated resources are adjusted to reflect the
freed CPU and memory. The available free CPU (§2,,) and
memory (£2,,.m,) resources are defined by equations (1) and
(2), respectively. However, these metrics are excluded from the
observation space as our experiments showed that including
them did not enhance the performance of the algorithms
since the agents already have access to the total capacity and
the currently allocated amount of resources. Additionally, the
processing latency (9;) at each location is influenced by the
number of hosted requests, increasing by a predefined factor
(i.e., 2 ms per active request). By incorporating these de-
tailed infrastructure metrics, the gym-qoe framework provides
a comprehensive view of resource availability and network
conditions, enabling the RL agent to make more effective and
adaptive orchestration decisions.

Qcpu = Hcpu ecpu
free CPU CPU Capacity  CPU Allocated
Qmem, = Hmem 6rnem

2)

free Memory Memory Capacity ~ Memory Allocated
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Table II provides a comprehensive overview of the resource
capacities for each location type along with their corre-
sponding deployment costs. Resource capacities are quantified
within a range of [2.0,64.0] units, and allocated resources are
initiated within [0.0,0.2] units, to account for the reserved
resources allocated to background services such as monitoring.
Each location type is also associated with an access latency
(B;) that refers to the average latency between users and the
selected deployment location. In our experiments, this variable
varies between 1 to 10 milliseconds, depending on the type of
the chosen location to host that particular request.

The QoE set adds perception-related metrics to the observa-
tion space, helping the RL agent choose deployment locations
that maximize user QoE. Since QoE is subjective—it reflects
the user’s perceived experience rather than a direct system
measurement. Thus, we adopt an estimation approach based
on the QoE perception models proposed in [4]. These models
predict user experience through distinct metrics—jerkiness
(Jjerk), latency (f1a), and synchronization (/gync)—each requir-
ing a specific set of objective features, including network-
level metrics such as throughput (9), packet inter-arrival time
(P), packet size (S) and its standard deviation (Sgtq)— the
Network set. Throughput measures the average data rate
exchanged between server and clients during playthroughs
at that location, while packet inter-arrival time indicates the
average interval between consecutive packet transmissions.

Current QoE estimates alone ignore temporal dynamics, pre-
venting the RL agent from recognizing trends and anticipating
fluctuations. To capture history, we extend the observation
space with a recursive moving average over the current state s;
and the previous state s;_1, tracking the evolution of jerkiness,
latency, and synchronization:

(i - 1) . Ijerk,si,l + Ijerk,si

Ijerk = ; (3)
i — 1) - T, . T N
Ilat _ (Z ) lat,i i—1 + lat,s; (4)
i — 1) - Igyne.s: 1 + Loyne.s,
Isync — (Z ) S}’ncy‘ i—1 sync,s; (5)

]

By incorporating past observations, the agent gains a deeper
understanding of QoE fluctuations over time, allowing it to
anticipate variations and adapt its decisions accordingly. This
integration of real-time and historical QoE makes orchestration
more robust and user-centric.

B. Action Space

In gym-qoe, actions are discrete, with only a single action
executed per timestep. The RL agent may deploy or reject a
request. Rejection is allowed when computational resources
are insufficient, and no location can fulfill the request’s re-
quirements. In such cases, the agent is not penalized, acknowl-
edging the constraint of limited resources. The number of
possible actions equals the number of locations, with penalties
applied for invalid choices [22]. A more advanced method,
action masking [23], prevents the agent from selecting actions
that are infeasible in the current state s. For example, the action
masks for the location [ and state s can be defined as:

True If location [ has enough resources

mask(s)[l] = )
False Otherwise

(6)

For rejection actions, the action mask is always set to true,

ensuring the agent is not locked out in scenarios where all

other actions are invalid.

C. Reward function

The reward function is critical for steering the RL agent
towards maximizing rewards by selecting optimal actions
based on the current observation state. In this work, a multi-
objective reward function (7) has been designed to incorporate
four distinct objectives: cost-aware (8), latency-aware (9),
inequality-aware (10), and QoE-aware (11). When the agent
chooses to accept a deployment request, it is rewarded pos-
itively according to these objectives, with respective weights
(Weosts Wiat> Wineq» and wqee), and the rewards are normalized
within the range [0.0, 1.0]. In contrast, if the agent rejects the
request despite sufficient computing resources being available,
it incurs a penalty of -1. The penalty mechanism is designed
to strongly penalize the agent for avoidable rejections, encour-
aging more admission decisions.

Weost * Teost T Wiat * Tat+

if request is accepted.
T = { Wineq * Tineq T Waoe * T'qoe (N

-1 if request is rejected.

Teost = 1.0 —I'g with I'y = expected deployment cost (8)
Tlaency = 1.0 — Ag with Ay = expected total latency  (9)

Tinequality = 1.0 — G with G’ = Gini coefficient (10)

rqoe = ¢ with @) = perceived QoE by accepted user (11)

The cost-aware function guides the agent to deploy re-
quests or migrate in a manner that minimizes allocation costs.
Cloud locations usually have higher deployment costs and
latency than fog or edge types. To maximize reward, the
RL agent prioritizes edge and fog locations, but their smaller
resource capacity compared to the cloud can limit the number
of supported requests. The latency-aware function aims to
minimize the expected latency of a deployment request. The
expected latency (\g) is computed based on several latency
factors, considering the specific location hosting the request.
The latency-aware function minimizes overall latency (12) by
favoring locations with low processing and access delays.

Ad = 0 + B
<~ — ~

Total Latency (in ms)

12)

Proc. Latency (in ms)  Access Latency (in ms)

The inequality-aware function directs the RL agent to
choose deployment strategies that evenly distribute requests
across the available locations. The reward is calculated based
on the Gini Coefficient (G) that ranges from [0.0, 1.0], where
0 indicates perfect equality (each location hosts an equal num-
ber) and 1 indicates perfect inequality (all requests deployed
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TABLE III: The evaluated reward strategies.

Name Weost Wiat Wineq Wqoe
Cost 1.0 0.0 0.0 0.0
Latency 0.0 1.0 0.0 0.0
Inequality 0.0 0.0 1.0 0.0
Qoe 0.0 0.0 0.0 1.0
Balanced | 0.25 | 025 | 0.25 | 0.25

in one location). A lower G indicates then a more equitable
distribution. As such, G is an accurate measure of inequality
in a distribution, calculated as:

iy S i — Ly

G = =
212L

(13)
where:

[ is the number of locations.
L; is the number of requests deployed by location 1.

L is the average number of requests across all locations.

Including G in the reward promotes a fairer distribution of
resources between deployment locations. The RL agent may
favor high-QoE or low-cost locations, causing imbalance and
under-utilization elsewhere. By adding inequality to the re-
ward, we capture the trade-offs between competing objectives.

Lastly, the QoE-aware function guides the agent to deploy
requests towards maximizing the QoE of each user request by
incorporating the multiple QoE criteria, including perceived
latency (Jiaency), perceived jerkiness (i), and perceived
synchronization (Igy,c), with all being equally weighted wy =
wj = ws = 1.

Q =w. (5 — I]a;) +wj. (5 — Ijerk) “+ws. (Isync) 14)
~— —— ——— ~——
Per. QoE Perc. lat. Perc. jerk. Perc. sync.
where:

wy, wj, ws are the weighting coefficients.

Ij, 1s the user’s reported perceived latency (0-5).

Tieric 1s the user’s perception of motion smoothness (0-5).
Iy is the user’s perception of synchronization (0-5).

@ is the perceived QoE by the user (0-15).

V. EXPERIMENTAL SETUP

The gym-qoe framework is developed in Python for
seamless integration with both the OpenAl Gym and Stable
Baselines 3 libraries, enabling efficient RL-based experimen-
tation and model training. Each evaluation episode spans 100
steps, with the RL agent maximizing rewards over multiple
deployment requests. When the agent selects an available
location to host the request, the CPU and memory usage of
that location increase. When a request is completed, resource
usage drops based on its mean service duration. The expected
duration of the request (7)) is then randomized around the
mean service duration, ensuring that the RL agent encounters
varied request patterns across consecutive episodes. During
training, four locations are considered, with the type of each
location being randomized. The RL algorithm is trained on

over 2000 episodes, utilizing a 14-core Intel i7-12700H CPU
@ 4.7 GHz processor with 16 GB of memory.

Multiple reward strategies are evaluated, as shown in
Table III. Some strategies target a single objective—such as
Cost, Latency, Inequality, or QoE—while a balanced strat-
egy (Balanced) assigns equal weight to all four objectives.
Through this comparative evaluation, the gym-goe framework
aims to assess how different reward formulations influence
deployment decisions in distributed computing environments.
One notable RL algorithm, known as Maskable Proximal
Policy Optimization (MaskPPO) [23], is evaluated based on its
reliable implementation in Python within the stable baselines
3 framework [24]. MaskPPO extends the standard PPO al-
gorithm by incorporating invalid action masking, allowing the
RL agent to ignore infeasible actions while preserving the core
behavior of PPO. In this study, additional RL algorithms are
evaluated, but our findings reveal that MaskPPO consistently
outperforms the other RL methods. Thus, we focus our evalua-
tion on assessing MaskPPO performance under various reward
strategies. The objective is to analyze the effectiveness and
robustness of several strategies, thereby providing a nuanced
understanding of their applicability in real-world deployment
scenarios. Through this evaluation, we aim to offer valuable
insights for researchers and practitioners seeking to leverage
RL techniques for efficient deployment strategies within the
CC.

Various application requests are used in the evaluation
of the gym-qoe framework, representing a broad range of use
cases, ensuring that the RL agent encounters diverse patterns
in computing demands (i.e., CPU from [0.015, 0.20] millicpu
and RAM from [0.016, 0.70] MiB) and latency thresholds (i.e.,
from [20, 200] milliseconds). This enables a thorough assess-
ment of the RL agent’s capacity to handle diverse computa-
tional loads and latency demands in dynamic environments.
These requirements are designed to be generic and applicable
to a wide range of use cases. Several performance metrics
are used to evaluate the performance of the RL algorithm:

o Accumulated reward during each episode. It refers to
the total sum of rewards obtained by MaskPPO.

 Proportion of rejected requests expressed as [0, 1].

« Average total latency (in ms) for each accepted request.

o Average deployment cost incurred for each request.

e G (Gini Coefficient) highlighting the inequality of the
deployment scheme, with values ranging from O (perfect
equality) to 1 (maximum inequality), helping to assess
fairness in the distribution of requests.

o Accumulated QoE (0-15) experienced by each user.

Three heuristic baselines are assessed to compare its
performance against the RL algorithm:

o CPU-Greedy: assigns the request to the location with the
lowest resource consumption in terms of CPU usage.

o Latency-Greedy: assigns the request to a random loca-
tion while adhering to the specified latency threshold,
focusing on both the access and processing latency.
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TABLE 1V: The different configurations tested in the experiments.

Name
False — False (FF)
False — True (FT)
True — False (TF)
True — True (TT)

Description

Both QoE and network KPIs are excluded.
QoE KPIs are excluded.

Network KPIs are excluded.

Both QoE and network KPIs are included.
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Fig. 2: The training results for False — False scenario.

o Cost-Greedy: assigns the request to the location with the
lowest deployment cost according to the type of location.

Various observation spaces are evaluated to understand the
performance of the RL agent when QoE or network KPIs are
unavailable, as shown in Table IV. The evaluation focuses on
the following key research questions:

e RQI - Does RL perform better when both QoE and
network KPIs are included in the observation space?
This study aims to identify the most effective configu-
ration of the observation space to maximize QoE while
maintaining a high acceptance rate.

e RQ2 - Do network KPIs provide benefit in improving the
performance of RL when maximizing QoE? This work
investigates whether including network-level metrics en-
hances the decision-making of the RL agent, or if QoE
metrics alone are sufficient for effective orchestration.

VI. RESULTS

This section presents the performance results under different
reward strategies (Table III) and observation state configu-
rations (Table IV). Fig. 2 shows the performance of differ-
ent reward strategies over 2000 training episodes in the FF
configuration, smoothed with a 100-episode window. Most
strategies converge between the 300th and 600th episode, with
slight reward gains beyond. MaskPPO (Cost) achieves the
highest average reward (Fig. 2a) and effectively minimizes
rejections across all strategies (Fig. 2b), reaching nearly 0%
by the end. Latency strategy yields consistently lower total
latency (Fig. 2¢), while Cost- and QoE-driven strategies incur
higher latency. In contrast, Cost strategy results in the lowest
deployment costs at the end (Fig. 2d). Regarding the other
observation state configurations (FT, TF, TT), training results
were similar to the FF case. Due to space constraints, we
have omitted these plots and focused on the testing phase to
highlight key differences. Notably, when network or QoE KPIs

15
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MaskPPO (Latency)
=== MaskPPO (Inequality)

== MaskPPO (QoE)
mCost-Greedy

= CPU-Greedy
Latency-Greedy

10 A
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5 £

0 T T T T T T T
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Fig. 3: The average QoE obtained for the TT configuration.

are included, the RL agent learns more effective placement
decisions that optimize QoE compared to the FF configuration.

During the testing phase, each strategy was executed
over 100 episodes using the saved configuration from the
training phase (over 2000 episodes). Table V reports perfor-
mance across all observation state configurations, showing that
RL strategies consistently outperform heuristics in balancing
objectives. The Cost strategy yielded the lowest deployment
cost (6.4-8.3), confirming its strength in cost optimization.
However, it also exhibited high latency (78.9-92.3 ms) and
low fairness (0.6-0.7), indicating that minimizing cost can
compromise both user experience and equitable resource
distribution. The Latency strategy reduced latency and kept
0% rejections, but resulted in higher costs (15.7-16.4). The
Inequality strategy offered one of the most balanced results,
combining low latency, comparable to the Latency strategy,
with excellent fairness (0.1). In the TT configuration, the QoE
strategy achieved the highest score (7.0) but with high cost
(20.1) and moderate latency (65.9), as concentrating requests
at optimal locations increased resource contention. In contrast,
greedy baselines showed extreme trade-offs: Latency-Greedy
achieved the lowest latency (26.5 ms) but had a 20% rejection
rate due to resource exhaustion. Cost-Greedy was the most
cost-efficient (4.5 units) but suffered from high latency (80.1
ms) and low QoE (5.8). The CPU-Greedy baseline performed
worst in fairness and QoE, demonstrating the limitations of
purely resource-driven policies.

Overall, RL-based strategies demonstrated versatility, with
specific configurations excelling in different performance as-
pects, such as low latency, cost efficiency, equitable resource
distribution, and high QoE. The Cost-Greedy heuristic remains
the most cost-effective but at the expense of increased latency,
while the Latency-Greedy heuristic achieves the lowest latency
but with a slightly higher request rejection rate. In addition,
incorporating network and QoE KPIs in the observation space
as in the TT configuration consistently achieved higher QoE
without rejections, and more balanced trade-offs, affirming the
value of RL strategies for orchestration in the 6G CC.

In summary, the experimental results confirm that the pro-
posed RL-based approach effectively optimizes XR orches-
tration in 6G CC. The reward function design balanced
cost, latency and QoE, with the agent adapting decisions to
optimize its main objective while maintaining other metrics
acceptable. RL-based orchestration also achieved clear QoE
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TABLE V: Summary of RL agent performance across different observation space configurations. Incorporating network and QoE KPIs in
the observation space consistently achieved higher QoE compared to their configurations.

Strategy False — False (FF) False — True (FT) True - False (TF) True - True (TT)
QoE Cost  Tot. Latency G QoE Cost Tot. Latency G QoE Cost Tot. Latency G QoE Cost Tot. Latency G
Cost 590+04 64+1.0 923 £36 07+00[61+04 83+15 856+42 07+00[60+04 83+13 795+44 06+00[58+04 74+£12 789 +37 0.6+0.0
Latency 62+ 03160+ 1.9 323 £05 0.1 £0.0(6.1 £02 158 £18 320+05 01 +0.0(59+02 157+ 1.8 32.1 £05 0.1 £0.0/6.1 £02 158 £ 1.8 31.9+ 05 0.1 £ 0.0
Inequality 6.3 £+ 0.2 165 2.0 31.2 £ 0.5 0.1 £0.0/59 £02 164 £19 31.6 = 0.5 0.1 £ 0.0{59 £ 0.2 16.1 £ 1.9 315 £ 0.5 0.1 £ 0.0/6.0 £02 164 £ 19 315+ 05 0.1 £ 0.0
QoE 58+ 03 185+29 51.1 £12 05+ 00|67 = 04 199 + 38 846+ 34 07 +0.0{65 + 0.4 20.7 =39 79.0 £ 3.9 0.6 £ 0.0|7.0 = 0.4 20.1 £+ 3.4 659 +3.8 0.5+ 0.0
Balanced 6.0 £ 0.3 113 + 1.2 361 £1.0 02 +£0.0/60+03 106 +£12 373+ 1.2 03 +0.0/61+03 11.7+ 1.3 360+09 02+00/6.1+03 11.0+12 358 +09 02+0.0
CPU-Greedy QoE: 48 £ 0.6 Cost: 48.8 £ 243 Tot. Latency: 93.0 & 28.8 G: 0.7 = 0.1
Latency-Greedy QoE: 5.8 £ 0.2 Cost: 182 2.0  Tot. Latency: 26.5 £ 0.3 G: 0.1 £ 0.0
Cost-Greedy QoE: 5.8 + 0.4 Cost: 4.5 + 1.0  Tot. Latency: 80.1 = 5.0 G: 0.6 £ 0.0

gains over heuristics, with MaskPPO consistently delivering
higher QoE for admitted users. In addition, the agent main-
tained a 100% acceptance rate, proving its robustness and
scalability. Regarding the research questions, including both
QoE and network KPIs in the observation space improved
decision-making, yielding a 21.3% QoE gain over heuristics
and 14.7% over the Balanced strategy. While QoE is the
main driver of user satisfaction, network KPIs ensured stable
and efficient allocation, preventing suboptimal choices under
dynamic conditions.

Overall, these findings provide a foundational understanding
of how QOoE interacts with network KPIs in RL-based or-
chestration, informing future research directions in intelligent
network and service management.

VII. CONCLUSIONS

As holographic and XR advance immersive experiences,
optimizing end-user QoE in 6G networks presents both chal-
lenges and opportunities. This work proposes a RL-driven
orchestration strategy that integrates QoE and network KPIs
to support low-latency service delivery for upcoming 6G
applications. Through extensive evaluation, RL shows strong
adaptability while achieving a 21.3% QoE improvement over
heuristics and 14.7% over a balanced placement strategy, while
maintaining a 100% acceptance rate. These results highlight
the performance of RL in handling conflicting objectives under
dynamic network conditions. Future work will explore alter-
native RL algorithms, such as multi-agent RL, to evaluate the
performance of these techniques when multiple RL agents can
either cooperate or compete, collectively optimizing service
placement decisions.
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