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Abstract—Video-based communication is central to today’s
digital society. While YouTube and Netflix once dominated video
traffic, traditional broadcasters now run their own streaming
services, and live-streaming platforms are expanding. Users
expect high-resolution video with minimal buffering and latency,
especially for live content. Meeting these demands requires
infrastructure that balances performance, cost, energy, and
resources, supported by comprehensive traffic monitoring and
analysis. Artificial Intelligence plays a key role, particularly in
encrypted traffic classification and quality prediction, with tree-
based Machine Learning models like Random Forests (RF) widely
used. However, research often emphasizes small accuracy gains
while overlooking the raising energy and resource costs of such
models, an increasing conflict with sustainability goals. To study
this trade-off, we implement RF models with varying feature
counts and complexities to predict video re-buffering and buffer
health, two key quality indicators. Using a dataset of more than
11,000 YouTube sessions, we analyze how prediction performance
scales with model complexity and energy consumption across the
full pipeline, revealing several unexpected results.

Index Terms—quality prediction, AI, ML, energy consumption,
streaming quality

I. INTRODUCTION

Video-based communication is central to modern applica-
tions. In addition to YouTube and Netflix once dominated
the streaming landscape, services such as Disney+, Amazon
Prime Video, or Twitch have greatly expanded their services.
Video now accounts for a major share of global Internet traffic,
with large-scale events, especially live sports, driving peak
loads in Europe and the U.S. [1]. From the user perspec-
tive, high-quality streaming requires high bitrate, few quality
shifts, and uninterrupted playback [2]. Ensuring this quality
during peak demand requires substantial infrastructure and
often over-provisioning, while insufficient capacity degrades
QoE and increases user churn. Although clients select video
quality, network and service providers remain responsible
for transmission, monitoring, and assurance, which demand
significant computing and energy resources. Proactive traffic
monitoring and timely QoE issue detection enable efficient
resource allocation but further increase energy consumption.

Artificial Intelligence (AI) has become a key tool for
network monitoring and management. However, concerns arise
about its sustainability, as even trivial tasks (e.g., using Chat-
GPT for simple queries) consume notable energy. While some

AI models clearly outperform analytical methods, others yield
only marginal gains for specific inputs, often with unknown
energy impact. Despite growing focus on sustainable AI, many
developers still neglect or do not know energy demands and
environmental impact during training and inference.

To better understand the resource implications of AI-based
approaches for predicting video streaming QoE degradation,
we focus on well-established Random Forest (RF) models in a
domain generating most network traffic. Our analysis explores
the energy and resource footprint of monitoring and prediction
systems, largely underexplored, through a threefold approach:
(1) identifying key procedures in Key Quality Indicator (KQI)
prediction driving energy and resource use, (2) quantifying
energy consumption across procedures from traffic monitoring
to inference, and (3) evaluating trade-offs between AI model
complexity and energy usage. We consider two critical KQIs
for analyzing video traffic: I) stalling as the primary degra-
dation factor and II) buffer health as an indicator of stream
stability. Our study uses a large-scale dataset of over 11,000
mobile YouTube video sessions [3]. We derive the following
three research questions (RQs).

RQ1: Which procedures of video streaming KQI monitor-
ing and prediction are most energy-intensive, and where are
potential opportunities for savings?

RQ2: Can we identify differences in energy consumption
characteristics for different KQI prediction approaches, i.e.,
buffer health prediction as regression and stalling prediction
as classification task?

RQ3: What trade-offs exist between prediction quality and
energy consumption in AI-based KQI prediction for video
streaming, and how might these impact future model design?

In Section II, we summarize background and related work,
and in Section III, we discuss all relevant procedures for KQI
prediction in video streaming and highlight our resource and
energy measurement approach. Afterwards, we evaluate and
discuss our results in Section IV, and conclude in Section V.

II. BACKGROUND AND RELATED WORK

This section provides relevant background and literature on
video streaming, quality assessment, and network monitoring.

Video Streaming: Video streaming is the process of
simultaneously requesting and delivering video and audio
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content from, e.g., a Content Delivery Network (CDN), to the
user on a best-effort basis. While audio is typically encoded
at a constant bitrate [4], video is offered in multiple quality
levels, ranging from 144p to 1080p on mobile [5], and up to
4K or higher on other devices. Each uplink packet requests
a video segment, often called a chunk or group of pictures
(GOP), which is then delivered via the downlink [5]. Chunk
sizes depend on the streaming type and platform. For example,
Twitch.tv live streams request up to 2 s per uplink [6], while
YouTube requests range from 5 s to 11 s [4, 7]. Consequently,
downlink traffic exceeds uplink volume by far.

Quality Assessment: For an end user, a high-quality
stream matters more than traffic statistics. KQIs include res-
olution changes, startup delays, and playback interruptions,
called stallings [2]. Other factors like video blur or artifacts
are explored in [8]. More recently, studies have expanded
KQI considerations to include energy use [9] and carbon foot-
print [10], highlighting the environmental impact of streaming
but balancing quality and sustainability remains a challenge.

Network Monitoring: While prior research has examined
the streaming process and its resource needs, the energy
and resource demands of monitoring remain often over-
looked. Monitoring is essential for detecting and predicting
KQIs [11], yet encryption and growing traffic volumes make
this increasingly challenging. Existing methods use full packet
traces [12, 13] or focus solely on uplink requests [7, 5, 14],
with varying accuracy. A recent work highlights differences
in data needs [15] but general resource and energy require-
ments of monitoring different streams and apply various KQI
prediction models are still not well researched.

KQI prediction approaches range from statistical models [5]
to simple (e.g., RF) or complex AI and deep learning meth-
ods [12, 16, 17, 18]. To assess energy requirements for these
models and close this gap in the literature, we implement and
compare RF models, generally seen as lightweight and thus,
common in KQI prediction [12, 16, 13], with varying model
complexity and feature sets. Using a large dataset from [3],
we analyze and identify trade-offs between model complexity,
prediction quality, and energy consumption.

III. KEY QUALITY INDICATOR PREDICTION PROCEDURES

A typical KQI prediction workflow for video streaming
includes traffic capturing, data processing, feature extraction,
model training, and inference. Each step impacts resource
usage, especially energy consumption. We detail these impacts
and our measurement methods below.

A. Traffic Capturing and Dataset

Data acquisition usually includes the capturing of raw
network traffic, the filtering of video traffic, and the pre-
processing of the video data to set up a comprehensive dataset.

Traffic Capturing: To examine resource demands for traf-
fic capturing, we set up a testbed with two systems connected
via CAT 6 LAN. System A (AMD Ryzen 5 PRO 5650G, 4 GB
RAM) sends packets using Iperf to System B (Intel® Core™
i7-4770, 16 GB RAM), emulating video streaming. System B

Table I: Feature scenarios based on window lengths and traffic
direction with name and number (No.) of included features.

up- and downlink uplink only
window lengths name No. name No.

1s, 2s, 3s, 5s, 10s, 20s all_long 228 uplink_only_long 114
1s, 2s, 3s, 5s, 10s all_medium 190 uplink_only_medium 95
1s, 2s, 3s all_short 152 uplink_only_short 76

captures traffic with tshark, while CPU usage of the capturing
process is measured. We focus on CPU utilization, impacting
energy use more than RAM [19], and since our tests show
only minimal variation in RAM usage.

Streaming Dataset: To predict video streaming KQIs, we
use a public dataset of over 11,000 YouTube mobile streams
under varying network conditions [3]. The dataset includes
application, transport, and network layer data and video quali-
ties from 144p to 1080p. For our analysis, we use timestamps,
buffer health, and stalling flags from the application data and
timestamps, packet direction (uplink/downlink), and packet
size, discarding encrypted payloads from the network data.
In total, about 373 million network traffic and 4.6 million
application data samples are used as input for our models.

B. Feature Set and Scenarios

Next, features are extracted from the captured downlink
and/or uplink traffic during feature selection.

Feature Selection: We evaluate up to 228 features as
the most comprehensive feature set proposed by [13]. Similar
studies [12, 20] use up to 200 and similar features, so
similar analyses would likely yield comparable results. The
literature [13, 12] use different window lengths including
network traffic from a different duration. In total, features are
computed from pre-processed traffic for uplink and downlink
over window lengths of 1 s, 2 s, 3 s, 5 s, 10 s, and 20 s. For
each window length, we calculate throughput, active time
(defined as inter-arrival times under 100 ms), packet count,
packet size, and inter-arrival times. Packet size and inter-arrival
times are aggregated by mean, median, max, min, and standard
deviation. Packet count and size are also computed separately
for packets larger than 100 B, representing actual payload. For
an overview, we refer to [13].

Feature Scenarios: We examine different feature scenar-
ios based on traffic direction, uplink only and both uplink and
downlink, and on window length, as in the literature [12, 13,
7, 14, 16]. We group window length in three categories: (1)
Short including 1 s, 2 s, and 3 s windows; (2) Medium, adding
5 s and 10 s windows; and (3) Long, adding 20 s windows.
This results in six different scenarios in Table I.

Feature Importance Based Reduction: To reduce the fea-
ture set space, we apply a selection criterion based on feature
importance, which quantifies each feature’s contribution to
predictive performance. In RF, importance is computed by
averaging the decrease in impurity (e.g., Gini or entropy)
each feature provides across all trees, with scores normalized
between 0 and 1. The RF model is first trained on the full
feature set, and the resulting scores guide the selection of
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Table II: Required number of features after feature importance
based reduction for buffer health (regression task) and stalling
prediction (classification task) using different models.

all features buffer health reduced stalling reduced

all_long 228 10 (~ 4 %) 37 (~ 16 %)
all_medium 190 27 (~ 14 %) 39 (~ 21 %)
all_short 152 25 (~ 16 %) 37 (~ 24 %)
uplink_only_long 114 12 (~ 11 %) 40 (~ 35 %)
uplink_only_medium 95 24 (~ 25 %) 46 (~ 48 %)
uplink_only_short 76 33 (~ 43 %) 51 (~ 67 %)
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Figure 1: Impact of different number of decision trees (left)
and maximal depth of trees (right) on model performance (R2

for buffer health regressor and F1 for stalling classifier).

relevant features. Table II shows the number of features per
scenario after removing those with importance below 0.01.
Original counts are listed alongside reduced counts for buffer
health regression and stalling classification, with percentages
in brackets. Scenarios with more initial features see the
largest reductions, as many contribute little to prediction. In
some cases, reduced counts for high-dimensional scenarios
are even lower than those for smaller ones, suggesting more
redundancy. Across scenarios, inter-arrival-time features are
consistently important, especially for stalling. In all_long,
features from 10 s and 20 s windows dominate, while in up-
link_only_short, inter-arrival times remain most relevant, with
longer windows slightly more important. Buffer health regres-
sion often depends heavily on a few dominant features—for
instance, maximum inter-arrival times (uplink/downlink) in
all_long account for nearly 80 % of total importance, and
active time percentage in a 5 s window explains 30 % in
uplink_only_short. This indicates future models may perform
well with even fewer features. In contrast, stalling classifi-
cation shows a more balanced distribution, with the top ten
features ranging from 3 % to just over 10 %.

C. Model Training

To assess the energy impact of model training, we consider
the resource demands of training RF models, which build
multiple decision trees to predict buffer health (regression)
or stalling events (classification). Model complexity, and thus
training load, depends on hyperparameters such as the number

and depth of trees. The default configuration, based on scikit-
learn, uses 100 trees with a maximum depth of 16 and serves
as a reference. During the study, one parameter is varied at
a time, using 5,000 training samples to balance speed and
baseline performance. Model performance is measured via
R2 for regression and F1 for classification. Figure 1 shows
results for tree counts (1–300) and depths (4–128) using the
base feature sets, without feature reduction, with uplink-only
setups shown as dashed lines. Each configuration is evaluated
across all feature scenarios, averaged over 30 runs with 95 %
confidence intervals to account for randomness in training.
Performance improves markedly up to eight nodes in depth
and about 25 trees, with diminishing returns beyond that.
For stalling classification, uplink-only scenarios show larger
performance drops between four and eight tree depths com-
pared to bidirectional features, likely due to limited decision
capacity: at four nodes, each tree can make only four decisions,
insufficient for accurate classification. Based on these findings,
we define three complexity classes:

1) High – 100 trees, max depth 16,
2) Medium – 50 trees, max depth 8,
3) Low – 10 trees, max depth 4.
While more data and hyperparameter tuning could improve

accuracy, we aim on assessing trade-offs between prediction
quality and energy demand and do not optimize the model.

D. Inference

Finally, the preprocessed data is fed into the model. In-
ference generally consumes less energy than training, but is
run continuously, in our case once per second. While a single
inference is low-cost, the cumulative energy demand becomes
substantial across many devices and streams, especially at
high frequency. In large-scale deployments, this continuous,
distributed workload can lead to significant overall energy use
and operational costs.

E. Energy Consumption Measurements

Energy consumption is evaluated using PyRAPL [21],
which retrieves CPU and RAM energy usage via hardware
signals, collecting energy data during script execution. Tests
are run on an Intel Core i7-7700 CPU with 32 GB RAM.
Each measurement is repeated 30 times to achieve statistically
significant results. Models are implemented in Python 3.12
using scikit-learn and pandas, with code available on Github 1

IV. EVALUATION

This section examines RF-based KQI prediction models for
video streaming, varying in complexity and feature sets with
focus on energy consumption and prediction accuracy. We
start with traffic capturing, then assess energy usage for data
processing, feature extraction, training, and inference. Finally,
we analyze performance to energy consumption trade-offs and
outline and discuss practical implications.

1https://github.com/lsinfo3/AI-energy-measurements
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Figure 2: Time (top), CPU (middle), and RAM energy (bot-
tom) to extract a sample from raw data for all features and
feature importance based reduced scenarios.

A. Packet Capturing

To assess the requirements for capturing video traffic, we
generate and transmit data matching bitrates from 100 kbps to
30 Mbps, covering resolutions from 144p to 4K. Each capture
runs for 60 s (without transient phase), using the testbed from
Section III-A, with each bitrate transmitted 60 times for statis-
tical significance. System B receives and records the data while
CPU utilization is measured to evaluate monitoring overhead.
Between 100 kbps (uplink-only YouTube mobile traffic [16])
and 2.5 Mbps (720p), CPU usage rises from 0.25 % to 2 %,
with diminishing increases at higher throughput. Thus, data
capturing shows minor potential for improvement. As energy
use under load is already well studied [22, 23], we do not ex-
plore it further; significant savings may arise only by reducing
or disabling active capture devices during idle periods.

B. Data Processing and Feature Extraction

Greater potential for savings is expected for data process-
ing and feature extraction, which transforms raw traffic into
model-ready features. Figure 2 shows the average time (ms)
and energy (mJ) per extracted sample for CPU and RAM
across different feature scenarios. The left bars show six
base scenarios without feature importance-based reduction,
where buffer health and stalling models use the same features.
Middle and right bars show scenarios after removing features
with importance below 0.01, separately for buffer health and
stalling models. Values are based on 13,475 samples from
30 randomly selected videos, with 95 % confidence intervals.
CPU energy dominates over RAM. In full feature scenarios,
energy use correlates with feature count (Table II), but this
weakens after feature reduction. For instance, the stalling
all_long scenario uses 37 features yet has the highest demand,
while uplink_only_short, with 51 features, has the lowest.
Buffer health models show a similar pattern, indicating feature
type, not just quantity, affects energy consumption.
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Figure 3: Time, CPU, and RAM energy consumption to train
one RF model at high, medium, and low complexity. Using
features of six base scenarios with (FI) and without feature
importance-based reduction.

C. Model Training and Performance

After feature assessment, we evaluate how feature reduction
and model complexity impacts training time and energy con-
sumption, followed by an analysis of predictive performance.

1) Impact of Feature Reduction on Energy Consumption:
We first assess the impact of feature importance–based reduc-
tion on energy consumption and training time. For each sce-
nario and model complexity, 30 models are trained to ensure
statistical significance. Training time depends on the number
of samples and features per sample. Using 5,000 training
samples, we evaluate the effects of complexity and feature
reduction, measuring model size (nodes) and performance on a
separate test set. Small confidence intervals across all scenarios
indicate low variance between runs.

Buffer Health Regression: We begin by assessing the
buffer health regression models. Figure 3 shows training time
and CPU/RAM energy consumption for high, medium, and
low complexity models (see Section III-C), evaluated across
the six feature scenarios, with and without feature impor-
tance–based reduction (FI, dashed bars). Without reduction,
resource usage and energy consumption increase with more
features, consistent across complexities. Lower complexity
significantly reduces energy demand (CPU energy drops from
over 100 J at high to under 20 J at low complexity). With re-
duction, trends vary. For example, uplink_only_short becomes
the most resource-intensive, likely due to its higher remaining
feature count. Model performance and size (node count) re-
main largely unaffected by feature reduction, reflecting model
complexity rather than feature count.

Stalling Classification: For stalling classification, train-
ing time and CPU/RAM energy consumption follow similar
trends, about an order of magnitude lower, thus not plotted in
detail. Feature reduction has minimal effect and model com-
plexity remains the main driver of energy use. Model size and
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Figure 4: Time, CPU, and RAM energy consumption for
training (left) and inference (right) for six feature importance-
reduced scenarios at high, medium, and low model complexity.
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Figure 5: Number nodes (left), model performance (right) for
feature scenarios of high, medium, and low model complexity.

prediction performance show similar patterns, though uplink-
only scenarios perform worse at low complexity, indicating
limited predictive value of uplink features under constrained
capacity. Other findings align with buffer health regression and
are thus omitted here.

2) Energy and Quality Assessment for Model Complexities:
Model complexity has a larger impact on energy consumption
than feature reduction. We therefore examine its effect on
energy use and predictive performance using 100,000 samples
from [3]. Models are trained on reduced feature sets for prac-
tical deployment. In addition to energy for training, typically
performed once or for updates only, we measure inference en-
ergy based on 1,500 randomly selected predictions, reflecting
continuous operation in the network.

Buffer Health Regression: Figure 4 shows training (left)
and inference (right) time, CPU, and RAM energy for buffer
health regression models with 100,000 samples across six
feature-reduced scenarios and three model complexities. Train-
ing uses a logarithmic scale due to larger energy differences
than per-sample inference. RAM energy is about an order
of magnitude lower than CPU. Training demand is driven
mainly by model complexity, with minor feature-set variation.
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Figure 6: Time, CPU, and RAM energy consumption for
training (left) and inference (right) for six feature importance-
reduced scenarios at high, medium, and low model complexity.
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Figure 7: Number nodes (left), model performance (right) for
feature scenarios of high, medium, and low model complexity.

During inference, low-complexity models are 30 % faster and
use less RAM, though differences between medium and low
complexity are small. Notably, all_long and all_medium sce-
narios consume only half the CPU energy of others. Figure 5
shows node counts and R2. Counts are consistent within
complexity levels, though high-complexity models grow with
more training data. More complex models generally perform
better, but scenario choice also matters; e.g., all_long low-
complexity outperforms some medium-complexity models.
Using longer windows (e.g., 20 s) increases RAM energy and
prediction time, yet significantly reduces CPU energy.

Stalling Classification: Figure 6 shows training (left) and
inference (right) time, CPU, and RAM energy for stalling
classification models across six feature-reduced scenarios and
three complexity levels. Unlike buffer health regression, train-
ing time and energy are nearly identical within each complex-
ity level and minimally affected by feature sets. Prediction
shows small differences, often not statistically significant
(e.g., all_long vs. uplink_only_short). Overall, training stalling
models consumes less energy than buffer health regression,
while prediction demands are similar. Figure 7 shows con-
sistent node counts for medium and low complexity, slight
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Figure 8: Total energy per sample, split into CPU and RAM
usage for feature calculation and prediction, across six feature
scenarios and three model complexities for buffer health
regression and stalling classification.

variation at high complexity, and growth with more samples.
F1-score depends on both model complexity and features;
low-complexity uplink-only models perform poorly, while
all_long low-complexity outperforms several medium- and
high-complexity models, highlighting feature set importance.

Thus, the first part of RQ1 can be addressed: Energy
consumption varies across the four KQI prediction procedures.
While traffic capturing energy is low, sample extraction, fea-
ture assessment, and model training show substantial vari-
ation. Careful model selection, complexity assessment, and
feature design are essential for energy-efficient operation,
offering significant optimization potential.

While model training varies by architecture, it is usually
performed only once or for updates. In contrast, feature
extraction and inference occur continuously during deploy-
ment, making their runtime efficiency and energy consumption
more critical. Figure 8 shows CPU (light blue) and RAM
(dark blue) energy for prediction, and CPU (light orange)
and RAM (dark orange) for sample calculation, with num-
bers (1)–(6) denoting feature scenarios. Across scenarios,
prediction consistently consumes more energy than sample
calculation, with RAM using less than CPU. Trends align
with earlier observations for buffer health regression and
stalling classification. Interestingly, in buffer health regression,
all_long (longest time windows, uplink and downlink) uses
the least energy, while uplink_only_short consumes the most.
Stalling classification shows more expected patterns, though
all_short and uplink_only_medium are lower than others. On
average, stalling models consume more energy than buffer
health models. This addresses the second part of RQ1: Be-
yond feature selection, model choice, complexity, and energy
consumption during inference shows significant variation and
opportunities for savings. It also answers RQ2: Energy use
differs when predicting KQIs. While raw traffic capture and
full feature computation are identical for buffer health and
stalling, tailored feature sets and models vary in energy de-
mand. Sample calculation for stalling consumes more energy
than for buffer health, whereas stalling model training is
roughly an order of magnitude less energy-intensive.
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buffer health regression and stalling classification.

D. Energy Consumption and Performance Trade-Off

Figure 9 shows the trade-off between energy consumption
and model performance (R2 for buffer health, left; F1 for
stalling, right). The x-axis shows energy use, markers indi-
cate complexity (cross: low, triangle: medium, circle: high),
and colors denote feature scenarios, all with feature impor-
tance–based reduction for smaller, practical feature sets.

Generally, larger feature sets improve performance. For
buffer health, all_long at high complexity achieves the best
result. While higher complexity often consumes more en-
ergy, some top-performing models, like the all_long one, use
less than simpler models (fifth-lowest energy, about 400 mJ).
All_medium at medium complexity achieves the third-best
score at about 100 mJ less, sacrificing about 5 % performance.
For stalling, all_long (high complexity) uses the most energy
(BOUT 700 mJ), while uplink_only_medium performs within
5 % of the best but uses about 200 mJ less. Uplink_only_short
performs poorly in both energy and accuracy.

This addresses the first part of RQ3: Clear trade-offs exist
between prediction quality and energy consumption. More
complex models generally consume more energy but achieve
better performance. Reducing features or using seemingly
simpler features does not always lower energy use, and some
low-accuracy models require disproportionately high energy.

E. Discussion and Implications for Real Usage

Our findings highlight three key takeaways that should be
considered for practical deployment:

1) Training consumes much more energy than inference;
2) Energy requirements for predicting different KQIs vary;
3) Thorough feature evaluation, careful model design, and

systematic testing are essential for achieving optimal results.
While these points may seem at least partially intuitive, a

detailed examination of them offers valuable insights that can
improve how streaming KQIs are assessed and predicted.

1) Energy Consumption for Training and Inference: At
first glance, training seems far more energy-intensive than
inference. However, even energy-heavy training can improve
long-term efficiency. For instance, our full buffer health re-
gression model uses over 1,000 J for training (Figure 4), while
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inference consumes only 300–600 mJ, depending on features
and complexity. Once trained, a model can be reused; in the
all_long low-complexity scenario, inference uses about 4,000
times less energy than training, equivalent to 4,000 one-second
predictions. With the large volume of video streams today,
investing in centralized, renewable-powered training enables
lightweight inference at distributed locations, reducing overall
energy consumption and carbon footprint while supporting
scalable KQI prediction.

2) Energy Consumption for Different KQIs: Energy con-
sumption depends on the predicted KQI, so the most critical
KQIs for an application must be identified. Many approaches
(e.g., [16, 12]) target different KQIs such as re-buffering events
or quality changes. Our analysis shows that relevant input
features vary by KQI, requiring distinct feature sets after fea-
ture reduction. Although predicting buffer health seems more
energy-intensive than stalling, it can also infer stalling and
quality changes, making a slightly more energy-demanding
buffer health model potentially more efficient than maintaining
separate models for each KQI.

3) Feature Assessment and Model Testing: Currently, most
AI models and features are selected primarily for predic-
tion quality, often targeting marginal gains in F1-score or
accuracy. We propose including energy consumption as an
additional KQI during model selection, allowing trade-offs
between accuracy and energy use to be assessed for each
use case. Some scenarios prioritize maximum accuracy, while
others may accept slightly lower performance for substantial
energy savings. In video streaming, even small improvements
can prevent critical issues like stalling, so energy saved with
lightweight, adequately performing models could be redirected
to improve overall network performance. Thus, the second
part of RQ3 can be answered: Future model design should
consider energy consumption as a KQI, optimizing models for
both energy efficiency and prediction performance.

V. CONCLUSION

In this work, we predict buffer health and stalling as
key QoE indicators in video streaming using RF models.
We analyze how feature spaces and model complexity af-
fect prediction accuracy and energy use, emphasizing rela-
tive comparisons due to hardware dependence. Results show
both feature choice and model complexity strongly influence
energy demand: complex models generally consume more
energy for higher accuracy, but input features also shape
efficiency. Uplink-only features underperformed compared to
combined uplink–downlink sets, while longer time-window
features improved buffer health regression. Notably, the most
accurate models were not always the most energy-intensive,
highlighting the importance of informed feature and model
selection. We propose including energy consumption as an
additional evaluation dimension alongside accuracy. Future
work will extend the analysis to GPU-based training and
deep learning models, where infrequent retraining and low-
cost inference may offset high training energy.

ACKNOWLEDGMENTS

The work is funded by the Federal Ministry of Research,
Technology and Space, Grant 18KIS2282 “SUSTAINET-
Advance”, sub-project 6G-ECONETS of the University of
Würzburg and supported by the Swiss Innovation Agency
Innosuisse under the SUSTAINET project 119.588 INT-ICT.

REFERENCES

[1] Computer Weekly, “Sporting Events Drive 2023’s
Biggest Daily Spikes in European and US Network
Traffic,” accessed: 2025-01-30. [Online]. Available:
https://www.computerweekly.com/news/366568294/Sporting-events-
drive-2023s-biggest-daily-spikes-in-European-and-US-network-traffic

[2] M. Seufert et al., “A Survey on Quality of Experience of HTTP Adaptive
Streaming,” IEEE Communications Surveys & Tutorials, 2014.

[3] F. Loh et al., “YouTube Dataset on Mobile Streaming for Internet Traffic
Modeling and Streaming Analysis,” Scientific Data, 2022.

[4] F. Loh, F. Wamser, C. Moldovan, B. Zeidler, D. Tsilimantos, S. Valentin,
and T. Hoßfeld, “Is the Uplink Enough? Estimating Video Stalls from
Encrypted Network Traffic,” in Network Operations and Management
Symposium. IEEE, 2020.

[5] F. Loh, A. Pimpinella, S. Geißler, and T. Hoßfeld, “Uplink-based live
session model for stalling prediction in video streaming,” in Network
Operations and Mgmt Symposium. IEEE, 2023.

[6] F. Loh et al., “Machine learning based study of qoe metrics in twitch.tv
live streaming,” in Network Operations and Mgmnt Symp. IEEE, 2023.

[7] C. Gutterman et al., “Requet: Real-time qoe metric detection for en-
crypted youtube traffic,” ACM Transactions on Multimedia Computing,
Communications, and Applications, 2020.

[8] Z. Shang, J. P. Ebenezer, Y. Wu, H. Wei, S. Sethuraman, and A. C.
Bovik, “Study of the Subjective and Objective Quality of High Motion
Live Streaming Videos,” IEEE Transactions on Image Processing, 2021.

[9] G. Bingöl et al., “An analysis of the trade-off between sustainability and
quality of experience for video streaming,” in International Conference
on Communications Workshops. IEEE, 2023.

[10] T. Hoßfeld, M. Varela, L. Skorin-Kapov, and P. E. Heegaard, “A Greener
Experience: Trade-Offs between QoE and CO 2 Emissions in Today’s
and 6G Networks,” IEEE Communications Magazine, 2023.

[11] F. Loh, Monitoring the Quality of Streaming and Internet of Things
Applications. Bayerische JMU Würzburg (Germany), 2023.

[12] S. Wassermann et al., “Vicrypt to the Rescue: Real-Time, Machine-
Learning-Driven Video-QoE Monitoring for Encrypted Streaming Traf-
fic,” IEEE Transactions on Network and Service Management, 2020.

[13] I. Orsolic and L. Skorin-Kapov, “A Framework for in-Network QoE
Monitoring of Encrypted Video Streaming,” IEEE access, 2020.

[14] S. C. Madanapalli et al., “ReCLive: Real-Time Classification and
QoE Inference of Live Video Streaming Services,” in International
Symposium on Quality of Service. IEEE, 2021.

[15] F. Loh et al., “High Complexity and Bad Quality? Efficiency Assessment
for Video QoE Prediction Approaches,” in International Conference on
Network and Service Management. IEEE, 2024.

[16] F. Loh, F. Poignée, F. Wamser, F. Leidinger, and T. Hoßfeld, “Uplink
vs. Downlink: Machine Learning-based Quality Prediction for HTTP
Adaptive Video Streaming,” Sensors, 2021.

[17] T. N. Duc et al., “Convolutional Neural Networks for Continuous QoE
Prediction in Video Streaming Services,” IEEE Access, 2020.

[18] N. Eswara et al., “Streaming Video QoE Modeling and Prediction: A
Long Short-Term Memory Approach,” IEEE Transactions on Circuits
and Systems for Video Technology, 2019.

[19] K. Nguyen et al., “Investigation of Serverless Consumption and Perfor-
mance in Multi-Access Edge Computing,” in International Conference
on Information Networking. IEEE, 2024.

[20] F. Bronzino et al., “Inferring Streaming Video Quality from Encrypted
Traffic: Practical Models and Deployment Experience,” ACM on Mea-
surement and Analysis of Computing Systems, 2019.

[21] PyRAPL, “PyRAPL,” accessed: 2025-07-04. [Online]. Available:
https://pypi.org/project/pyRAPL/

[22] M. A. Hodkin et al., “Energy-adaptive Network Switching via Intra-
device Scaling,” in Int. Conf. on Communications. IEEE, 2024.

[23] N. Mehling, F. Loh, and T. Hoßfeld, “Low-Cost Energy Measurement
and Multi-Port Traffic Generation for Network Devices,” 2024.

2025 21st International Conference on Network and Service Management (CNSM)


