2025 21st International Conference on Network and Service Management (CNSM)

Age-Based CoDel and His Friends. Improving the
Linux Scheduler with 2-Level AQM Disciplines

Giovanni Moschini
Ca’ Foscari University of Venice
Venice, Italy
879808 @stud.unive.it

Abstract—We study the combination of Active Queue Manage-
ment (AQM) techniques and age-based scheduling disciplines to
improve network performance in the Linux packet scheduler.
While AQM algorithms like CoDel, FQ-CoDel, and PIE manage
queue lengths and ensure fair bandwidth sharing, age-based
scheduling (e.g., Least Attained Service, Two-Level Processor
Sharing) reduces mean flow completion time by prioritizing short
flows. While their individual benefits are known, the integration
of these orthogonal features had not been analysed so far. We
propose a hybrid queuing solution using standard Linux utilities
(tc, nftables) tested with state-of-the art open source traffic
generators to generate realistic Pareto-distributed traffic. Our
experiments on 1 Gb/s and 10 Gb/s links demonstrate that
implementing age-based scheduling policies on top of AQM
strategies significantly reduces flow completion time, with gains
ranging from 3% to 20%. These improvements are achieved
without increasing CPU load and while preserving or improving
fairness among flows. The solution is easily implementable on
any recent Linux kernel, and we provide all the code we realized
to replicate and improve our results.

Index Terms—aqm, linux, performance

I. INTRODUCTION

The bufferbloat problem is a very well known issue that
affects the Internet speed, rooted in the original multi-layered
design of TCP/IP [1], [2]. Several Active Queue Management
(AQM) algorithms, such as CoDel [3] and FQ-CoDel, have
been proposed and adopted to tackle bufferbloat, and some of
them matured enough to be included in recent versions of the
Linux kernel. These algorithms dynamically manage queue
lengths and provide mechanisms for fair bandwidth sharing
among competing flows, but typically do not perform advanced
scheduling beyond fair queueing or diffserv.

In parallel, research has demonstrated that age-based schedul-
ing disciplines can significantly reduce the mean flow com-
pletion time. With age-based scheduling, a higher priority is
given to flows in their initial life, which favors short flows
compared to long ones. Since the size distribution of the
typical Internet traffic is heavy-tailed, this reduces the overall
average completion time. Algorithms such as Least Attained
Service [4] and Two-Level Processor Sharing [5] are notable
examples.

Despite the individual benefits of AQM and age-based schedul-
ing, their combination has not been analysed in the literature.

978-3-903176-75-1 ©2025 IFIP

Andrea Marin
Ca’ Foscari University of Venice
Venice, Italy
marin@unive.it

Leonardo Maccari
Ca’ Foscari University of Venice
Venice, Italy
leonardo.maccari @unive.it

This work addresses this gap by investigating how AQM
techniques and age-based scheduling can be combined to
leverage the strengths of both approaches. Since these are
orthogonal features of queueing algorithms, their integration
is both logical and potentially beneficial. To evaluate this
combination, we developed custom queueing solutions using
the standard Linux utilities and benchmarked them against
each other. The analysis focused on Flow Completion Time
and its fairness across different algorithms, comparing age-
based versus non-age-based solutions, queues with and without
AQM, and flow-queueing versus single-queue configurations.

Our work is deeply rooted in the currently available possibili-
ties of the Linux kernel. Our first scientific goal is to show the
benefit of age-based and AQM scheduling applied together,
our second goal is to provide a solution that can be easily
implemented on any recent Linux kernel, without having to
modify the kernel itself. This not only guarantees scientific
reproducibility, but also immediate applicability in real situa-
tions. To obtain this, we used tools like traffic control (tc) and
nftables (nft) Linux commands to rapidly prototype hybrid
age-based AQM disciplines on a stable Linux distribution.
Nftables was used to direct packets into the appropriate prior-
ity band based on the number of bytes already sent by a flow,
effectively implementing two-level processor sharing queues
(2LPS). Multi-band queues were assembled using tc —prio
in combination with other disciplines such as tc —codel. To
test our results we extended the Antler network testing tool, to
generate traffic with arbitrary distributions, including Pareto-
distributed flows, enabling the evaluation of these queueing
configurations under realistic workload conditions'.

We tested 6 different AQM policies with or without age-based
strategies, on dedicated links of 1 Gb/s and 10 Gb/s. Our
results show that implementing age-based scheduling policy
on top of the current state-of-the-art AQM strategies can
strongly reduce flow completion time while preserving fairness
among the competing flows. The gain ranges from 3% to
20% depending on the ACM policy and it is obtained without
increasing the CPU load of the server. Our contributions can

'The Antler code is available at: https:/github.com/UniVe-NeDS-Lab/
antler, while the code necessary to set up the system is available at:
https://github.com/UniVe-NeDS-Lab/linux_age_based_scheduler with a short
how-to.

2025 21st International Conference on Network and Service Management (CNSM)

then be summarized as follows:

o We propose to use of AQM policies together with age-
based scheduling. We show that with high workload
this configuration introduces a significant performance
improvement, without impacting fairness or the CPU
load.

« We publish all the open source tools and code, so that
our solution can be easily reproduced and implemented
in any real world setting, or lab.

II. A PRIMER ON AQM FOR THE LINUX KERNEL

In this section, we first describe AQM techniques. Note that
AQM has been a florid research area in the past decades, so we
focus only on the proposals that reached a level of maturity to
be included in the Linux kernel. All the techniques are applied
to the egress interface of any Linux machine.

A AQM

Traditional drop-tail algorithms only drop packets when the
buffer is completely full. This behavior causes buffers at bot-
tleneck nodes to remain persistently full, leading to increased
congestion and delay. In contrast, AQM algorithms prevent
this situation by pre-emptively dropping packets before the
buffer overflows. The need for AQM has long been recognized,
initially as a solution to flow synchronization and persistently
full queues [6], and more recently as a response to the
bufferbloat problem [1], [2].

Random Early Detection (RED) [7] was one of the first
algorithms developed to combat bufferbloat and was strongly
recommended by the first RFC on AQM [6]. It uses predictive
models based on the current amount of buffered packets to
decide when to drop. While RED can be theoretically effective,
its adoption has been limited by the difficulty of configuring
it correctly and the significant performance issues that can
arise from misconfiguration. More recent techniques addressed
these issues.

1) Controlled Delay (CoDel): The Controlled Delay (CoDel)
[3], [8] AQM strategy is a modern algorithm designed to
provide a parameterless solution that can be easily deployed
on typical Internet nodes. CoDel recognizes “good” and “bad”
queues and treats them differently. As buffers are meant to
absorb and smooth out transient traffic spikes, it is acceptable
for a flow to build up a queue temporarily to maintain high
utilization (a “good” queue). However, a queue that persists for
longer than the network round-trip time of the flow suggests
that an unnecessary amount of packets is being buffered,
and congestion should be signaled (a “bad” queue). CoDel
measures congestion using packet sojourn time: the amount
of time each packet spends in the queue from enqueue to
dequeue. More specifically, CoDel tracks the minimum packet
sojourn time over a configurable interval, chosen to be
long enough for a “good” queue to drain. The authors of CoDel
exploit the definition of “power”, by Kleinrock [9], and try to

maximize its value, based on the expected round-trip-time. For
typical Internet links the round-trip-times fall between 20 and
200 ms, then, the recommended parameters are an interval
of 100 ms and a target of 5 ms.

When congestion is detected, CoDel uses a control loop
implemented as a state machine with a nominal state and a
drop state. If the minimum delay stays above the target for
more than an interval, CoDel enters the drop state, which
is exited only when a packet with less than the target delay
is dequeued. In the drop state, packets are dropped from the
head of the queue to quickly signal congestion to the sender,
the drop rate increases with time till the measured delay is
reduced.

A major reason for CoDel’s effectiveness is its simplicity, it
is meant to work well with default parameters and is very
efficient. As CoDel adapts well to multiple queue systems, the
CoDel RFC [8] recommends using a multiple-queue approach
like FQ-CoDel or CAKE, instead of CoDel alone.

2) Flow Queue CoDel: Flow Queue CoDel (FQ-CoDel) [10]
is the default queueing discipline in systemd based Linux
distributions and is included in many router operating systems
[11].

FQ-CoDel implements byte-based fairness between flows by
maintaining a separate CoDel instance for each flow, organized
using a hash table. Each entry in the hash table contains an
independent CoDel instance and the state required for deficit
round-robin (DRR) scheduling. In addition to the hash table,
FQ-CoDel groups active flows in two lists called new_flows
and old_flows.

An FQ-CoDel instance takes as parameters the size of the
hash-table flows_cnt, the DRR quantum, and the max-
imum queue limit drop_overlimit, as well as the base
CoDel parameters to initialize each flow queue.

At dequeue time, the CoDel queues are polled in round-robin,
with new_flows given strict priority. This DRR scheduling
ensures that all flows can transmit a quantum of bytes
before any flow sends more, approximating byte-based fairness
efficiently. The use of two active flow lists helps new flows
start quickly and improves fairness for sparse flows.

3) Common Applications Kept Enhanced: Common Applica-
tions Kept Enhanced (CAKE) was developed as a successor
to FQ-CoDel, building on its design while introducing several
enhancements and new features. One of the key improvements
is the introduction of 8-way set associativity, which effectively
eliminates hash collisions even with a very large number
of flows. Another important feature is enhanced DiffServ
support, allowing the configuration of multiple priority tiers,
and scheduling flows based on their DiffServ markings. In
this work, we leverage this feature to implement age-based
scheduling.

4) Proportional Integral controller Enhanced: Proportional
Integral controller Enhanced (PIE) is another AQM solution

2025 21st International Conference on Network and Service Management (CNSM)

designed to address the bufferbloat problem [12], [13]. Its goal
is to achieve results and ease of deployment similar to CoDel,
while retaining the ease of implementation and scalability
found in RED.

Like RED, PIE separates its logic into two parts: one algorithm
computes the statistics needed to determine the drop probabil-
ity drop_prob, and another decides when to actually drop
packets. However, PIE adopts packet sojourn time as its con-
gestion metric, following CoDel, rather than the queue length
used by RED. PIE performs its packet dropping decisions
during the enqueue operation, which is the same approach
RED uses. The drop probability drop_prob is computed
regularly, using both the distance between queue delay and
delay target, and the first derivative of the delay, linearly
combined using two parameters. Pie tends to react more
quickly than CoDel, but it has more configuration parameters.

As with CoDel and FQ-CoDel, PIE is not typically deployed
on its own, but it can be combined with a flow isolation
mechanism, which we refer to as FQ-PIE.

III. AGE-BASED SCHEDULING

The behaviour of TCP flows over an interface configured
to schedule packets according to a FIFO discipline is typ-
ically modelled as an M/G/1/PS queue in queuing theory.
This stands for Markovian arrivals, General service time, 1
server, Processor Sharing. When information about job sizes
is available, either exactly or as a probability distribution, this
formulation allows deriving theoretical results that can be used
to optimize scheduling decisions. Here, we briefly review key
age-based scheduling disciplines, their theoretical properties,
and practical considerations for their implementation.

1) Shortest Remaining Processing Time: Shortest Remaining
Processing Time (SRPT) is a size-based optimal scheduling
discipline for minimizing average job completion time [14].
SRPT is a preemptive, work-conserving discipline. It always
serves the job with the least remaining work, based on its total
size and the amount of service it has already received.

Despite its optimality, SRPT is rarely used in practice because
it requires knowing the exact size of each job in advance,
without this knowledge, we can assume to know the statistical
distribution of job sizes, and use a discipline called Short-
est Expected Remaining Processing Time (SERPT). SERPT
prioritizes jobs based on the expected remaining work, given
the service they have already received. This is equivalent to
prioritizing jobs with the highest hazard rate.

2) Least Attained Service: For long-tailed job size distribu-
tions, which have a monotonically decreasing hazard rate, an
age-based scheduling approach is equivalent to SERPT. The
most straightforward implementation of this idea is the Least
Attained Service (LAS) discipline [4]. LAS works by always
prioritizing jobs that have received the least amount of service
so far, using Processor Sharing among jobs with equal attained
service.

The main drawback of LAS is its implementation complexity.
It requires maintaining a separate FIFO queue for every flow,
as well as a priority queue to schedule flows according to their
age or attained service.

3) Multi-Level and 2-Level Processor Sharing: A common
practical approximation of LAS is Multi-Level Processor
Sharing (MLPS). MLPS uses a fixed number of processor
sharing queues, each corresponding to a range of attained
service (or “age”). These queues are served in strict priority
order: jobs start in the highest-priority queue and move to
lower-priority queues as they accumulate more service. This
approach reduces complexity while still capturing most of the
benefits of LAS.

Two Level Processor Sharing (2LPS or PS+PS) is a special
case of MLPS that uses only two levels of priority. It is
parametrized using a service threshold a. Flows that have sent
less than or equal to a are served with high-priority, while
flows that have sent more than a bytes are only served when
there are no other flows left. Adding more priority levels can
make the approximation closer to the ideal LAS discipline,
but with diminishing returns and increased implementation
complexity. With just two levels and a well-chosen threshold
a, most of the performance benefits of LAS can be achieved
at minimal cost [5].

A. Threshold selection

While 2LPS is easier to implement than LAS, it does require
choosing a good threshold to be effective. The optimal thresh-
old a primarily depends on the flow size distribution, which is
usually somewhat stable over time, and to a lesser extent on the
system load. Previous works have shown that it is possible to
compute the optimal threshold by analysing traffic statistics,
and that this approach is both feasible and computationally
efficient [5] with available tools [15].

For deployment in a real system, it would be best to peri-
odically recompute this threshold to adapt to changing traffic
patterns. This could be accomplished by running a background
process that collects flow size statistics and updates the thresh-
old as needed, and it was shown to be possible in realistic
conditions [5]. In our experiments for simplicity we use a
static threshold computed only once from the distribution used
to generate the traffic and the load factor specific to each
experiment.

Let us note that a 2LPS system can not provide worse
performance than the equivalent one with only one queue. This
is because the principle of 2LPS is to give priority to short
flows, compared to long ones. If the threshold is not correctly
set, the proportion between the number of high-priority and
low-priority flows would not be optimal but still, it would
provide priority to some short flows against long ones. In the
worst case the threshold is too big or too low, one queue will
be always empty, then the system degenerates to the equivalent

2025 21st International Conference on Network and Service Management (CNSM)

with only one queue. This said, we will leave the sensitivity
analysis on the choice of the threshold to future works.

IV. EXPERIMENTAL SETUP

We conducted our experiments on two different setups with
network cards supporting 1 Gb/s and 10 Gb/s, using traffic
flow sizes randomly generated with a bounded Pareto distribu-
tion. In both cases, we used two bare-metal nodes, a client and
a server, directly connected with a dedicated Ethernet cable
and controlled via a separate network card. It is fundamental
to note that our goal is to study the improvement provided
by age-based scheduling to AQM policies, that are enforced
on the outgoing traffic in the Linux operating system. These
policies are applied to any bottleneck condition that takes place
on any link from the client to the server, so we can safely run
our tests in the simplest and most controllable setup made of
one link only.

Table I reports the base parameters of the two setups together
with the mean RTT measured with the ping utility on 100
samples, and the throughput measured using iperf over a
single 60 seconds TCP stream.

[Setup | Controller [RTT | Throughput]
1 Intel 1219-LM, 1000baseT 0.710 ms 864 Mb/s
2 Intel X540-AT2, 10000baseT | 0.270 ms 9.34 Gb/s
TABLE T

TESTBED PARAMETERS.

Following recommendations from the bufferbloat team [16],
many hardware offloads have been disabled on the test in-
terfaces, as to not introduce extra latency during the tests.
These include RX and TX checksumming, scatter-gather,
TCP segmentation and generic fragmentation, generic receive
offload, and VLAN acceleration.

A. Traffic generation

To generate traffic, we use a closed-loop test configuration. It
consists in N simulated actors, each one independently and
concurrently alternate a thinking phase with an action phase.
During the thinking phase, an actor sleeps for an exponentially
distributed random amount of time, to then enter the action
phase. During the action phase, an actor uploads a random
amount of data using TCP, and returns to the thinking phase
on flow completion.

To simulate a long-tailed traffic distribution, the amount of data
to upload is sampled from a bounded Pareto random variable.
Together with the exponential thinking time, this results in
traffic with a Poisson arrival process and Pareto job size. The
stability condition is always guaranteed in a closed-loop test,
and utilization can be tuned by changing the amount of actors
or the parameters of the arrival process or job distribution.
The parameters used for the traffic generation are shown in
Table II.

Setu Arrival Process Flow Size Distr. Load a
PN Thinking Time | o Min-Max Size Factor | (MB)
1 80 1s 1.2 300 KiB-1 GiB 0.88 6.33
2 150 0.35 s 1.1 373 KiB-62 GiB | 0.92 19.5
ABLE 1T

TRAFFIC GENERATION PARAMETERS.

For the first setup, which uses a 1 Gb/s link, we configured
the test with 80 actors. Each actor has a mean thinking time
of 1 second. The job sizes are sampled from a bounded Pareto
distribution with shape parameter ¢ = 1.2, and bounded
between 300 KiB and 1 GiB. This configuration results in
a load factor (average B/s effectively generated during the
experiment) of 0.88 with respect to the nominal link rate of
the interface.

For the second setup, with a 10 Gb/s link, we used 150 actors
and set the mean thinking time to 0.35 seconds. The job sizes
are again sampled from a bounded Pareto distribution, with
shape parameter « = 1.1, and bounded between 373 KiB and
62 GiB. We decreased the shape parameter so to have slightly
less short connections, that end in a matter of milliseconds
on a 10 Gb/s link, and are subject to a higher measure error.
This setup achieves a load factor of 0.92. As the two setups
have different traffic distribution, we set the threshold a for
age-based scheduling to 6.33 MB for the 1 Gb/s setup and
19.5 MB for the 10 Gb/s following the method described in
subsection III-A.

Before settling on these parameters, we experimented with a
range of different configurations. When the load factor was
too low, the choice of scheduling algorithm had little impact
on performance. Conversely, when the load factor was too
high, performance degraded rapidly for all algorithms due to
packet loss that triggered TCP congestion control. Reducing
the minimum job size increased the number of flows per unit
time, which led to higher CPU usage. Increasing the maximum
job size raised the run-to-run variance, since very large flows
became increasingly rare. Additionally, due to implementation
details, the RAM required by the configuration parser scales
with the number of actors N, making it impractical to test
much larger values.

B. Antler

To run the tests we used Antler [17], a tool for network and
congestion control testing written in the Go language, which
allows the definition of tests using configuration files written
in the CUE language. The test configuration is kept on a
coordinator machine, which parses it and connects to the test
nodes via SSH to start the processes necessary to run the test.
Test data collected by the remote machines is sent back over
the SSH connection to be post-processed and stored by the
coordinator machine.

An Antler test consists of a tree-like combination of con-
figurable pre-defined runners. A runner can, for example,
execute shell commands on a node, generate TCP or UDP

2025 21st International Conference on Network and Service Management (CNSM)

traffic, or execute other runners sequentially or in parallel.
We made several extensions to Antler, available in the public
repositories.

C. Queue Configuration

While CoDel claims to be parameterless for common Internet
deployments, our setup differs from the typical multi-hop
Internet Path, so we reduced both interval (10 ms) and
target (0.5 ms). While a lower interval might have
been more appropriate for our sub 1 ms RTT link, we wanted
to avoid potential issues related to low interrupt rates [16],
and we expect an interval of 10 ms to have excellent
performance for connections in the 1-30 ms RTT range [3].
CAKE only supports specifying a rtt parameter: it sets the
CoDel target to 5% of the configured value, and the CoDel
interval equal to it. We configured it to use a value of 10
ms, to match the other CoDel based algorithms. For PIE, the
configurable values include a delay target, similar to that
of CoDel, and an update interval, both defaulting to 15 ms.
We set the target to 0.5 ms to match CoDel, and the update
interval to 3 ms.

D. Test process

The queueing disciplines we are testing are 6: FIFO, CoDel,
FQ-CoDel, CAKE, PIE and FQ-PIE, and for each we test
both the standard one and the age-based variant. Each test in
a set of twelve uses the same seed to generate traffic, and
runs for 6 hours (1 Gb/s setup) or 4 hours (10 Gb/s setup).
As the 10 Gb/s setup generates a higher number of flows
per second, we achieve very small confidence intervals in a
shorter time. The first hour of data for the first setup, and
half hour of data for the second setup, is discarded as warm-
up period. The test duration was chosen based on when the
mean flow completion time stabilized, and the startup period
was set by observing when the relative performance of the
different algorithms stopped changing significantly. Each test
is repeated three times, for a total of 18 hours (1 Gb/s setup)
and 12 hours (10 Gb/s) per each of the 12 disciplines.

V. RESULTS
A. Mean Flow Completion Time

The first interesting metric to consider is mean Flow Com-
pletion Time, which is what an age-based scheduling algo-
rithm aims to optimize. It is obtained by taking the mean
of the completion time over each flow. We highlight the
difference between each age-based algorithm and its base
version by computing the relative reduction in mean FCT
between the two, shown in the result tables as Gain, defined
as Tsize/Tbase -1

The results for the 1 Gb/s setup, listed in Table III and plotted
for clarity in Figure 1, show that the mean flow completion
time for age-based variants are always smaller when compared
do the non-age-based versions. The biggest improvements

Algorithm Age-based version Base version Gain
Mean FCT 95% CI | Mean FCT 95% CI
FIFO 123 1.46 154.3 0.748 -20 %
CAKE 127.2 1.37 142.1 0.906 -10 %
FQ-CoDel 119.4 1.5 137.6 0.966 -13 %
CoDel 118.1 1.47 122.2 0.971 | -33 %
FQ-PIE 126 1.14 138.7 0.824 | 9.1 %
PIE 119.4 1.27 130.9 0.813 | -8.8 %
TABLE TIT

MEAN FLOW COMPLETION TIME FOR THE 1 GB/S SETUP
(MILLISECONDS) AND RELATIVE GAIN.

0.2

0.18]

0.16

0% _y39, 9.1%

0.14 -8.8%

-3.3%
0.12

0.1
0.08
0.06

Mean Completion Time (Seconds)

0.04
0.02

Fig. 1. Mean Flow Completion Time for the 1 Gb/s setup (milliseconds)
and relative gain. Pairs of data points show data for the same AQM solution,
with and without age-based scheduling. Lower is better. Error shown as 95%
confidence intervals on the mean.

(20%) can be seen for FIFO, as it has the worst base perfor-
mance, followed by FQ-CoDel (13%), CAKE (10%), PIE and
FQ-PIE (around 9%), and finally CoDel with 3.3% reduction
in FCT. All confidence intervals are separated, indicating
stability in the results. It is important to note that the worst age-
based algorithm (FIFO) has better performance of all the non-
age-based variants, with the exception of CoDel, that performs
very close to age-based FIFO. The best performing one is age-
based CoDel.

In this setup, the flow-queue algorithms perform worse than
their single-queue versions, CAKE is slightly worse than FQ-
CoDel in both the size and non-size variants, despite being
a very similar algorithm. All the age-based algorithm tend
to have similar performance, with the age-based versions of
CoDel, FQ-CoDel, FIFO, and PIE, having mean FCT within
4% of each other. Age-based AQM solutions still beat age-
based FIFO, but age-based CAKE and FQ-PIE are slightly
worse than no age-based FIFO in this setup.

For the 10 Gb/s setup results are listed in Table IV and visible
in Figure 2, the situation is slightly different. Most noticeably,
CAKE behaves erratically, with FCT that are 5 to 15 times
larger than the other algorithms. This behaviour is repeatable,
and is explained by the high CPU usage for soft IRQ observed
using CAKE in the 10 Gb/s setup, that we comment later on.

2025 21st International Conference on Network and Service Management (CNSM)

Aleorithm Age-based version Base version Gain
£9 Mean FCT ~ 95% CI | Mean FCT 95% CI a
FIFO 40.59 0.398 44.39 0.317 | -8.6 %
CAKE 184.8 10.3 659.9 16.4 =712 %
FQ-CoDel 37.83 0.464 39.17 0.417 | -3.4 %
CoDel 38.66 0.441 41.98 0.366 | -7.9 %
FQ-PIE 37.47 0.468 40.81 0.414 | -82 %
PIE 37.58 0.447 41.3 0.395 -9 %
TABLE IV
MEAN FLOW COMPLETION TIME FOR THE 10 GB/S SETUP
(MILLISECONDS) AND RELATIVE GAIN.
0.06 0.8
2 005 107 e
g L]
% 0.04
£ | |
=
5 003f F 1
2 | |
£ o002}
O
z L]
s 001 | |
0 -
Sa, T,
‘“\o% ‘%
@,
G,
@
Fig. 2. Mean Flow Completion Time for the 10 Gb/s setup, organized by

algorithm. The same color is used for the same AQM solution, with and
without age-based scheduling. Error shown as 95% confidence intervals on
the mean.

While the behaviour of CAKE is very much an outlier, the
other disciplines are stable and interesting to analyse.

Every age-based discipline is still better than its base variant,
but the relative gain is distributed differently compared to the 1
Gb/s setup. Overall, the best performers are age-based FQ-PIE
and age-based PIE, closely followed by age-based FQ-CoDel.
The base performance of FQ-CoDel is also very good, as it
is very close to the performance of the other age-based AQM
algorithms and only 3% behind that of age-based FQ-CoDel.
PIE and FQ-PIE have very similar performance, both with
about 8% difference between the age-based and base versions.
The worst performing age-based algorithm is FIFO, in both its
variants. While the 1 Gb/s favored non-flow-queueing AQM
algorithms, CoDel and PIE, in the 10 Gb/s setup FQ-CoDel
and FQ-PIE have better performance.

Overall our results show that in both setups, whatever is
the chosen AQM discipline, the age-based version always
improves the flow completion time. Age-based scheduling can
be successfully coupled with any AQM discipline to solve
Bufferbloat and further improve the performance.

B. Flow Completion Time Percentiles

High percentiles of flow completion times provide deeper
insights into the performance of the tested algorithms, as

shown in Table V for the 1 Gb/s setup and Table VI for
the 10 Gb/s setup. In all cases, the age-based versions of the
algorithms achieve lower P50, P75, and P95 values compared
to their base versions. This is expected, as 97.4% of flows in
the 1 Gb/s setup and 99.1% in the 10 Gb/s setup are smaller
than the threshold, meaning these flows benefit from priority.
However, P99 behaves a bit differently: often performance is
much closer between versions, and notably age-based FIFO
performs worse than FIFO. In the 1 Gb/s setup, the P99
of age-based CoDel and age-based FQ-CoDel significantly
outperform the respective base algorithms.

[Algorithm [P50 P75 P95 P99]
Age-b. FIFO | 33.04 51.86 145.9 1466
FIFO | 85.16 149.2 389.6 1147
Age-b. CAKE | 42.24 69.32 218.3 1138
CAKE | 59.19 105.2 364.7 1334
Age-b. FQ-CoDel | 35.02 56.37 176.2 951.2
FQ-CoDel | 52.18 94.06 351.8 1339
Age-b. CoDel | 34.07 53.77 184.4 974.6
CoDel | 38.97 76.13 303.7 1202
Age-b. FQ-PIE | 40.48 64.61 201.8 1326
FQ-PIE | 54.22 96.3 355.6 1327
Age-b. PIE | 32.97 51.94 146.6 1216
PIE | 44.28 89.34 366.9 1231
TABLE V
FLow COMPLETION TIME PERCENTILES (MILLISECONDS) FOR THE 1
GB/S SETUP.
[Algorithm [~ P50 P75 P95 P99 |
Age-b. FIFO 11.89 23.49 79.29 545.7
FIFO 18.25 34.06 106.2 529.7
Age-b. CAKE 4.423 7.82 32.59 968.4
CAKE | 162.6 308.1 1351 5948
Age-b. FQ-CoDel 10.67 21.31 75.4 507.6
FQ-CoDel 11.35 22.55 87.87 527.4
Age-b. CoDel 11.47 22.98 79.2 522.4
CoDel 14.73 29.44 101.5 509.5
Age-b. FQ-PIE 9.523 17.91 71.15 551.4
FQ-PIE 12.17 22.24 91.71 557.8
Age-b. PIE 9.717 17.46 68.05 553.7
PIE 14.38 25.41 94.61 528
TABLE VI
FLow COMPLETION TIME PERCENTILES (MILLISECONDS) FOR THE 10
GB/S SETUP.

C. Flow Completion Time versus Flow Size

By looking at how the flow completion time varies depending
on the flow size, we can better understand where the perfor-
mance differences of subsection V-A and V-B come from.

The 1 Gb/s setup is shown in Figure 3. The most noticeable
feature of the plot, which also serves as good validation for
our setup, is the sharp angle at the 6 MB mark for curves
corresponding to two-level algorithms. This is where the size
threshold is located, and it separates flows that only receive
high priority service from flows that eventually end up in the
low priority level of age-based queues.

Overall, the two-level disciplines always have better perfor-
mance than all the normal disciplines for flows that are smaller

2025 21st International Conference on Network and Service Management (CNSM)

Age-based FIFO
FIFO

Age-based CAKE E
CAKE

Age-based FQ-CoDel ——

FQ-CoDel — —--

Age-based CoDel ———

CoDel —-—--

Age-based FQ-PIE ———

FQ-PIE — — -

Age-based PIE ——

PIE ——--

1 g 1 1 1 1
300kB 10MB 100MB 1GB
Flow Size

Mean Completion Time (Seconds)

0.1 |

Fig. 3. Mean Flow Completion Time versus Flow Size for the 1 Gb/s setup,
organized by algorithm. Lower is better.

than the threshold. Soon after the threshold, the performance of
two-level disciplines degrades, to finally become always worse
than that of normal disciplines around the 20 MB mark.

Starting from age-based CoDel and age-based FQ-CoDel,
the top performers of the 1 Gb/s setup, we can see that
their behaviour is indistinguishable for flows larger than the
threshold, where they have the best performance over the two-
level algorithms. For flows smaller than the threshold, FQ-
CoDel holds the advantage on flows smaller than 800 KB,
while CoDel is better in the 800 KB to 6 MB range. From
this we can deduce that the effect of flow-queueing is most
beneficial to the very small flows.

Two-level PIE behaves identically to two-level FIFO before
the threshold, but beats it in the 7 MB to 30 MB range. These
two algorithms together have the best overall performance for
flows smaller than the threshold, and perform worse than the
other two-level algorithms for flows larger than the threshold.

Overall, while two-level FIFO, CoDel, FQ-CoDel and PIE all
have comparable mean performance, we can see that the two
CoDel based solutions are more balanced, and two-level FIFO
and PIE favour smaller flows more strongly. Two-level FQ-PIE
has consistently poor performance when compared to other
two-level algorithms, except for the biggest flows.

Similarly, two-level CAKE is consistently worse than two-
level FQ-CoDel by a constant factor for flows smaller than
the threshold, to eventually become equivalent after the 20
MB mark. When comparing normal CAKE to normal FQ-
CoDel, a similar behaviour emerges. Normal CAKE is worse
than normal FQ-CoDel by a constant factor up to around
the 1 MB mark, the gap then shrinks, until they have equal
performance after the 5 MB mark. A potential explanation
to this performance gap in otherwise very similar algorithms,
could be found in the fact that CAKE is slightly more complex,
and thus slightly slower at processing packets, by a constant
amount. As the RTT of our setup is very small, this extra delay

is not insignificant, and ends up affecting the slow-start phase
of the TCP connections.

Age-based FIFO has the best performance for flows below
the threshold, and the worst performance for flows above it.
Inversely, normal FIFO is by far the worst discipline for flows
smaller than 1 MB, to then become the best for flows larger
than 20 MB. These two algorithms are the most extreme,
swapping places around the threshold.

Due to space reasons and to void repetitions, we don’t report
the same graph for the 10 Gb/s setup, that show a similar
behavior.

D. Fairness Analysis: the Lorenz Curve Gap

As age-based scheduling treats flows differently based on the
amount of data they carry, it is interesting to measure the effect
on fairness in completion time. We use the Lorenz Curve Gap,
that is the maximum euclidean distance between the Lorenz
Curve and the curve of maximum fairness, rescaled by its
maximum value [18]. The Lorenz curve reports the normalized
mean throughput on the Y axes, and the percentile of flows in
the X axes, rescaled between O and 1.

A Gap value of 0 would indicate that the Lorenz curve is a
straight line, so that the completion time is distributed evenly
among the flows. A value close to 1 would indicate that a
very small minority of flows received the vast majority of the
capacity. Figure 4 shows, for example, the Lorenz Curve for
CoDel in the 1 Gb/s setup, highlighting the gap.

T T
Lorenz Curve
Maximum Fairness -

08]

06 1

02]

0 L L L L
0 0.2 0.4 0.6 0.8 1

Fig. 4. Lorenz Curve for CoDel in the 1 Gb/s setup.

Figure 5 summarizes the values of the Lorenz curve Gap for
the 1 Gb/s setup, the straight lines report also the average
for all age-based and non age-based variants. In all six cases
the age-based variants show better fairness than their base
versions. To justify this behavior it is important to note that
on a short connection over a fast link, the TCP connection
set-up and the slow-start phase has a strong impact on the
average throughput, while it has a lower impact on a longer
connection. The average throughput measure then has a bias
that favors longer connections. Age-based policies tend to

2025 21st International Conference on Network and Service Management (CNSM)

0s \ Algorithm [User System IO Wait IRQ Soft IRQ |
‘ Ave: age-based Ageb. FIFO | 0.126 0.139 __ 3.09%05 0 __ 0.765
045 1 Ave: non age-based ———- I FIFO | 0.124 0.131 _ 3.09¢05 0 0.697
0.4] Age-b. CAKE | 0.13 0.149 2.48e-05 0 0.844
o 035 . e = CAKE | 0.131 0.148 2.73e-05 0 0.835
S s Ageb. FQ-CoDel | 0.129 0.142 _ 2.3%05 0 0.782
% : : ’~’ FQ-CoDel | 0.132 0.14 2.75e-05 0 0.744
o 03 Age-b. CoDel | 013 0.141 __ 0.000103 0 0.783
5 02 - . CoDel | 0.127 0.135 2.84e-05 0 0.744
S Ageb. FQPIE | 0.132 0.14 25¢05 0 0.761
0.15 # sy ! sssssl
01 @*‘“ s FQ-PIE | 0.133 0.14 3.23e-05 0 0.695
o . . i Ageb. PIE | 0.128 0.142 28505 0 0.754
0.05 - . . . PIE | 0.129 0.139 287¢05 0 0.706
0 o s - TABLE VII
e, ‘%O T C‘q{_ T “ QT AQA T % MEAN CPU USAGE OF THE CLIENT NODE ON THE 1 GB/S SETUP, SHOWN
“n, R A T T AS FRACTIONS OF CORE USED (OUT OF 4).
@y S v, %0 (S @y
%, U, [% @, 3
Ooo £4 %
i \ Algorithm | User System 10 Wait IRQ Soft IRQ |
Age-b. FIFO | 0.256 0.38 0.00127 0 1.4
Fig. 5. Lorenz Curve Gap for the 1 Gb/s setup, computed on the mean FIFO | 0.249 0.365 0.00134 0 1.28
throughput, organized by algorithm. Values are between 0 and 1 — %, lower Age-b. CAKE | 0.172 0317 0.000522 0 2.9
is better. CAKE | 0.0877 0.121 0.00122 0 2.9
Age-b. FQ-CoDel | 0.254 0.369 0.00125 0 1.41
FQ-CoDel | 0.256 0.367 0.00132 0 1.3
,) . Age-b. CoDel | 0.258 0.38 000124 0 4
balance this effect, because they provide more capacity to short CoDel | 0253 0364 _ 0.0013 0 13
flows overall improving fairness across all flows. Age-b. FQ-PIE | 0251 0376 0.00142 0 143
FQ-PIE | 0.247 0.368 0.00146 0 1.29
Age-b. PIE | 0.248 0.37 0.0013 0 1.4
08 PIE | 0.24 0.353 0.00136 0 1.29
’ A\)g: agé-based TABLE VIII
07 F Avg: non age-based ———-- J MEAN CPU USAGE OF THE CLIENT NODE ON THE 10 GB/S SETUP, SHOWN
- AS FRACTIONS OF CORE USED (OUT OF 4).
?, 05 :3‘;;:%;:'3:
- ozl Finally, we expect age-based scheduling to introduce some
: computational overhead, due to packet marking done by
o L . nftables. Table VII and Table VIII report the measured
0 = i . CPU load during the experiment and show that the increase
in CPU load for age-based algorithms is barely noticeable.
Also, it is important to note that a higher throughput implies
a higher CPU usage, so the added CPU load due to compu-
tational overhead is negligible thanks to the efficiency of the
Fig. 6. Lorenz Curve Gap for the 10 Gb/s setup, computed on the mean netfilter and nftables subsystem. We also note that

throughput, organized by algorithm. Values are between 0 and 1 — %, lower
is better.

The situation is slightly different in the 10 Gb/s setup, shown
in Figure 6. Other than the two CAKE algorithms behaving
like outliers (and so they were not considered in the average
computation), CoDel and PIE score better than age-based
variants, while FIFO and FQ-CoDel score worse than the age-
based variants. In average, the fairness of age-base variants is
still better, but the difference is smaller. This is because in
the 10 Gb/s setup we changed the exponent of the flow size
distribution, this also changed the threshold computation so the
flows remain in high priority till 19.5 MB transmitted. This
smooths the effect of the three-way-handshake and of slow
start on the average throughput, reducing the balancing effect
we see at 1 Gb/s.

CAKE in the 10 Gb/s setup as a load that is at least twice the
load of the other AQM policies.

V1. STATE OF THE ART

The literature on AQM is extremely large, in this section we
add a brief review on papers that analysed the performance of
recent AQM policies based on Linux, only to show the novelty
of our approach.

Several works tested CoDel and PIE, as the works from
Khademi, [19], Ramakhrisnan [20], Imputato [21], and Kuhn
[22]. Other authors tried to optimize the configuration pa-
rameters of AQM algorithms [22], [23] and several studied
the interplay between AQM and TCP such as Carlucci, [24],
Casoni [25] and Mulla [26]. These papers often use a setup
similar to the one we used and exploit the same open source

2025 21st International Conference on Network and Service Management (CNSM)

codebase, however they don’t introduce age-based scheduling.
Age-based scheduling is itself the subject of many works,
some using Linux, such as Geng et al. [27] that provided
a generalization of age-based scheduling policies and applied
them to the Linux kernel, before AQM policies were integrated
in the kernel. Also, the already mentioned papers by Marin et
al. [5], [15] apply age-based scheduling to Linux, but they use
only the FIFO policy.

To the best of our knowledge, this is the first paper that applies
an age-based scheduler to AQM policies, with specific focus
on the most popular and widespread policies of the Linux
kernel

VII. CONCLUSIONS AND FUTURE WORKS

Our work has successfully demonstrated the effectiveness
of combining AQM techniques with age-based scheduling
disciplines in order to optimize network performance while re-
ducing the impact of bufferbloat. We developed custom hybrid
queueing solutions, implemented using standard Linux utilities
like traffic control (tc) and nftables (nft). Specifically, two-
level processor sharing was implemented using nft to flag
packets based on bytes sent in the flow, and multi-band queues
were assembled with tc —prio to enforce priority. To eval-
uate these configurations under realistic workload conditions,
we extended the Antler network testing tool to generate traffic
with Pareto-distributed flows. Extensive experiments were con-
ducted on dedicated 1 Gb/s and 10 Gb/s links. Our results show
that applying an age-based scheduling policy on top of state-
of-the-art AQM strategies significantly reduces mean flow
completion time, from 3% to 20% depending on the AQM pol-
icy and setup. This approach not only scientifically validates
the benefits of combining AQM and age-based scheduling but
also offers a solution easily implementable on any recent Linux
kernel without requiring kernel modifications. This ensures
both scientific reproducibility and immediate applicability in
real-world scenarios. For future work, the sensitivity analysis
on the choice of the threshold for two-level scheduling remains
an area of interest, as well as further optimization using more
than 2 queues.

REFERENCES

[1] J. Gettys and K. M. Nichols, “Bufferbloat: Dark buffers in the internet:
Networks without effective agm may again be vulnerable to congestion
collapse.” Queue, vol. 9, no. 11, pp. 40-54, Nov. 2011. [Online].
Available: https://doi.org/10.1145/2063166.2071893

[2] ——, “Bufferbloat: dark buffers in the internet,” Commun. ACM,
vol. 55, no. 1, pp. 57-65, Jan. 2012. [Online]. Available: https:
//doi.org/10.1145/2063176.2063196

[3] K. M. Nichols and V. Jacobson, “Controlling queue delay,” Commun.
ACM, vol. 55, no. 7, pp. 42-50, 2012. [Online]. Available:
https://doi.org/10.1145/2209249.2209264

[4] 1. Rai, E. Biersack, and G. Urvoy-keller, “Size-based scheduling to
improve the performance of short tcp flows,” IEEE Network, vol. 19,
no. 1, pp. 12-17, 2005.

[51 A. Marin, S. Rossi, and C. Zen, “Size-based scheduling for
tcp flows: Implementation and performance evaluation,” Computer
Networks, vol. 183, p. 107574, 2020. [Online]. Available: https:
/Iwww.sciencedirect.com/science/article/pii/S1389128620312172

[6]

[7]

[8]

[9]

(10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]
[18]
[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

L. Zhang, D. C. Partridge, S. Shenker, J. T. Wroclawski, D. K. K.
Ramakrishnan, L. Peterson, D. D. D. Clark, G. Minshall, J. Crowcroft,
R. T. Braden, D. S. E. Deering, S. Floyd, D. B. S. Davie, V. Jacobson,
and D. D. Estrin, “Recommendations on Queue Management and
Congestion Avoidance in the Internet,” RFC 2309, Apr. 1998. [Online].
Available: https://www.rfc-editor.org/info/rfc2309

S. Floyd and V. Jacobson, “Random early detection gateways for
congestion avoidance,” IEEE/ACM Transactions on Networking, vol. 1,
no. 4, pp. 397-413, 1993.

K. M. Nichols, V. Jacobson, A. McGregor, and J. Iyengar, “Controlled
Delay Active Queue Management,” RFC 8289, Jan. 2018. [Online].
Available: https://www.rfc-editor.org/info/rfc8289

L. Kleinrock and R. Gail, “An invariant property of computer network
power,” IEEE International Conference on Communications, vol. 3,
pp. 63.1.1-63.1.5, 1981. [Online]. Available: https://www.lk.cs.ucla.
edu/data/files/Gail/power.pdf

T. Hgiland-Jgrgensen, P. McKenney, dave.taht@gmail.com, J. Gettys,
and E. Dumazet, “The Flow Queue CoDel Packet Scheduler and
Active Queue Management Algorithm,” RFC 8290, Jan. 2018. [Online].
Available: https://www.rfc-editor.org/info/rfc8290

CoDel Overview. [Online]. Available: https://www.bufferbloat.net/
projects/codel/wiki/

R. Pan, P. Natarajan, C. Piglione, M. S. Prabhu, V. Subramanian,
F. Baker, and B. VerSteeg, “Pie: A lightweight control scheme to address
the bufferbloat problem,” in 2013 IEEE 14th International Conference
on High Performance Switching and Routing (HPSR), 2013, pp. 148-
155.

R. Pan, P. Natarajan, F. Baker, and G. White, “Proportional Integral
Controller Enhanced (PIE): A Lightweight Control Scheme to Address
the Bufferbloat Problem,” RFC 8033, Feb. 2017. [Online]. Available:
https://www.rfc-editor.org/info/rfc8033

L. Schrage, “A proof of the optimality of the shortest remaining
processing time discipline,” Operations Research, vol. 16, no. 3, pp.
687-690, 1968. [Online]. Available: https://www.jstor.org/stable/168596
A. Marin, S. Rossi, and C. Zen, “A matlab toolkit for the analysis of two-
level processor sharing queues,” in Quantitative Evaluation of Systems,
M. Gribaudo, D. N. Jansen, and A. Remke, Eds. =~ Cham: Springer
International Publishing, 2020, pp. 144-147.

Best Practices for Benchmarking CoDel and FQ CoDel
(and almost any other network subsystem!). [Online]. Avail-
able: https://www.bufferbloat.net/projects/codel/wiki/Best_practices_
for_benchmarking_Codel_and_FQ_Codel/

P. Heist. Antler. [Online]. Available: https://github.com/heistp/antler
J.-Y. Le Boudec, Performance Evaluation of Computer and Communi-
cation Systems. EPFL Press, Lausanne, Switzerland, 2010.

N. Khademi, D. Ros, and M. Welzl, “The new agm kids on the block:
An experimental evaluation of codel and pie,” in IEEE Conference on
Computer Communications Workshops (INFOCOM WKSHPS), 2014.
G. Ramakrishnan, M. Bhasi, V. Saicharan, L. Monis, S. D. Patil, and
M. P. Tahiliani, “FQ-PIE Queue Discipline in the Linux Kernel: Design,
Implementation and Challenges,” in IEEE LCN Symposium on Emerging
Topics in Networking, 2019.

P. Imputato, S. Avallone, M. P. Tahiliani, and G. Ramakrishnan, ‘“Re-
visiting design choices in queue disciplines: The PIE case,” Computer
Networks, vol. 171, 2020.

N. Kuhn, D. Ros, A. B. Bagayoko, C. Kulatunga, G. Fairhurst, and
N. Khademi, “Operating ranges, tunability and performance of CoDel
and PIE,” Computer Communications, vol. 103, 2017.

M. Dery, O. Krupnik, and I. Keslassy, “Queuepilot: Reviving small
buffers with a learned agm policy,” in IEEE Conference on Computer
Communications (INFOCOM), 2023.

G. Carlucci, L. De Cicco, and S. Mascolo, “Controlling queuing delays
for real-time communication: the interplay of e2e and agm algorithms,”
SIGCOMM Computer Communications Review, vol. 46, no. 3, Jul. 2018.
M. Casoni, C. A. Grazia, M. Klapez, and N. Patriciello, “How to avoid
tcp congestion without dropping packets: An effective aqm called pink,”
Computer Communications, vol. 103, 2017.

Y. Mulla and 1. Keslassy, “Per-cca queueing,” in 2024 20th International
Conference on Network and Service Management (CNSM), 2024, pp. 1-
7.

H. Feng, V. Misra, and D. Rubenstein, “PBS: a unified priority-based
scheduler,” SIGMETRICS Performance Evalation Review, vol. 35, no. 1,
Jun. 2007.

