2025 21st International Conference on Network and Service Management (CNSM)

Intelligent Autoscaling with Attention-based
Reinforcement Learning for SLA-Aware Resource
Management in Edge-Cloud Environments

Faraz Shaikh, Gianluca Reali, Mauro Femminella
Department of Engineering, CNIT Research Unit
University of Perugia, Perugia, Italy
Email: faraz@dottorandi.unipg.it, gianluca.reali@unipg.it, mauro.femminella@unipg.it

Abstract—Modern cloud and edge computing infrastructures
operate under rigorous Service Level Agreements (SLAs), which
define Quality of Service (QoS) standards and key perfor-
mance indicators (KPIs) such as latency, resource efficiency,
and reliability. Meeting these requirements is increasingly chal-
lenging due to highly variable, bursty, and latency-sensitive
workloads demanding intelligent, efficient, and adaptive resource
management. To address these evolving needs, we introduce
a novel autoscaling framework that combines the Proximal
Policy Optimization (PPO) algorithm with a double-stacked
Long Short-Term Memory (LSTM) network and an attention
mechanism, enabling coordinated and proactive autoscaling in
Kubernetes-based environments. The proposed approach utilizes
a multidimensional discrete action space to simultaneously tune
the Horizontal Pod Autoscaler (HPA) CPU targets, throughput
multipliers, learning rate schedules, and policy enhancements,
thereby effectively adapting to both short-term and long-term
fluctuations in network traffic. Additionally, a forecasting mod-
ule integrates LSTM-driven workload predictions with recent
observation trends, allowing the autoscaler to predict dynamic
changes and accommodate resources accordingly. Comprehensive
simulations using real Azure Functions invocation traces from
production environments justify that our system consistently
maintains SLA, QoS, and KPI objectives, while delivering op-
erational stability and enhanced resource efficiency for cloud-
edge networks. Under strict SLA constraints, our proposed
methodology achieves an average latency reduction of 87.5% and
a median latency reduction of 71.5% compared to the baseline.

Index Terms—autoscaling, kubernetes, LSTM, PPO, edge,
cloud

I. INTRODUCTION

The increasing trend in cloud-native, edge, and serverless
computing has revolutionized the way modern applications are
developed, deployed, and scaled. Edge computing refers to
the use of computational resources located near the user [1].
Function-as-a-Service (FaaS) platforms such as Google Cloud
Functions and Microsoft Azure Functions now serve as a basic
building block of the digital infrastructure, abstracting server
management and offering developers a seamless on-demand
scaling [2]. However, under this abstraction lies a complex
orchestration problem, i.e., to allocate computing resources in
response to highly variable and often unpredictable workloads
dynamically. Not only this, also to simultaneously maintain
the strict Service Level Agreements (SLAs) for throughput,
latency, and other metrics necessary to meet Quality of Service
(QoS) standards.

978-3-903176-75-1 ©2025 IFIP

In FaaS, resources are allocated dynamically in response to
incoming requests, charging users only for the compute time
used. These benefits stem from autoscaling, which refers to
the dynamic adjustment of compute resources based on appli-
cation demand from the user side. Autoscaling in cloud-native
applications, specifically in Kubernetes-based deployments,
is most commonly implemented through controllers. These
controllers are usually Vertical Pod Autoscaler (VPA) and Hor-
izontal Pod Autoscaler (HPA), monitoring the resource utiliza-
tion metrics mainly including CPU and memory usage, while
scaling the pods (number of application instances) accordingly
[1], [3]. Autoscaling helps cloud providers to maintain per-
formance KPIs under fluctuating workloads, optimizing the
infrastructure usage, and controlling operational costs. This
reactive nature presents critical limitations in today’s dynamic
computing environments. Traditional autoscalers often lead to
cold starts [4], latency spikes, and resource under-provisioning
during sudden workload fluctuations, while causing over-
provisioning and resource waste during demand overestima-
tion [5]. With cloud workloads becoming increasingly bursty,
non-stationary, and shaped by diverse end-user behavior and
time-of-day effects [6], reactive approaches struggle with
partial observability, delayed feedback, and multi-dimensional
optimization objectives.

Recent Machine Learning (ML) and Reinforcement Learn-
ing (RL) approaches have attempted to address these chal-
lenges through predictive models including LSTM networks
[7] and RL algorithms such as Q-Learning [8], Deep Q
Networks (DQN), and Proximal Policy Optimization (PPO)
[1]. However, these methods remain limited by model drift,
forecast errors, inability to generalize to unseen patterns, and
evaluation primarily on synthetic traces with limited metrics
[9]. Many approaches decouple prediction from autoscaler
operation, optimizing for forecast accuracy rather than opera-
tional performance.

To overcome these limitations, we propose a novel autoscal-
ing framework that integrates prediction and control through
a PPO agent operating in a multi-dimensional discrete action
space. Our approach enables coordinated scaling decisions
across multiple resource dimensions (replicas, CPU, memory)
within a single policy framework while dynamically adjusting
learning parameters during training. The system incorporates

2025 21st International Conference on Network and Service Management (CNSM)

three key contributions: (1) a custom double-stacked LSTM
architecture integrated within the PPO policy network to cap-
ture both short-term bursts and long-term traffic dependencies,
(2) an attention mechanism that identifies critical scaling
moments in recent history, and (3) an SLA-aware reward
function that balances latency compliance, success ratio, and
resource efficiency. Unlike prior works where forecasting
operates separately, our framework tightly integrates workload
prediction with the RL loop, enabling truly proactive resource
management.

The rest of this paper is structured as follows: Section II
reviews relevant literature and state-of-the-art approaches. Sec-
tion III presents the theoretical foundations and system model.
Section IV details the methodology, experimental setup, and
results. Section V discusses implications and future directions.

II. RELATED WORK

Over the past five years, RL approaches for edge computing
autoscaling have evolved from basic value-based methods to
sophisticated hybrid architectures, yet significant gaps remain
in achieving SLA-aware proactive scaling. Lee et al. [10]
applied DQN for server instance scaling in multi-access edge
computing environments, demonstrating the potential of value-
based RL for dynamic resource allocation. However, their
approach was limited to VM monitoring metrics without
considering network conditions and lacked validation with
microservice architectures. Gan et al. [11] proposed a PPO-
based Markov Decision Process (MDP) with discrete actions,
achieving 86% improvement over Q-Learning, demonstrating
the superiority of policy gradient methods, yet their single-
dimensional action space prevented coordinated optimization
across multiple resource parameters. Benedetti et al. [12]
deployed a Q-Learning framework based on CPU usage for
edge autoscaling without significantly affecting latency, how-
ever, their evaluation was constrained to limited iterations and
synthetic workloads.

The shift toward hybrid ML-RL approaches began with Ma
et al. [8] introducing fuzzy Q-Learning with LSTM using
differential evolution for hyperparameter selection, achieving
better performance in execution time and energy consumption
while maintaining optimal CPU usage. Moreover, their fuzzy
logic integration introduced significant computational over-
head unsuitable for resource-constrained edge environments,
and their reward function prioritized energy consumption over
SLA compliance, limiting applicability to latency-sensitive
applications. Panda and Sarangi [13] developed FaaSCtrl, an
Advantage Actor Critic (A2C)-based comprehensive latency
controller that tunes Linux scheduling parameters (process pri-
orities and CPU affinities) to manage all latency components
(mean, median, standard deviation, tail latency), achieving
36.9% improvement in tail latency and 44.6% in response
latency standard deviation. While their comprehensive latency
modeling was innovative, their system-level approach operated
below the application layer, limiting direct applicability to
containerized microservices. Femminella and Reali [6] im-
plemented PPO-based autoscaling in Kubernetes with cyclic

time-of-day encoding (sin/cos functions) integrated with HPA,
memory, and CPU usage metrics, comparing DQN, A2C, and
PPO algorithms, representing significant progress in temporal
feature engineering, yet their action space remained limited
to traditional HPA parameters without forecasting integra-
tion for proactive scaling. Most critically, Agarwal et al.
[14] introduced DRe-SCale, a PPO model integrated with
LSTM for function autoscaling in partially observable environ-
ments, achieving 13-18% improvement over threshold-based
approaches. While their recurrent architecture addressed tem-
poral dependencies and partial observability through POMDP
formulation, their LSTM integration was shallow (single-
layer) and lacked attention mechanisms for critical pattern
recognition.

Despite these advances, existing approaches exhibit funda-
mental limitations: single-dimensional action spaces prevent-
ing coordinated multi-parameter optimization, shallow tempo-
ral modeling insufficient for capturing both short-term bursts
and long-term patterns in edge workloads, decoupled forecast-
ing that optimizes prediction accuracy rather than operational
performance, and reward functions that inadequately integrate
strict SLA latency constraints essential for edge computing
applications. Our RL-based autoscaler addresses these lim-
itations through a novel multi-dimensional discrete action
space enabling coordinated control over HPA CPU targets,
throughput multipliers, and policy enhancements, integrated
with double-stacked LSTM architecture and learned attention
mechanisms for deep temporal modeling, direct forecasting
integration within the RL pipeline for truly proactive scaling,
and SLA-aware reward formulation with explicit 15ms latency
constraints, evaluated comprehensively using real Azure Func-
tions production traces across diverse workload patterns.

III. SYSTEM MODEL

The search for intelligent and robust autoscaling in cloud
and edge computing has led to research on learning-based
resource controllers. Traditional methods, as discussed in
previous sections, can be improved in terms of better scala-
bility and computational overhead. Policy-Gradient RL [15]
and, in particular, PPO have emerged as a state-of-the-art
approach for efficient control in partially observable and high-
dimensional domains. Furthermore, a double-stacked LSTM
model is integrated within the PPO policy, feature-engineered
with cyclic encoding and a custom attention mechanism, to
enhance forecast accuracy and temporal resolution. The system
architecture for our proposed approach has been shown in Fig.
1.

A. Reinforcement Learning Configuration and Observation
Space

For this configuration, the autoscaler is formulated as an
RL agent interacting with a dynamic environment. At each
decision step, the agent observes the current system state and
selects an action represented as a multi-dimensional discrete
vector. Each element of this vector corresponds to a distinct
control policy or scaling parameter, as summarized in Table I

2025 21st International Conference on Network and Service Management (CNSM)

Kubernetes Control Plane

Azure Workload Traces

Metrics Server

API Server

RL Autoscaler

Feature Extraction

Input

:_‘)\ LSTM

HPA
onfigurations

Kubernetes Data Plane

Kubernetes Nodes

4
:——)i LSTM

Function Gateway

i
Factorizator

Horizontal Pod Autoscaler

000

e

Functions

(S8 OPENFARS

ST

P

PPO Policy

Scaling Action

‘@
>
R

eward ——

Fig. 1. System Architecture

and formally defined in Eq. (1). The observed state vector,
denoted as s; in Eq. (2), aggregates both present and historical
system metrics. To be precise, it includes measured latency,
replica count, per-pod RAM and CPU usage, total cluster
resource consumption, current and forecasted request rates,
HPA CPU target, observed success ratio, and cyclic encoding
of the time-of-day.

cpu scale

a, = (a’t , al enh amode)

» Ay Gy (1)
Where each element a!” is taken from a set of possible discrete
actions for its respective control parameter.

s¢ = [latency,, replicas,, cpu,, ram;, requests,, total_cpu,,
total_ram,, success_ratio,, HPA;, throughput_mult,,

2)

enhancement;, cos(f;), sin(f;), forecast;|
The selected state features ensure the RL agent receives a
complete and actionable overview of the system. Latency and
success ratio directly represent SLA fulfillment, while replicas,
HPA target, and policy flags inform the agent about recent
scaling actions. Including per-pod and total resource usage
(CPU and RAM) provides visibility into both local and overall
resource usage. Real-time and forecasted requests allow for
both immediate and proactive responses. Moreover, cyclic

time-of-day features help the agent recognize and adapt to
regular workload patterns.

TABLE I
MULTI-DIMENSIONAL DISCRETE ACTION SPACE
Action Parameter Choices | Mapping
a;p" HPA CPU Target 04 (10, 30, 50, 70, 90)%
alt' LR Schedule 0-2 0: keep, 1: dec., 2: inc.
ai™ Throughput Mult. 0-2 x1, x2, X3
ai“h Enhancement 0-2 0:none, 1:moderate,
2:aggressive

B. Proximal Policy Optimization with Multi-Dimensional Dis-
crete Actions

For addressing the multi-dimensional nature of autoscaling,
simultaneous control of HPA targets, enhancement modes,
and scaling multipliers, we extend classical PPO to operate
over a discrete multi-action space. Through this, the agent can
take coordinated actions across several control knobs within
each epoch, without treating each scaling decision in isolation.
Below, the Kullback-Leibler (KL) regularization (i.e., the
core component of the model, penalizing the large deviations
between the updated policy and the previous policy during
RL iterations [16]), with entropy and surrogate objective, is
given in Eq. (3). The entropy and KL penalties stabilize policy
updates and encourage diverse exploration.

Lrpo(8) = E; | min (rt(Q)At, clip (r4(6),1 — €,1 +¢) At)

— Xt - H [mo(ar|s)] + B - KL (g, mo,,,) €)

2025 21st International Conference on Network and Service Management (CNSM)

Where,
] (at | St)
TOo1a (at |St)

Tt (9) =

A, = Advantage estimate at time ¢

A¢, Br = entropy and KL regularization coefficients

Standard PPO uses the clipping threshold ¢ to indirectly limit
policy divergence; however, explicit KL regularization can be
added as an extra penalty term. In this formulation for Eq. (3),
both the clipping objective and a KL penalty are included for
greater stability and to further drive policy updates. This is
a valid PPO variant and does not replace the effect of the
clipping threshold; rather, it complements it.

The learning rate is annealed using a Cosine schedule, given
in Eq. (4). Cosine annealing is selected to enable the agent
to learn fast initially and fine-tune later. This approach has
demonstrated empirical superiority over step or exponential
decay [17], partly because cosine annealing requires only
desired initial and final learning rates, simplifying hyperparam-
eter search [18]. Alternative scheduling algorithms were also
considered; however, this method showed a balance between
ease of use and training performance.

1+ cos(m(1 —p))
2

Where, p is the training progress and 7min, Tmax are the
hyperparameters.

77(10) = Nmin T (nmax - 77min) : “4)

C. Reward Function Formulation

To balance SLA compliance (Lspa = 15 ms), operational
stability, and resource efficiency, we developed the composite
reward function, as shown in Eq. (5) through systematic exper-
imentation. This formulation emerged from multiple trial-and-
error refinements where alternative approaches, such as linear
penalties and unbounded terms, exhibited inferior convergence
and stability. The final design provides balanced gradients for
policy learning.

latency, — L 2
=M [1 - ()Qsm) + 72 success_ratioy

L1 A
cpu, — U™ 2
+%wp((pzw>>+%mﬂq 5)

The first term in Eq. (5) applies latency compliance using
an inverted quadratic penalty by maximizing reward near
Lg; o and sharply penalizing the deviations. The success ratio
component 7y, success_ratio;, rewards the request success rate,
thereby maintaining throughput reliability. Resource efficiency
(3rd term) is promoted by using a Gaussian form that peaks at
target utilization U*. The regularization component 4 Ryeg(-)
integrates penalties for scaling oscillations, forecast deviations
(N, from section IV-B), and irregular resource usage. Finally,
tunable weights v; balance these objectives across deployment
scenarios, with values optimized during validation.

D. Sequential Feature Extraction

Autoscaling requires extracting meaningful insights in the
form of features from time-dependent and dynamic input
streams. In particular, edge computing workloads typically
exhibit both short-term bursts (due to microservice traffic)
and longer recurring patterns (e.g., scheduled events and
daily usage patterns) [19]. Single-layer architectures and sim-
ple feed-forward networks can typically be insufficient for
modeling these temporal dependencies because they do not
possess memory of previous inputs [20], especially when
autoscaling actions must predict both immediate changes and
trends that extend for hours or even days. To highlight the most
relevant timesteps in recent history, i.e., sudden load spikes or
trend shifts, we implement a learned attention mechanism by
assigning a weight to each hidden state in the input window
of size T', enabling the agent to focus on critical moments. By
using this technique, there is a direct interpretability advantage,
i.e., the agent’s scaling decision can be traced to the timesteps
in history it attended the most.

e; =w, h'? 1, (6)

) -

Y expler)

T
Cattn = Z (677 hgz) (8)
t=1

In the attention mechanism, e; is the attention score assigned

to each hidden state h§2) in the input window, computed
as a learned linear combination (Eq. (6)). These scores are
normalized using a softmax function to produce the attention
weights a; (Eq. (7)), which evaluate the importance of each
timestep for the final context vector c,y, (Eq. (8)). To allow the
agent to anticipate recurring periodic systems, e.g., scheduled
events or regular load patterns (daily or hourly), the input at
each time ¢ is integrated with cyclic encoding, shown in Eq.
(9) [6]. These engineered features are integrated with the main
input, enabling the LSTM to differentiate among the same
workloads occurring at different times of day.

0, = 2r - .L
minutes_per_day
x4 = Teos(6y), sin(6y)] 9)

Instead of treating temporal features and context separately,
we propose a contextual fusion of double-stacked LSTM-
attention output and cyclic encoding, shown in Eq. (10). This
fusion strategy allows the agent to use high-level temporal
awareness, local system state, and cyclic structure altogether
for a better autoscaling performance. Apart from theory, we
find that this integration helps the policy generalize better to
unseen invocation patterns and position scaling actions with
regular traffic cycles.

£ = ([, X7, 50) (10)

2025 21st International Conference on Network and Service Management (CNSM)

Algorithm 1 Proactive SLA-Aware Autoscaling via PPO with
Sequential Feature Fusion

Require: Environment &, PPO agent mp, reward function r(-),
forecast window 7', episodes Nep
1: Initialize policy parameters 6 and value function ¢
2: for episode = 1 to Nep do
3: Reset environment: sg <— &.reset()
4: for t =1 to Tinax do
5 Observe: System state s; (latency, HPA, CPU, RAM,
requests, etc.)
6: Compute cyclic encoding: 6; = 27
[cos(0¢),sin(6:)]
Feature projection: z: = ¢(WinX: + bin)
8: Sequential modeling (double-stacked LSTM):
h§1)7 Cil) — LSTM(l)(Zia hgl—)lv cgl—)l)
i, ef? - LSTM® (b b,)

stepy cyclic
minutes_per_day > *t -

~

9: Attention over window {hf)}; Eq. (6), (7). (8)
10: Feature fusion: f; = t([Cum, X7, 5¢])

11: Select action: a; ~ 7o (-|ft)

12: Apply action in environment £

13: Observe next state s¢41, compute reward ¢

14: Store transition (f;, as, 7¢, fi+1)

15: if episode ends or ¢t = Tinax then

16: break

17: end if

18: end for

19: Policy Update: Use PPO (with entropy and KL regulariza-
tion, cosine LR schedule) to update 60

20: end for

21: return Trained policy my=

Where t(-) is a learned feedforward mapping. This fused
representation f; is then used by the actor and critic heads
to produce actions and value estimates.

Our RL-based autoscaler as a whole is differentiated by the
integration of double-stacked LSTM layers and self-attention
for better sequential modeling, explicit cyclic time encoding
to capture recurring workload patterns, and the application
of smoothing (only to the forecast feature) for robust and
proactive scaling. The pseudo-code for RL-based autoscaler
is shown in algorithm 1, and the parameters are reported in
table II.

IV. SIMULATION SETUP AND EXPERIMENTAL RESULTS

In this section, we discuss the simulation workflow, data pre-
processing, workload generation, environment configuration,
and results, keeping in view different metrics.

A. Data Preprocessing and Workload Segmentation

The workload consists of invocation traces collected from
a production cloud system, i.e., Azure Functions [21]. Each
trace entry contains real serverless function invocation logs,
replicating true cloud workload bursts and variability. The data
covers multiple days, out of which we have randomly used five
days for training our model and two for its evaluation.

The most critical aspect of realistic load testing is the
ability to inject workload patterns that accurately replicate real
user traffic behavior, while also considering the closed-loop
nature of the autoscaling in Kubernetes. For this reason, Hey

TABLE II
PARAMETERS AND HYPERPARAMETERS USED IN RL-BASED
AUTOSCALER
Parameter Value / Range
Batch size 128
Episode length 710
Number of training days 5
Number of test days 2
Observation window 1
Learning rate schedule I1x10°t02x 1072
Optimizer Adam
Discount factor () 0.995
GAE lambda 0.93
Entropy coefficient 0.01
PPO clipping € 0.2
LSTM layers 2
LSTM hidden size 128
Attention mechanism Yes
Forecast window size 3
SLA latency target (Lgsra) 0.015s
Desired CPU usage (U*) 70%
Min/Max Replicas 17200

0.0200 Legend

o
T O [Train
00173 =
== SLA (0.015s)
0.0150 = == == == o o o o o o e

Mean: 0.0116 e
==== Median: 0.0129 -=-~--

0.0125

0.0100

Latency (s)

0.0075

0.0050

0.0025 Median: 0.0037
—t

0.0000

Train Test

Fig. 2. Latency Distribution for Train and Test sets

load generator [22] is integrated into the system model. After
calculating the smoothed expected requests N; for the current
timestamp ¢, the simulation issues a sey command to the target
Kubernetes Service endpoint. Further, we deploy OpenFaaS
[23], which acts as the gateway for function invocations,
handling requests by replaying traces from Azure Functions.
Among the deployed services is a custom microservice, factor-
izator, exposing an HTTP API for computationally intensive
tasks, which in our case is the integer factorization.

B. Forecasting Integration

We integrate workload forecasting into state representation
and reward design to enable proactive autoscaling. At each
timestep ¢, a moving average forecast N, of request rates is
computed as shown in Eq. (11).

1 w
N; = E;Nt_k

Where N,_j is the request count k steps before ¢, and w is
the window size (refer to Table II). Concurrently, exponential
smoothing is applied to raw counts NV; to mitigate noise while
preserving trends, as shown in Eq. (12).

Nt = OéNt + (1 - Oé)Nt_l

(1)

(12)

2025 21st International Conference on Network and Service Management (CNSM)

The forecast N; serves as both an input feature to the agent’s
state representation and an element of the reward function
penalizing scaling decisions against the forecasted demand.
The smoothed series INV; enhances signal stability for trend-
sensitive operations.

C. Experimental Testbed

Simulations and RL-based autoscaling experiments were
conducted on a local workstation equipped with an Intel Core
i7-3770 CPU (8 threads, 3.4 GHz), 24 GB of RAM, and run-
ning Ubuntu Linux. Minikube was used to deploy Kubernetes
locally (Client: v1.32.5, Server: v1.31.0), with all deployments
and pods managed in a single-node setup. The RL training
utilized Python 3.12, PyTorch 2.x, Stable Baselines3 2.3.0, and
Gymnasium 0.29. All code was executed locally without the
use of a GPU. The environment allows reproducible evaluation
of our RL-based approach, as discussed in the sections below.

D. Latency Analysis

Figure 2 visualizes a comparative analysis of the latency
distribution for both training and test phases, along with key
statistical metrics and the target SLA threshold, i.e., 0.015 s.
During the training phase, the latency values are spread with
a mean of approximately 0.0116 s and a median of 0.0129 s,
both well below the SLA boundary. The data points show
some variability, especially at the 18-20 ms time window;
however, the majority of samples consistently remain under
the required threshold. In the test phase, performance further
improves, with the mean and median latencies reduced to
0.0058 s and 0.0037 s, respectively. The test phase shows
lower dispersed latency overall compared to the training phase;
however, occasional latency spikes reach up to 18 ms. Notably,
the model recovering its performance demonstrates resilience
and continues to evaluate according to the learned policy.

E. Horizontal Pod Autoscaling CPU Utilization

Figure 3 visualizes the distribution of the HPA CPU target
percentage across all steps during the training phase of our
RL-based autoscaler. RL agent dynamically adapts the CPU
target within the full action range (10% to 90%), frequently os-
cillating between intermediate and extreme values in response
to changing invocation patterns. Frequent transitions between
different CPU target levels indicate that the agent is neither
stuck in a static single policy nor overfitting to any single
workload segment. Rather, it uses both low and high CPU
targets as needed:

o HPA CPU uses targets (e.g., 70-90%) during periods of
increased demand to provision more resources, thereby
preventing SLA violations.

o Lower targets (e.g., 10-30%) are favored when demand
decreases, because the system reduces resource usage and
improves efficiency.

F. Threshold Analysis

As shown in Figure 4, the success ratio for both training and
testing phases consistently exceeds 97% across all scenarios.
The success ratio is defined as the percentage of incoming
requests that receive successful HTTP 200 responses out of
the total requests sent in each simulation step. Specifically,
our model achieves a training success ratio of 0.9943 and a
testing success ratio of 0.9929.

G. Analysis of Reward and Normalized Forecast Error Against
Number of Requests

Figures 5 and 6 provide an overall step-wise evaluation of
the autoscaling agent during training and testing, respectively.
Each figure contains three vertically aligned subplots: (a)
reward r; over time per step, (b) normalized forecast error
per step, and (c) actual number of requests per step. During
training, the reward displays high variance and considerable
negative spikes, generally for the steps where the agent ex-
plored inefficiencies related to scaling decisions, either over-
provisioning, under-provisioning, or exceeding the expected
latency. As training advances, negative spikes become less
frequent, and the reward signal stabilizes, signaling improved
learning and adaptation. In the test phase, the reward trajectory
is, however, much stable and predominantly positive, reflecting
the agent’s ability to generalize its learned policy to unseen
demand patterns and maintain service efficiency. The mean
reward values for the train and test sets are /.632 and 2.212, re-
spectively, demonstrating post-training improvement. Further,
to evaluate the forecasting accuracy, we use the normalized
error at each timestep ¢, as shown in (13):

NE, = Yt — Yt
Yt

Where ¢; and y; are the forecasted and actual request counts.
This metric directly captures the direction and magnitude
of prediction errors, with values near zero indicating high
accuracy, positive values demonstrating overestimation, and
negative values indicating underestimation. Most normalized
errors are tightly grouped around zero (refer to Figures 5(b)
and 6(b)), confirming that the LSTM-based predictor is largely
unbiased for the test set and that the learned model generalizes
well. In comparison, the training set exhibits more fluctuations,
which coincide with periods of sudden changes in workload.
These outliers, while expected in dynamic and real traces, have
a limited impact due to the robust design of the autoscaling
policy. The slightly higher under- and over-estimation in
the training set is primarily due to the random allocation
of training days, which, as shown in Figure 5(c), includes
sudden bursts in incoming requests. These events challenge the
forecasting model’s accuracy, however the system nonetheless
demonstrates rapid recovery and overall stability. The KDE
plots in Figures 7 and 8 further illustrate the concentration
of errors near zero, especially for the testing phase. Table III
summarizes key quantitative metrics, such as MAE, RMSE,
R?, SLA compliance, and success ratio for both train and test
phases. It is important to distinguish between success ratio and

(13)

2025 21st International Conference on Network and Service Management (CNSM)

o N
© © ©

HPA CPU Target (%)
"]
-]

40
30
20
[) 500 1000 1500 2000 2500 3000 3500
Step
Fig. 3. HPA CPU Target Percentage for Train Set
(a) Ratio per Step (Training Phase) (a) Reward per Step (Testing Phase)
—— Train >
1.00 2
2 1
d'& 'E o
#0.98 £
g i
< e« -2
w
0.96 -3
-4
0 500 1000 1500 2000 2500 3000 3500 -5
(b) Ratio per Step (Testing Phase) (b) Nor Forecast Error per Step (Testing Phase)
Test L
1.00) N | (11 i AT I m L 075
.’g | 'I ” .M l’ H I | ‘ " , ll g e
w
% ! \ u b 0.25 i
goos [I I 8 000l A TIRER AT\ AN
¢ : ' | iy ,
3 € -0.25
@]
0.96 2 050
-0.75
0 200 400 600 800 1000 1200 1400
Step (c) of Actual per Step (Testing Phase)
350
Fig. 4. Success ratio per step during (a) training and (b) testing phases. p0
Average success ratios are 0.9943 (training) and 0.9929 (testing). 'g'_m
g 200
= 150
(a) Reward per Step (Training Phase) 2
4 © 100
<
2 50
] 0
-2 0 200 400 600 800 1000 1200 1400
T Step
5 -
g 4
2 -
s Fig. 6. Testing phase analysis: (a) reward per step, (b) normalized forecast
~10 error, and (c) actual requests
-12
(b) Nor i F Error per Step (Training Phase)
13 12 ---- Zero Error
"
2 10
£ i
w
°
3 0.8
£ €06
S]
2
(=]
0.4
(c) of Actual per Step (Training Phase) 0.2
350 g
2 300 0.0
B -1.0 -0.5 0.0 05 10 15
3 Normalized Error
5200
3
= 150
£ 100 Fig. 7. Kernel density estimate (KDE) of the normalized error NE; over the
<% train set
o
[500 1000 1500 2000 2500 3000 3500

Step

Fig. 5. Training phase analysis: (a) reward per step, (b) normalized forecast
error, and (c) actual requests

SLA compliance metrics. The success ratio (>99%) measures
the percentage of requests that receive successful HTTP 200
responses, indicating high system reliability. However, SLA
compliance (80-87%) measures the percentage of requests that
complete within our strict 15ms latency target.

2025 21st International Conference on Network and Service Management (CNSM)

TABLE III
COMPREHENSIVE PERFORMANCE METRICS FOR RL-BASED AUTOSCALER

Metric Phase MAE RMSE Other / Notable
Latency vs SLA Train 0.0041 0.0062 SLA Compliance: 80.90%
Test 0.0115 0.0118 SLA Compliance: 87.32%
Requests vs Forecast Train 18.60 26.61 R?%:0.7902
Test 16.79 25.65 R?: 0.8744
Train 18.67 26.79 -
Throughput vs Forecast Test 16.97 75.92 3
Success Ratio Train | Mean: 0.9943 | Std: 0.0078 >0.99: 68.51%
Test Mean: 0.9929 | Std: 0.0084 >0.99: 62.54%
Reward Train Mean: 1.633 Std: 1.584 Min: -12.348, Max: 3.378
Test Mean: 2.213 Std: 0.641 Min: -4.759, Max: 2.898
---- Zero Error TABLE IV
20 PERFORMANCE COMPARISON AGAINST STANDARD HPA (50%) AND
BASELINE [6]
s . -
= "/ Metric HPA (50%) | Baseline | Our Autoscaler
S 16 g \ Max Latency (s) 0912 0.707 0.018
= \ Min Latency (s) 0.0020 0.0018 0.0017
e T Average Latency (s) 0.0722 0.0463 0.0058
__d \\\ Median Latency (s) 0.0692 0.0510 0.0037
PN I y _—— Minimum Success Rate 0.862 1.000 0.975
-0 P2 Norm;i?zed —— 9.5 L0 Average Success Ratio 0.969 1.000 0.992
SLA Compliance (%) 0 0 87.32

Fig. 8. Kernel density estimate (KDE) of the normalized error NE; over the
test set

H. Comparison With the Baseline

Table IV compares our RL-based autoscaler with standard
HPA (50% CPU target) and the baseline [6] in terms of
application latency, success ratio, and SLA compliance. Our
autoscaler significantly reduces latency, lowering the average
from 72.2 ms (HPA) and 46.3 ms (baseline) to 5.8 ms, and
the maximum from 912 ms and 707 ms to 18 ms. Moreover,
our autoscaler achieves 87.32% SLA compliance under the 15
ms threshold, whereas both other approaches remain at 0%.
The autoscaler also maintains a 99.2% average success ratio,
above HPA (96.9%) and slightly below the baseline (100%),
with a 97.5% minimum success rate compared to 86.2% for
HPA and 100% for the baseline. The improvement comes
from integrating workload forecasting with stacked LSTM and
attention mechanisms, allowing proactive scaling. In contrast,
HPA reacts only to current CPU usage, and the baseline applies
fixed thresholds without prediction, leading to higher latency
and less efficient resource use.

V. DISCUSSION

The growing trend of cloud and edge computing applica-
tions has motivated researchers to address different challenges,
including energy consumption, privacy, and efficient resource
management. Within the domain of resource management,
researchers and developers have focused significant effort on
enhancing autoscaling techniques, specifically HPA, i.e., to
update a workload resource automatically. To address these
demands, we developed a PPO-based RL algorithm integrated

with a double-stacked LSTM architecture and an attention
mechanism, capable of forecasting incoming workload pat-
terns, thereby mitigating the cold start and lagging adjustment
issues. Our experimental methodology on the Azure invocation
traces indicates the approach works as intended and maintains
a balance between resource usage and performance, even
under the bursty workload patterns without compromising
the SLA agreements. Compared to threshold-based or single-
policy solutions, our multi-dimensional discrete action space
allows the agent to optimize multiple scaling parameters si-
multaneously, resulting in smoother transitions and a reduction
in latency outliers. Further, the ability of policy to align
the HPA CPU targets with observed and predicted workload
patterns reflects a key advancement in bridging predictive
analytics and adaptive control. Moreover, the random assign-
ment of training and testing days contributes to exposing the
autoscaler to diverse workload variations, crucial for evaluat-
ing generalizability in real-world deployments. The observed
balance between rapid responsiveness and efficient resource
utilization illustrates the efficiency of our RL-based autoscaler.

Despite the robustness of our RL-based autoscaler, several
limitations remain. First, the current evaluation, conducted on
a local single-node Kubernetes cluster, does not capture the
full spectrum of complexities present in distributed, multi-
cluster production environments. Notably, the rare however,
significant forecast errors predominantly occur during periods
of sudden and extreme workload changes. Such rapid rises or
drops in demand present a basic challenge for all time series
models, including our double-stacked LSTM-based forecaster,
as these patterns in question frequently lie outside the dis-

2025 21st International Conference on Network and Service Management (CNSM)

tribution during training. Although it is inherently complex
to predict such rare events due to their unpredictability and
limited historical examples, our RL-based autoscaler, nonethe-
less, significantly reduces their operational impact by rapidly
adjusting resource allocation in subsequent steps, hence main-
taining SLA compliance and system stability.

As future work, we aim to refine reward shaping, enhance
exploration strategies, and improve policy interpretability for
better adaptation to changing workloads. A critical next step
involves extending our evaluation from the current single-node
testbed to distributed, multi-cluster edge-cloud infrastructures.
While our proof-of-concept demonstrates effectiveness in a
controlled environment, comprehensive validation requires de-
ployment across multi-region and multi-tenant configurations
to capture the complexities of production systems, including
network latency and distributed coordination challenges.

CONCLUSION

This paper presents a novel RL-based autoscaling frame-
work combining PPO, LSTM, and attention-driven forecasting
for addressing the demands of today’s cloud-native and edge
computing environments. Through experimental simulation
on real invocation traces and extensive evaluation in a Ku-
bernetes testbed, our RL-based autoscaler demonstrates SLA
maintenance and efficient resource management. Moreover,
concerning the operational reliability, the system consistently
achieved an average success ratio exceeding 99% in processing
incoming requests. The flexibility of designing and enabling
coordinated control over multiple scaling parameters differen-
tiates it from much of the prior work using heuristic and static
thresholds. The integration of forecasting directly into the
RL pipeline proves effective in predicting sudden changes in
workload and mitigating latency spikes. Nonetheless, the work
also underscores the necessity of further investigation into
policy generalization, large-scale deployment, and explainable
decision-making to fully realize the vision of autonomous,
self-optimizing infrastructures.

ACKNOWLEDGMENT

This work has been supported by the European Union -
NextGenerationEU under the Italian Ministry of University
and Research (MUR) National Innovation Ecosystem grant
ECS00000041 - VITALITY, and the MUR Extended Partner-
ships grant PEO0O000001 - RESTART.

DATA AVAILABILITY STATEMENT

Results of our experiments as CSV files can be available
on demand by emailing the corresponding author. While the
input data from Azure traces is publicly available.

REFERENCES

[1] M. Femminella and G. Reali, “Comparison of reinforcement learning
algorithms for edge computing applications deployed by serverless
technologies,” Algorithms, vol. 17, no. 8, 2024.

[2] 1. Baldini, P. Castro, K. Chang, P. Cheng, S. Fink, V. Ishakian,
N. Mitchell, V. Muthusamy, R. Rabbah, A. Slominski et al., “Serverless
computing: Current trends and open problems,” Research advances in
cloud computing, pp. 1-20, 2017.

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

H. Ahmad, C. Treude, M. Wagner, and C. Szabo, “Smart hpa: A
resource-efficient horizontal pod auto-scaler for microservice archi-
tectures,” in 2024 IEEE 2Ist International Conference on Software
Architecture (ICSA). 1EEE, 2024, pp. 46-57.

M. Golec, G. K. Walia, M. Kumar, F. Cuadrado, S. S. Gill, and
S. Uhlig, “Cold start latency in serverless computing: A systematic
review, taxonomy, and future directions,” ACM Computing Surveys,
vol. 57, no. 3, pp. 1-36, 2024.

Z. Zhang, T. Wang, A. Li, and W. Zhang, “Adaptive auto-scaling of
delay-sensitive serverless services with reinforcement learning,” in 2022
IEEE 46th Annual Computers, Software, and Applications Conference
(COMPSAC). 1EEE, 2022, pp. 866-871.

M. Femminella and G. Reali, “Application of proximal policy op-
timization for resource orchestration in serverless edge computing,”
Computers, vol. 13, no. 9, 2024.

M. Golec, S. S. Gill, H. Wu, T. C. Can, M. Golec, O. Cetinkaya,
F. Cuadrado, A. K. Parlikad, and S. Uhlig, “Master: Machine learning-
based cold start latency prediction framework in serverless edge com-
puting environments for industry 4.0,” IEEE Journal of Selected Areas
in Sensors, 2024.

X. Ma, K. Zong, and A. Rezaeipanah, “Auto-scaling and computation
offloading in edge/cloud computing: a fuzzy gq-learning-based approach,”
Wireless Networks, vol. 30, no. 2, pp. 637-648, 2024.

Y. Gari, D. A. Monge, E. Pacini, C. Mateos, and C. G. Garino,
“Reinforcement learning-based autoscaling of workflows in the cloud:
A survey,” arXiv, 2020.

D.-Y. Lee, S.-Y. Jeong, K.-C. Ko, J.-H. Yoo, and J. W.-K. Hong, “Deep
g-network-based auto scaling for service in a multi-access edge com-
puting environment,” International Journal of Network Management,
vol. 31, no. 6, p. €2176, 2021.

Z. Gan, R. Lin, and H. Zou, “Adaptive auto-scaling in mobile edge
computing: A deep reinforcement learning approach,” in 2022 2nd
International Conference on Consumer Electronics and Computer En-
gineering (ICCECE). 1EEE, 2022, pp. 586-591.

P. Benedetti, M. Femminella, G. Reali, and K. Steenhaut, “Reinforce-
ment learning applicability for resource-based auto-scaling in serverless
edge applications,” in 2022 IEEE international conference on pervasive
computing and communications workshops and other affiliated events
(PerCom Workshops). 1EEE, 2022, pp. 674-679.

A. Panda and S. R. Sarangi, “Faasctrl: A comprehensive-latency con-
troller for serverless platforms,” IEEE Transactions on Cloud Comput-
ing, 2024.

S. Agarwal, M. A. Rodriguez, and R. Buyya, “A deep recurrent-
reinforcement learning method for intelligent autoscaling of serverless
functions,” IEEE Transactions on Services Computing, 2024.

P. S. Thomas and E. Brunskill, “Policy gradient methods for rein-
forcement learning with function approximation and action-dependent
baselines,” arXiv preprint arXiv:1706.06643, 2017.

N. Vieillard, T. Kozuno, B. Scherrer, O. Pietquin, R. Munos, and
M. Geist, “Leverage the average: an analysis of kl regularization in
reinforcement learning,” Advances in Neural Information Processing
Systems, vol. 33, pp. 12 163-12 174, 2020.

I. Loshchilov and F. Hutter, “Sgdr: Stochastic gradient descent with
warm restarts,” 2017. [Online]. Available: https:/arxiv.org/abs/1608.
03983

Z. Liu, “Super convergence cosine annealing with warm-up learning
rate,” in CAIBDA 2022; 2nd International Conference on Artificial
Intelligence, Big Data and Algorithms. VDE, 2022, pp. 1-7.

J. Dogani, R. Namvar, and F. Khunjush, “Auto-scaling techniques in
container-based cloud and edge/fog computing: Taxonomy and survey,”
Computer Communications, vol. 209, pp. 120-150, 2023.

K. Greff, R. K. Srivastava, J. Koutnik, B. R. Steunebrink, and J. Schmid-
huber, “Lstm: A search space odyssey,” IEEE Transactions on Neural
Networks and Learning Systems, vol. 28, no. 10, pp. 2222-2232, 2017.
Microsoft Azure, “Azure functions invocation trace 2021,”
https://github.com/Azure/AzurePublicDataset/blob/master/
AzureFunctionsInvocationTrace2021.md, 2021, accessed: 2025-06-
05.

J. Rakyll, “hey: Http load generator, apachebench (ab) replacement,”
https://github.com/rakyll/hey, 2016, accessed: 2025-06-05.

OpenFaa$S, “Openfaas - serverless functions made simple,” https://www.
openfaas.com/, accessed: 2024-06-12.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

