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Abstract—Modern cloud and edge computing infrastructures
operate under rigorous Service Level Agreements (SLAs), which
define Quality of Service (QoS) standards and key perfor-
mance indicators (KPIs) such as latency, resource efficiency,
and reliability. Meeting these requirements is increasingly chal-
lenging due to highly variable, bursty, and latency-sensitive
workloads demanding intelligent, efficient, and adaptive resource
management. To address these evolving needs, we introduce
a novel autoscaling framework that combines the Proximal
Policy Optimization (PPO) algorithm with a double-stacked
Long Short-Term Memory (LSTM) network and an attention
mechanism, enabling coordinated and proactive autoscaling in
Kubernetes-based environments. The proposed approach utilizes
a multidimensional discrete action space to simultaneously tune
the Horizontal Pod Autoscaler (HPA) CPU targets, throughput
multipliers, learning rate schedules, and policy enhancements,
thereby effectively adapting to both short-term and long-term
fluctuations in network traffic. Additionally, a forecasting mod-
ule integrates LSTM-driven workload predictions with recent
observation trends, allowing the autoscaler to predict dynamic
changes and accommodate resources accordingly. Comprehensive
simulations using real Azure Functions invocation traces from
production environments justify that our system consistently
maintains SLA, QoS, and KPI objectives, while delivering op-
erational stability and enhanced resource efficiency for cloud-
edge networks. Under strict SLA constraints, our proposed
methodology achieves an average latency reduction of 87.5% and
a median latency reduction of 71.5% compared to the baseline.

Index Terms—autoscaling, kubernetes, LSTM, PPO, edge,
cloud

I. INTRODUCTION

The increasing trend in cloud-native, edge, and serverless

computing has revolutionized the way modern applications are

developed, deployed, and scaled. Edge computing refers to

the use of computational resources located near the user [1].

Function-as-a-Service (FaaS) platforms such as Google Cloud

Functions and Microsoft Azure Functions now serve as a basic

building block of the digital infrastructure, abstracting server

management and offering developers a seamless on-demand

scaling [2]. However, under this abstraction lies a complex

orchestration problem, i.e., to allocate computing resources in

response to highly variable and often unpredictable workloads

dynamically. Not only this, also to simultaneously maintain

the strict Service Level Agreements (SLAs) for throughput,

latency, and other metrics necessary to meet Quality of Service

(QoS) standards.

In FaaS, resources are allocated dynamically in response to

incoming requests, charging users only for the compute time

used. These benefits stem from autoscaling, which refers to

the dynamic adjustment of compute resources based on appli-

cation demand from the user side. Autoscaling in cloud-native

applications, specifically in Kubernetes-based deployments,

is most commonly implemented through controllers. These

controllers are usually Vertical Pod Autoscaler (VPA) and Hor-

izontal Pod Autoscaler (HPA), monitoring the resource utiliza-

tion metrics mainly including CPU and memory usage, while

scaling the pods (number of application instances) accordingly

[1], [3]. Autoscaling helps cloud providers to maintain per-

formance KPIs under fluctuating workloads, optimizing the

infrastructure usage, and controlling operational costs. This

reactive nature presents critical limitations in today’s dynamic

computing environments. Traditional autoscalers often lead to

cold starts [4], latency spikes, and resource under-provisioning

during sudden workload fluctuations, while causing over-

provisioning and resource waste during demand overestima-

tion [5]. With cloud workloads becoming increasingly bursty,

non-stationary, and shaped by diverse end-user behavior and

time-of-day effects [6], reactive approaches struggle with

partial observability, delayed feedback, and multi-dimensional

optimization objectives.

Recent Machine Learning (ML) and Reinforcement Learn-

ing (RL) approaches have attempted to address these chal-

lenges through predictive models including LSTM networks

[7] and RL algorithms such as Q-Learning [8], Deep Q

Networks (DQN), and Proximal Policy Optimization (PPO)

[1]. However, these methods remain limited by model drift,

forecast errors, inability to generalize to unseen patterns, and

evaluation primarily on synthetic traces with limited metrics

[9]. Many approaches decouple prediction from autoscaler

operation, optimizing for forecast accuracy rather than opera-

tional performance.

To overcome these limitations, we propose a novel autoscal-

ing framework that integrates prediction and control through

a PPO agent operating in a multi-dimensional discrete action

space. Our approach enables coordinated scaling decisions

across multiple resource dimensions (replicas, CPU, memory)

within a single policy framework while dynamically adjusting

learning parameters during training. The system incorporates
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three key contributions: (1) a custom double-stacked LSTM

architecture integrated within the PPO policy network to cap-

ture both short-term bursts and long-term traffic dependencies,

(2) an attention mechanism that identifies critical scaling

moments in recent history, and (3) an SLA-aware reward

function that balances latency compliance, success ratio, and

resource efficiency. Unlike prior works where forecasting

operates separately, our framework tightly integrates workload

prediction with the RL loop, enabling truly proactive resource

management.

The rest of this paper is structured as follows: Section II

reviews relevant literature and state-of-the-art approaches. Sec-

tion III presents the theoretical foundations and system model.

Section IV details the methodology, experimental setup, and

results. Section V discusses implications and future directions.

II. RELATED WORK

Over the past five years, RL approaches for edge computing

autoscaling have evolved from basic value-based methods to

sophisticated hybrid architectures, yet significant gaps remain

in achieving SLA-aware proactive scaling. Lee et al. [10]

applied DQN for server instance scaling in multi-access edge

computing environments, demonstrating the potential of value-

based RL for dynamic resource allocation. However, their

approach was limited to VM monitoring metrics without

considering network conditions and lacked validation with

microservice architectures. Gan et al. [11] proposed a PPO-

based Markov Decision Process (MDP) with discrete actions,

achieving 86% improvement over Q-Learning, demonstrating

the superiority of policy gradient methods, yet their single-

dimensional action space prevented coordinated optimization

across multiple resource parameters. Benedetti et al. [12]

deployed a Q-Learning framework based on CPU usage for

edge autoscaling without significantly affecting latency, how-

ever, their evaluation was constrained to limited iterations and

synthetic workloads.

The shift toward hybrid ML-RL approaches began with Ma

et al. [8] introducing fuzzy Q-Learning with LSTM using

differential evolution for hyperparameter selection, achieving

better performance in execution time and energy consumption

while maintaining optimal CPU usage. Moreover, their fuzzy

logic integration introduced significant computational over-

head unsuitable for resource-constrained edge environments,

and their reward function prioritized energy consumption over

SLA compliance, limiting applicability to latency-sensitive

applications. Panda and Sarangi [13] developed FaaSCtrl, an

Advantage Actor Critic (A2C)-based comprehensive latency

controller that tunes Linux scheduling parameters (process pri-

orities and CPU affinities) to manage all latency components

(mean, median, standard deviation, tail latency), achieving

36.9% improvement in tail latency and 44.6% in response

latency standard deviation. While their comprehensive latency

modeling was innovative, their system-level approach operated

below the application layer, limiting direct applicability to

containerized microservices. Femminella and Reali [6] im-

plemented PPO-based autoscaling in Kubernetes with cyclic

time-of-day encoding (sin/cos functions) integrated with HPA,

memory, and CPU usage metrics, comparing DQN, A2C, and

PPO algorithms, representing significant progress in temporal

feature engineering, yet their action space remained limited

to traditional HPA parameters without forecasting integra-

tion for proactive scaling. Most critically, Agarwal et al.

[14] introduced DRe-SCale, a PPO model integrated with

LSTM for function autoscaling in partially observable environ-

ments, achieving 13-18% improvement over threshold-based

approaches. While their recurrent architecture addressed tem-

poral dependencies and partial observability through POMDP

formulation, their LSTM integration was shallow (single-

layer) and lacked attention mechanisms for critical pattern

recognition.

Despite these advances, existing approaches exhibit funda-

mental limitations: single-dimensional action spaces prevent-

ing coordinated multi-parameter optimization, shallow tempo-

ral modeling insufficient for capturing both short-term bursts

and long-term patterns in edge workloads, decoupled forecast-

ing that optimizes prediction accuracy rather than operational

performance, and reward functions that inadequately integrate

strict SLA latency constraints essential for edge computing

applications. Our RL-based autoscaler addresses these lim-

itations through a novel multi-dimensional discrete action

space enabling coordinated control over HPA CPU targets,

throughput multipliers, and policy enhancements, integrated

with double-stacked LSTM architecture and learned attention

mechanisms for deep temporal modeling, direct forecasting

integration within the RL pipeline for truly proactive scaling,

and SLA-aware reward formulation with explicit 15ms latency

constraints, evaluated comprehensively using real Azure Func-

tions production traces across diverse workload patterns.

III. SYSTEM MODEL

The search for intelligent and robust autoscaling in cloud

and edge computing has led to research on learning-based

resource controllers. Traditional methods, as discussed in

previous sections, can be improved in terms of better scala-

bility and computational overhead. Policy-Gradient RL [15]

and, in particular, PPO have emerged as a state-of-the-art

approach for efficient control in partially observable and high-

dimensional domains. Furthermore, a double-stacked LSTM

model is integrated within the PPO policy, feature-engineered

with cyclic encoding and a custom attention mechanism, to

enhance forecast accuracy and temporal resolution. The system

architecture for our proposed approach has been shown in Fig.

1.

A. Reinforcement Learning Configuration and Observation
Space

For this configuration, the autoscaler is formulated as an

RL agent interacting with a dynamic environment. At each

decision step, the agent observes the current system state and

selects an action represented as a multi-dimensional discrete

vector. Each element of this vector corresponds to a distinct

control policy or scaling parameter, as summarized in Table I

2025 21st International Conference on Network and Service Management (CNSM)



Horizontal Pod Autoscaler

pod pod pod

RL Autoscaler

Input

LSTM

LSTM

Scaling Action

PPO Policy

Reward

Feature Extraction

Input

LSTM

LSTM

Feature Extraction

Function Gateway

Kubernetes Nodes

node node node
Factorizator

Functions

HPA
Configurations

Kubernetes Control Plane

Metrics Server API Server

Azure Workload Traces

Kubernetes Data Plane

Fig. 1. System Architecture

and formally defined in Eq. (1). The observed state vector,

denoted as st in Eq. (2), aggregates both present and historical

system metrics. To be precise, it includes measured latency,

replica count, per-pod RAM and CPU usage, total cluster

resource consumption, current and forecasted request rates,

HPA CPU target, observed success ratio, and cyclic encoding

of the time-of-day.

at =
(
acpu
t , ascale

t , aenh
t , amode

t

)
(1)

Where each element a
(·)
t is taken from a set of possible discrete

actions for its respective control parameter.

st = [ latencyt, replicast, cput, ramt, requestst, total cput,

total ramt, success ratiot, HPAt, throughput multt,

enhancementt, cos(θt), sin(θt), forecastt] (2)

The selected state features ensure the RL agent receives a

complete and actionable overview of the system. Latency and

success ratio directly represent SLA fulfillment, while replicas,

HPA target, and policy flags inform the agent about recent

scaling actions. Including per-pod and total resource usage

(CPU and RAM) provides visibility into both local and overall

resource usage. Real-time and forecasted requests allow for

both immediate and proactive responses. Moreover, cyclic

time-of-day features help the agent recognize and adapt to

regular workload patterns.

TABLE I
MULTI-DIMENSIONAL DISCRETE ACTION SPACE

Action Parameter Choices Mapping
a

cpu
t HPA CPU Target 0–4 (10, 30, 50, 70, 90)%

alr
t LR Schedule 0–2 0: keep, 1: dec., 2: inc.

atm
t Throughput Mult. 0–2 ×1, ×2, ×3

aenh
t Enhancement 0–2 0:none, 1:moderate,

2:aggressive

B. Proximal Policy Optimization with Multi-Dimensional Dis-
crete Actions

For addressing the multi-dimensional nature of autoscaling,

simultaneous control of HPA targets, enhancement modes,

and scaling multipliers, we extend classical PPO to operate

over a discrete multi-action space. Through this, the agent can

take coordinated actions across several control knobs within

each epoch, without treating each scaling decision in isolation.

Below, the Kullback-Leibler (KL) regularization (i.e., the

core component of the model, penalizing the large deviations

between the updated policy and the previous policy during

RL iterations [16]), with entropy and surrogate objective, is

given in Eq. (3). The entropy and KL penalties stabilize policy

updates and encourage diverse exploration.

LPPO(θ) = Et

[
min

(
rt(θ)Ât, clip (rt(θ), 1− ε, 1 + ε) Ât

)]

− λt · H [πθ(at|st)] + βt ·KL (πθ, πθold) (3)
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Where,

rt(θ) =
πθ(at|st)
πθold(at|st)

Ât = Advantage estimate at time t

λt, βt = entropy and KL regularization coefficients

Standard PPO uses the clipping threshold ε to indirectly limit

policy divergence; however, explicit KL regularization can be

added as an extra penalty term. In this formulation for Eq. (3),

both the clipping objective and a KL penalty are included for

greater stability and to further drive policy updates. This is

a valid PPO variant and does not replace the effect of the

clipping threshold; rather, it complements it.

The learning rate is annealed using a Cosine schedule, given

in Eq. (4). Cosine annealing is selected to enable the agent

to learn fast initially and fine-tune later. This approach has

demonstrated empirical superiority over step or exponential

decay [17], partly because cosine annealing requires only

desired initial and final learning rates, simplifying hyperparam-

eter search [18]. Alternative scheduling algorithms were also

considered; however, this method showed a balance between

ease of use and training performance.

η(p) = ηmin + (ηmax − ηmin) · 1 + cos(π(1− p))

2
(4)

Where, p is the training progress and ηmin, ηmax are the

hyperparameters.

C. Reward Function Formulation

To balance SLA compliance (LSLA = 15 ms), operational

stability, and resource efficiency, we developed the composite

reward function, as shown in Eq. (5) through systematic exper-

imentation. This formulation emerged from multiple trial-and-

error refinements where alternative approaches, such as linear

penalties and unbounded terms, exhibited inferior convergence

and stability. The final design provides balanced gradients for

policy learning.

rt = γ1

[
1−

(
latencyt − LSLA

LSLA

)2
]
+ γ2 success ratiot

+ γ3 exp

(
−
(

cput − U∗

U∗

)2
)

+ γ4 Rreg(·) (5)

The first term in Eq. (5) applies latency compliance using

an inverted quadratic penalty by maximizing reward near

LSLA and sharply penalizing the deviations. The success ratio

component γ2 success ratiot rewards the request success rate,

thereby maintaining throughput reliability. Resource efficiency

(3rd term) is promoted by using a Gaussian form that peaks at

target utilization U∗. The regularization component γ4 Rreg(·)
integrates penalties for scaling oscillations, forecast deviations

(N̂t from section IV-B), and irregular resource usage. Finally,

tunable weights γi balance these objectives across deployment

scenarios, with values optimized during validation.

D. Sequential Feature Extraction

Autoscaling requires extracting meaningful insights in the

form of features from time-dependent and dynamic input

streams. In particular, edge computing workloads typically

exhibit both short-term bursts (due to microservice traffic)

and longer recurring patterns (e.g., scheduled events and

daily usage patterns) [19]. Single-layer architectures and sim-

ple feed-forward networks can typically be insufficient for

modeling these temporal dependencies because they do not

possess memory of previous inputs [20], especially when

autoscaling actions must predict both immediate changes and

trends that extend for hours or even days. To highlight the most

relevant timesteps in recent history, i.e., sudden load spikes or

trend shifts, we implement a learned attention mechanism by

assigning a weight to each hidden state in the input window

of size T , enabling the agent to focus on critical moments. By

using this technique, there is a direct interpretability advantage,

i.e., the agent’s scaling decision can be traced to the timesteps

in history it attended the most.

et = w�
a h

(2)
t + ba (6)

αt =
exp(et)∑T

k=1 exp(ek)
(7)

cattn =

T∑
t=1

αt h
(2)
t (8)

In the attention mechanism, et is the attention score assigned

to each hidden state h
(2)
t in the input window, computed

as a learned linear combination (Eq. (6)). These scores are

normalized using a softmax function to produce the attention

weights αt (Eq. (7)), which evaluate the importance of each

timestep for the final context vector cattn (Eq. (8)). To allow the

agent to anticipate recurring periodic systems, e.g., scheduled

events or regular load patterns (daily or hourly), the input at

each time t is integrated with cyclic encoding, shown in Eq.

(9) [6]. These engineered features are integrated with the main

input, enabling the LSTM to differentiate among the same

workloads occurring at different times of day.

θt = 2π · stept

minutes per day

xcyclic
t = [cos(θt), sin(θt)] (9)

Instead of treating temporal features and context separately,

we propose a contextual fusion of double-stacked LSTM-

attention output and cyclic encoding, shown in Eq. (10). This

fusion strategy allows the agent to use high-level temporal

awareness, local system state, and cyclic structure altogether

for a better autoscaling performance. Apart from theory, we

find that this integration helps the policy generalize better to

unseen invocation patterns and position scaling actions with

regular traffic cycles.

ft = ψ
([

cattn, x
cyclic
t , st

])
(10)
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Algorithm 1 Proactive SLA-Aware Autoscaling via PPO with

Sequential Feature Fusion

Require: Environment E , PPO agent πθ , reward function r(·),
forecast window T , episodes Nep

1: Initialize policy parameters θ and value function φ
2: for episode = 1 to Nep do
3: Reset environment: s0 ← E .reset()
4: for t = 1 to Tmax do
5: Observe: System state st (latency, HPA, CPU, RAM,

requests, etc.)
6: Compute cyclic encoding: θt = 2π

stept
minutes per day

, xcyclic
t =

[cos(θt), sin(θt)]
7: Feature projection: zt = φ(Winxt + bin)
8: Sequential modeling (double-stacked LSTM):

h
(1)
t , c

(1)
t ← LSTM(1)(zt,h

(1)
t−1, c

(1)
t−1)

h
(2)
t , c

(2)
t ← LSTM(2)(h

(1)
t ,h

(2)
t−1, c

(2)
t−1)

9: Attention over window {h(2)
k }; Eq. (6), (7), (8)

10: Feature fusion: ft = ψ([cattn,x
cyclic
t , st])

11: Select action: at ∼ πθ(·|ft)
12: Apply action in environment E
13: Observe next state st+1, compute reward rt
14: Store transition (ft,at, rt, ft+1)
15: if episode ends or t = Tmax then
16: break
17: end if
18: end for
19: Policy Update: Use PPO (with entropy and KL regulariza-

tion, cosine LR schedule) to update θ
20: end for
21: return Trained policy πθ∗

Where ψ(·) is a learned feedforward mapping. This fused

representation ft is then used by the actor and critic heads

to produce actions and value estimates.

Our RL-based autoscaler as a whole is differentiated by the

integration of double-stacked LSTM layers and self-attention

for better sequential modeling, explicit cyclic time encoding

to capture recurring workload patterns, and the application

of smoothing (only to the forecast feature) for robust and

proactive scaling. The pseudo-code for RL-based autoscaler

is shown in algorithm 1, and the parameters are reported in

table II.

IV. SIMULATION SETUP AND EXPERIMENTAL RESULTS

In this section, we discuss the simulation workflow, data pre-

processing, workload generation, environment configuration,

and results, keeping in view different metrics.

A. Data Preprocessing and Workload Segmentation

The workload consists of invocation traces collected from

a production cloud system, i.e., Azure Functions [21]. Each

trace entry contains real serverless function invocation logs,

replicating true cloud workload bursts and variability. The data

covers multiple days, out of which we have randomly used five

days for training our model and two for its evaluation.

The most critical aspect of realistic load testing is the

ability to inject workload patterns that accurately replicate real

user traffic behavior, while also considering the closed-loop

nature of the autoscaling in Kubernetes. For this reason, Hey

TABLE II
PARAMETERS AND HYPERPARAMETERS USED IN RL-BASED

AUTOSCALER

Parameter Value / Range
Batch size 128

Episode length 710

Number of training days 5

Number of test days 2

Observation window 1

Learning rate schedule 1× 10−5 to 2× 10−4

Optimizer Adam

Discount factor (γ) 0.995

GAE lambda 0.93

Entropy coefficient 0.01

PPO clipping ε 0.2

LSTM layers 2

LSTM hidden size 128

Attention mechanism Yes

Forecast window size 3

SLA latency target (LSLA) 0.015 s

Desired CPU usage (U∗) 70%

Min/Max Replicas 1 / 200

Fig. 2. Latency Distribution for Train and Test sets

load generator [22] is integrated into the system model. After

calculating the smoothed expected requests N̄t for the current

timestamp t, the simulation issues a hey command to the target

Kubernetes Service endpoint. Further, we deploy OpenFaaS

[23], which acts as the gateway for function invocations,

handling requests by replaying traces from Azure Functions.

Among the deployed services is a custom microservice, factor-

izator, exposing an HTTP API for computationally intensive

tasks, which in our case is the integer factorization.

B. Forecasting Integration
We integrate workload forecasting into state representation

and reward design to enable proactive autoscaling. At each

timestep t, a moving average forecast N̂t of request rates is

computed as shown in Eq. (11).

N̂t =
1

w

w∑
k=1

Nt−k (11)

Where Nt−k is the request count k steps before t, and w is

the window size (refer to Table II). Concurrently, exponential

smoothing is applied to raw counts Nt to mitigate noise while

preserving trends, as shown in Eq. (12).

N̄t = αNt + (1− α)N̄t−1 (12)
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The forecast N̂t serves as both an input feature to the agent’s

state representation and an element of the reward function

penalizing scaling decisions against the forecasted demand.

The smoothed series N̄t enhances signal stability for trend-

sensitive operations.

C. Experimental Testbed

Simulations and RL-based autoscaling experiments were

conducted on a local workstation equipped with an Intel Core

i7-3770 CPU (8 threads, 3.4 GHz), 24 GB of RAM, and run-

ning Ubuntu Linux. Minikube was used to deploy Kubernetes

locally (Client: v1.32.5, Server: v1.31.0), with all deployments

and pods managed in a single-node setup. The RL training

utilized Python 3.12, PyTorch 2.x, Stable Baselines3 2.3.0, and

Gymnasium 0.29. All code was executed locally without the

use of a GPU. The environment allows reproducible evaluation

of our RL-based approach, as discussed in the sections below.

D. Latency Analysis

Figure 2 visualizes a comparative analysis of the latency

distribution for both training and test phases, along with key

statistical metrics and the target SLA threshold, i.e., 0.015 s.

During the training phase, the latency values are spread with

a mean of approximately 0.0116 s and a median of 0.0129 s,

both well below the SLA boundary. The data points show

some variability, especially at the 18-20 ms time window;

however, the majority of samples consistently remain under

the required threshold. In the test phase, performance further

improves, with the mean and median latencies reduced to

0.0058 s and 0.0037 s, respectively. The test phase shows

lower dispersed latency overall compared to the training phase;

however, occasional latency spikes reach up to 18 ms. Notably,

the model recovering its performance demonstrates resilience

and continues to evaluate according to the learned policy.

E. Horizontal Pod Autoscaling CPU Utilization

Figure 3 visualizes the distribution of the HPA CPU target

percentage across all steps during the training phase of our

RL-based autoscaler. RL agent dynamically adapts the CPU

target within the full action range (10% to 90%), frequently os-

cillating between intermediate and extreme values in response

to changing invocation patterns. Frequent transitions between

different CPU target levels indicate that the agent is neither

stuck in a static single policy nor overfitting to any single

workload segment. Rather, it uses both low and high CPU

targets as needed:

• HPA CPU uses targets (e.g., 70–90%) during periods of

increased demand to provision more resources, thereby

preventing SLA violations.

• Lower targets (e.g., 10–30%) are favored when demand

decreases, because the system reduces resource usage and

improves efficiency.

F. Threshold Analysis

As shown in Figure 4, the success ratio for both training and

testing phases consistently exceeds 97% across all scenarios.

The success ratio is defined as the percentage of incoming

requests that receive successful HTTP 200 responses out of

the total requests sent in each simulation step. Specifically,

our model achieves a training success ratio of 0.9943 and a

testing success ratio of 0.9929.

G. Analysis of Reward and Normalized Forecast Error Against
Number of Requests

Figures 5 and 6 provide an overall step-wise evaluation of

the autoscaling agent during training and testing, respectively.

Each figure contains three vertically aligned subplots: (a)

reward rt over time per step, (b) normalized forecast error

per step, and (c) actual number of requests per step. During

training, the reward displays high variance and considerable

negative spikes, generally for the steps where the agent ex-

plored inefficiencies related to scaling decisions, either over-

provisioning, under-provisioning, or exceeding the expected

latency. As training advances, negative spikes become less

frequent, and the reward signal stabilizes, signaling improved

learning and adaptation. In the test phase, the reward trajectory

is, however, much stable and predominantly positive, reflecting

the agent’s ability to generalize its learned policy to unseen

demand patterns and maintain service efficiency. The mean

reward values for the train and test sets are 1.632 and 2.212, re-

spectively, demonstrating post-training improvement. Further,

to evaluate the forecasting accuracy, we use the normalized

error at each timestep t, as shown in (13):

NEt =
ŷt − yt

yt
(13)

Where ŷt and yt are the forecasted and actual request counts.

This metric directly captures the direction and magnitude

of prediction errors, with values near zero indicating high

accuracy, positive values demonstrating overestimation, and

negative values indicating underestimation. Most normalized

errors are tightly grouped around zero (refer to Figures 5(b)

and 6(b)), confirming that the LSTM-based predictor is largely

unbiased for the test set and that the learned model generalizes

well. In comparison, the training set exhibits more fluctuations,

which coincide with periods of sudden changes in workload.

These outliers, while expected in dynamic and real traces, have

a limited impact due to the robust design of the autoscaling

policy. The slightly higher under- and over-estimation in

the training set is primarily due to the random allocation

of training days, which, as shown in Figure 5(c), includes

sudden bursts in incoming requests. These events challenge the

forecasting model’s accuracy, however the system nonetheless

demonstrates rapid recovery and overall stability. The KDE

plots in Figures 7 and 8 further illustrate the concentration

of errors near zero, especially for the testing phase. Table III

summarizes key quantitative metrics, such as MAE, RMSE,

R2, SLA compliance, and success ratio for both train and test

phases. It is important to distinguish between success ratio and
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Fig. 3. HPA CPU Target Percentage for Train Set

Fig. 4. Success ratio per step during (a) training and (b) testing phases.
Average success ratios are 0.9943 (training) and 0.9929 (testing).

Fig. 5. Training phase analysis: (a) reward per step, (b) normalized forecast
error, and (c) actual requests

Fig. 6. Testing phase analysis: (a) reward per step, (b) normalized forecast
error, and (c) actual requests

Fig. 7. Kernel density estimate (KDE) of the normalized error NEt over the
train set

SLA compliance metrics. The success ratio (>99%) measures

the percentage of requests that receive successful HTTP 200

responses, indicating high system reliability. However, SLA

compliance (80-87%) measures the percentage of requests that

complete within our strict 15ms latency target.

2025 21st International Conference on Network and Service Management (CNSM)



TABLE III
COMPREHENSIVE PERFORMANCE METRICS FOR RL-BASED AUTOSCALER

Metric Phase MAE RMSE Other / Notable

Latency vs SLA
Train 0.0041 0.0062 SLA Compliance: 80.90%
Test 0.0115 0.0118 SLA Compliance: 87.32%

Requests vs Forecast
Train 18.60 26.61 R2: 0.7902

Test 16.79 25.65 R2: 0.8744

Throughput vs Forecast
Train 18.67 26.79 –
Test 16.97 25.92 –

Success Ratio
Train Mean: 0.9943 Std: 0.0078 ≥0.99: 68.51%
Test Mean: 0.9929 Std: 0.0084 ≥0.99: 62.54%

Reward
Train Mean: 1.633 Std: 1.584 Min: -12.348, Max: 3.378
Test Mean: 2.213 Std: 0.641 Min: -4.759, Max: 2.898

Fig. 8. Kernel density estimate (KDE) of the normalized error NEt over the
test set

H. Comparison With the Baseline

Table IV compares our RL-based autoscaler with standard

HPA (50% CPU target) and the baseline [6] in terms of

application latency, success ratio, and SLA compliance. Our

autoscaler significantly reduces latency, lowering the average

from 72.2 ms (HPA) and 46.3 ms (baseline) to 5.8 ms, and

the maximum from 912 ms and 707 ms to 18 ms. Moreover,

our autoscaler achieves 87.32% SLA compliance under the 15

ms threshold, whereas both other approaches remain at 0%.

The autoscaler also maintains a 99.2% average success ratio,

above HPA (96.9%) and slightly below the baseline (100%),

with a 97.5% minimum success rate compared to 86.2% for

HPA and 100% for the baseline. The improvement comes

from integrating workload forecasting with stacked LSTM and

attention mechanisms, allowing proactive scaling. In contrast,

HPA reacts only to current CPU usage, and the baseline applies

fixed thresholds without prediction, leading to higher latency

and less efficient resource use.

V. DISCUSSION

The growing trend of cloud and edge computing applica-

tions has motivated researchers to address different challenges,

including energy consumption, privacy, and efficient resource

management. Within the domain of resource management,

researchers and developers have focused significant effort on

enhancing autoscaling techniques, specifically HPA, i.e., to

update a workload resource automatically. To address these

demands, we developed a PPO-based RL algorithm integrated

TABLE IV
PERFORMANCE COMPARISON AGAINST STANDARD HPA (50%) AND

BASELINE [6]

Metric HPA (50%) Baseline Our Autoscaler
Max Latency (s) 0.912 0.707 0.018

Min Latency (s) 0.0020 0.0018 0.0017

Average Latency (s) 0.0722 0.0463 0.0058

Median Latency (s) 0.0692 0.0510 0.0037

Minimum Success Rate 0.862 1.000 0.975

Average Success Ratio 0.969 1.000 0.992

SLA Compliance (%) 0 0 87.32

with a double-stacked LSTM architecture and an attention

mechanism, capable of forecasting incoming workload pat-

terns, thereby mitigating the cold start and lagging adjustment

issues. Our experimental methodology on the Azure invocation

traces indicates the approach works as intended and maintains

a balance between resource usage and performance, even

under the bursty workload patterns without compromising

the SLA agreements. Compared to threshold-based or single-

policy solutions, our multi-dimensional discrete action space

allows the agent to optimize multiple scaling parameters si-

multaneously, resulting in smoother transitions and a reduction

in latency outliers. Further, the ability of policy to align

the HPA CPU targets with observed and predicted workload

patterns reflects a key advancement in bridging predictive

analytics and adaptive control. Moreover, the random assign-

ment of training and testing days contributes to exposing the

autoscaler to diverse workload variations, crucial for evaluat-

ing generalizability in real-world deployments. The observed

balance between rapid responsiveness and efficient resource

utilization illustrates the efficiency of our RL-based autoscaler.

Despite the robustness of our RL-based autoscaler, several

limitations remain. First, the current evaluation, conducted on

a local single-node Kubernetes cluster, does not capture the

full spectrum of complexities present in distributed, multi-

cluster production environments. Notably, the rare however,

significant forecast errors predominantly occur during periods

of sudden and extreme workload changes. Such rapid rises or

drops in demand present a basic challenge for all time series

models, including our double-stacked LSTM-based forecaster,

as these patterns in question frequently lie outside the dis-
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tribution during training. Although it is inherently complex

to predict such rare events due to their unpredictability and

limited historical examples, our RL-based autoscaler, nonethe-

less, significantly reduces their operational impact by rapidly

adjusting resource allocation in subsequent steps, hence main-

taining SLA compliance and system stability.

As future work, we aim to refine reward shaping, enhance

exploration strategies, and improve policy interpretability for

better adaptation to changing workloads. A critical next step

involves extending our evaluation from the current single-node

testbed to distributed, multi-cluster edge-cloud infrastructures.

While our proof-of-concept demonstrates effectiveness in a

controlled environment, comprehensive validation requires de-

ployment across multi-region and multi-tenant configurations

to capture the complexities of production systems, including

network latency and distributed coordination challenges.

CONCLUSION

This paper presents a novel RL-based autoscaling frame-

work combining PPO, LSTM, and attention-driven forecasting

for addressing the demands of today’s cloud-native and edge

computing environments. Through experimental simulation

on real invocation traces and extensive evaluation in a Ku-

bernetes testbed, our RL-based autoscaler demonstrates SLA

maintenance and efficient resource management. Moreover,

concerning the operational reliability, the system consistently

achieved an average success ratio exceeding 99% in processing

incoming requests. The flexibility of designing and enabling

coordinated control over multiple scaling parameters differen-

tiates it from much of the prior work using heuristic and static

thresholds. The integration of forecasting directly into the

RL pipeline proves effective in predicting sudden changes in

workload and mitigating latency spikes. Nonetheless, the work

also underscores the necessity of further investigation into

policy generalization, large-scale deployment, and explainable

decision-making to fully realize the vision of autonomous,

self-optimizing infrastructures.
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