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Abstract—Explainable Artificial Intelligence (XAI) is essential
for the acceptance of machine learning (ML) models, especially
in critical domains like network security. Administrators need
interpretable explanations to validate decisions, yet existing XAI
methods often suffer from low consensus, where different tech-
niques yield conflicting explanations. A key factor contributing to
this issue is the presence of correlated features, which allows mul-
tiple equivalent but divergent explanations. While decorrelation
techniques, such as Principal Component Analysis (PCA), can
mitigate this, they often reduce interpretability by abstracting
original features into complex combinations. This work investi-
gates whether feature decorrelation via decomposition techniques
can improve consensus among post-hoc XAI methods in the
context of ML-based network intrusion detection (ML-NIDS).
Using both NIDS and synthetic data, we analyze the effect of
decorrelation across different models and preprocessing. We find
that decorrelation can significantly improve consensus, but its
effectiveness is highly dependent on the underlying model, pre-
processing, and dataset characteristics. We also explore sparsity-
inducing variants of PCA to partially recover interpretability,
though results vary depending on the level of sparsity enforced.

Index Terms—Machine Learning, Intrusion Detection, Ex-
plainable AI, Disagreement Problem, Decorrelation, Decompo-
sition, PCA, MCA, XAI, ML, IDS, NIDS.

I. INTRODUCTION

The increasing reliance on machine learning (ML) models

in network security, e. g., [1]–[3], has brought significant

advancements in automating complex tasks like intrusion

detection, threat analysis, and anomaly detection. Yet, adop-

tion of such ML-based solutions by network administrators

depends strongly on their ability to comprehend the underlying

decision-making processes [4]. Explainable Artificial Intelli-

gence (XAI) [5], [6] has thus emerged as a critical requirement

in this domain. In network security, where decisions can

have severe implications, administrators are understandably

reluctant to rely on opaque black-box models. Beyond trust,

explainability also provides insights that help administrators

learn from the decisions made by these models, further enrich-

ing their expertise and improving overall security practices.

A diverse array of XAI methods has been developed to

address the interpretability of ML models (e. g., [7]–[9]).

These methods are often tailored to specific contexts, like

the type of problem (classification, regression), model (white-

box, black-box), or explanation (local, global). An important

challenge arises in situations where multiple XAI techniques

can be applied: the explanations generated by these methods

often lack consensus [10]. High consensus is essential for gen-

erating reliable explanations that users act upon confidently.

Fig. 1: Decorrelation and XAI consensus.

As shown by Krishna et al. [11], conflicting explanations

undermine trust and create uncertainty about the reliability

of these methods, particularly in critical domains like network

security. Additionally, high disagreements enable adversaries

to manipulate explanations as they desire [12], [13].

One possible reason for this lack of consensus is the pres-

ence of correlated features in the dataset. Correlated features

enable multiple information-equivalent explanations, allowing

models to produce different but valid explanations, depending

on their internal structures and optimization strategies. While

feature decorrelation via data transformations, e. g., Principal

Component Analysis (PCA), or via selection of a subset of

uncorrelated features (feature selection) is generally recom-

mended in data preprocessing to improve model performance

and reduce model complexity, there has been limited explo-

ration of its impact on improving XAI consensus.

In this work, we test the hypothesis that removing cor-

relations through decomposition techniques can improve the

consensus of XAI methods. Figure 1 illustrates this idea,

where two explainers m1 and m2 select two different, but

correlated, features for explaining a decision (f1 and f2). After

applying feature decomposition, these two correlated features

are projected into the same principal component (PC), thus the

two explainers can more easily agree. To this end, we apply

different methods such as PCA and Multiple Correspondence

Analysis (MCA), each requiring distinct preprocessing steps.

Since decompositions can reduce interpretability by mixing all

features into dense components, we also investigate sparsity-

inducing variants. While this yields more interpretable com-

ponents, it may also reintroduce correlations due to the loss of

orthogonality. By doing so, we aim to strike a balance between

improving consensus and maintaining interpretability.

Our key contributions are threefold: (i) we evaluate the

impact of feature decorrelation on XAI consensus for both use-

case-specific intrusion detection and configurable synthetic

datasets, (ii) we compare different decorrelation pipelines,

including PCA- and MCA-based approaches, and (iii) we
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investigate the trade-off between interpretability and consensus

when applying sparse variants of PCA. This complements our

previous work on the disagreement problem in NIDS, where

(a) we conducted a comprehensive analysis across diverse XAI

methods and models [10], and (b) we investigated how feature

selection strategies influence consensus [14]. Our code, as well

as supplementary material, is publicly available1.

Our work is structured as follows: Section II provides

information on NIDS, XAI, and feature decomposition, while

Section III describes related works. The proposed methodol-

ogy, including datasets, ML workflow, and consensus metrics,

is detailed in Section IV. Results of our study are presented

in Section V. Lastly, Section VI highlights the key findings.

II. BACKGROUND

a) ML-based NIDS: Cyber intrusions refer to actions

that undermine the confidentiality, integrity, or availability

(so-called CIA triad) of systems and data [15]. To mitigate

intrusions, detection systems (IDS) and prevention systems

(IPS) are implemented. These systems can function either at

host-level (HIDS) to inspect local activities, or at network-

level (NIDS) to analyze network traffic. Network data may be

logged with varying degrees of detail, e. g., per packet or per

flow. Here, ML-NIDS have experienced increased attention

in recent years [4]. Although such models often outperform

traditional NIDS, their black-box nature limits interpretability.

In critical areas (like NIDS), such black-boxes may hinder

practical adoption. Thus, trust-building measures become es-

sential, particularly in light of legal requirements like the

European AI Act2 and the GDPR’s “right to explanation” [16].

b) Explainable AI: Model explainability strengthens re-

quired trust, ultimately leading to the emergence of XAI.

Khani et al. [17] categorize XAI by four characteristics: their

scope, stage, compatibility, and algorithm type. The scope

can be local or global, i. e., explain the outcome of a single

prediction or the overall model. The stage distinguishes ante-

/in-hoc XAI suitable for inherently interpretable white-box

models before/during training, or post-hoc XAI which explains

black-box models after training. Compatibility specifies if the

explainer can be applied to any model or has constraints.

Last, the type concerns how the explanation is generated.

The two most common types are perturbation- and gradient-

/backpropagation-based approaches. The former generates ex-

planations by concealing or permuting input features, while

the latter makes use of gradients, e. g., in Neural Networks

(NNs). Thus, perturbation-based approaches also tend to be

more model-agnostic compared to gradient-based ones [18].

c) LIME and SHAP: Two prominent XAI approaches are

Local Interpretable Model-agnostic Explanations (LIME) [7]

and SHapley Additive exPlanations (SHAP) [8]. Both are

suited for local post-hoc explanations and are generally model-

agnostic. Though, SHAP also provides global explanations.

LIME works by constructing an interpretable linear proxy

model by learning the original model’s decision via input

1https://github.com/lsinfo3/cnsm2025-xai-nids-decomposition
2https://eur-lex.europa.eu/eli/reg/2024/1689

perturbations (e. g., sampling new feature values), whereas

SHAP utilizes the concept of game-theoretic Shapley val-

ues [19], which assigns each feature its contribution to the

model’s prediction based on all feature “coalitions”. As men-

tioned, SHAP (KernelSHAP) is generally model-agnostic, and,

similar to LIME, makes use of a linear model. Though,

more efficient model-specific variants exist, such as TreeSHAP

and DeepSHAP. The former is tailored to internals of tree-

based models to compute exact SHAP values, while the latter

leverages the gradient-based DeepLIFT [9] to approximate

SHAP for Deep NNs (DNNs).

d) Disagreement Problem: One challenge that arises

with XAI was first coined “disagreement problem” by Krishna

et al. [11] and is often mentioned alongside the Rashomon set,

i. e., “the existence of multiple well-performing models for a

given task” [20, p. 2]. This problem describes the challenge

that XAI methods provide diverging explanations, making

them seem unreliable. This can even happen if the same model

and same explainer is used, simply due to different random

seeds [21]. This phenomenon has been observed in many

areas, ranging from malware analysis [22]–[24], software

maintenance [25], or NIDS [10], [24], [26], to other domains

that are not inherently computer-network-centric, e. g., meteo-

rological [27], [28] or medical data [29]. One reason contribut-

ing to this disagreement are (cor)related features [10], [27]–

[30], since such relationships generally complicate attribution,

possibly enabling multiple explanations.

e) Feature Decomposition: To address correlated fea-

tures, one common approach is feature decomposition, with

PCA being the most well-known representative. PCA works

by computing eigenvectors of the covariance matrix to define a

new orthogonal basis. Preferably, features are standardized to

avoid dominance of high-variance features. If all components

are retained, this basically rotates the original features, where

each component is a linear combination of input features.

PCA preserves Euclidean distances, best suited for continuous

data. Sparse PCA (SPCA) enforces sparsity of components to

improve interpretability, though losing perfect decorrelation.

MCA can be seen as PCA for categorical data. It performs

decomposition on the so-called complete indicator (one-hot)

matrix, i. e., only binary variables, indicating if a category

is present. MCA preserves chi-square distances, capturing

relationships in continuous space. In other words, while the

MCA input is binary, the output is not. Note that decompo-

sition and decorrelation, while technically distinct, are used

interchangeably here. Methods like PCA/MCA achieve both.

III. RELATED WORK

A. XAI-driven NIDS

NIDS research has already utilized XAI approaches, e. g.,

to generate explanations on local and global scopes [31], [32]

or for feature selection [17], [33], potentially even in an adver-

sarial way [34], [35]. Rather than simply explaining decisions,

many works have changed their view to comparing and testing

different explainers quantitatively, e. g., w.r.t. the completeness,

conciseness, consistency, robustness, and/or faithfulness to the
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ground truth of an explanation [22], [36]–[40], only to name

a few objective criteria of those works. Some works even

include qualitative user studies with security experts to gain

more subjective, practical insights [24].

Although some of the above works touch on the disagree-

ment problem, it typically plays a secondary role. In com-

parison, XAI consensus is the primary concern in our work.

Instead of merely identifying and/or measuring the extent of

XAI disagreement, as we have done in prior work [10], [14]

and now further extend, we aim for a deeper understanding of

its underlying causes and potential strategies to address it.

B. XAI beyond NIDS

In addition to IDS-centric works, other domains (e. g.,

images, languages, finances, healthcare, criminology) have

acknowledged challenges in XAI, tackling inconsistencies

and disagreements, or addressing other related aspects more

directly. Some works suggest joint or grouped feature impor-

tance [27], [30], [41], i. e., assigning attributions to feature

groups instead of single features. Others align explanations

by proposing frameworks for aggregation [42], [43] or to

guide practitioners and stakeholders [20], [44], [45], redefine

consensus functions [46], or adjust training objectives [47],

potentially compromising, to enforce consensus.

Alternatively, some approaches constrain explanations to

regions [48] by partitioning reference data to limit feature

interactions. Other approaches reduce the number of input

features directly to examine the effect on generated explana-

tions [28]. Note that some works indeed use decomposition

techniques like PCA in their XAI workflow, but merely as

a preprocessing step [49], to visualize explanations [50],

or to plot the aforementioned grouped feature interaction

effects [41], rather than examining the effect of decorrelation.

Finally, some studies systematically vary dataset character-

istics, such as number of features, samples, labels, or feature

dependencies (e. g., correlations or interactions) [29], [51].

Others examine preprocessing steps like feature scaling or

encoding [52], assess model-related factors, such as training

duration [53], or examine hyperparameters of the actual XAI

methods [13]. These investigations often leverage synthetic

datasets, which offer more control over data configurations.

Similarly to Laberge et al. [48], we find aggregations or

redefinitions do not grasp the problem’s “roots” and only

address its symptoms. Limiting features also artificially forces

consensus, so the effect of decorrelation is harder to study,

raising the question, how many and which features to cut.

Compared to others, we focus on simply transforming our

input without dropping information w.r.t. features, i. e., “ro-

tating” our data. To the best of our knowledge, this is one

of the first explorations of the disagreement problem within

NIDS in conjunction with our earlier analyses.

IV. METHODOLOGY

A. NIDS Datasets

First, CICIDS2017 [54] is currently one of the most com-

monly used datasets in NIDS literature [4]. This dataset is on

a flow basis, reporting statistical moments about inter-arrival

times (IATs), packet sizes etc., totaling to 77 features3. The

dataset depicts a week of varying attack scenarios, of which

we utilize the Wednesday subset, containing (Distributed) DoS

(DoS/DDoS) and almost 700k samples. To avoid overfitting

on artifacts that could be spoofed, we exclude IPs and ports,

which we do for the other datasets, too.

Our second dataset is CIDDS-001 [55], which comprises

NetFlow, one of the most popular network monitoring pro-

tocols in practice. The contained flow information is much

sparser due to this format. The dataset consists of different

weeks and vantage points, of which we utilize the first week,

which contains over 8 million data points, including Pingscan,

Portscan, Bruteforce, and DoS. Features include standard

NetFlow information, e. g., # packets, # bytes, or TCP flags.

We derive two more features to enrich it further: the flow IAT

and number of parallel flows, totaling to 14 features3.

The third dataset is the Edge-IIoTset [56], which depicts

the most recent data, including more fine-granular features

from alerts and log data, totaling to 35 features3 and over

two million samples. Features are extracted from a variety

of (Industrial) Internet of Things (IoT/IIoT) protocols (e. g.,

UDP, TCP, MODBUS, MQTT). It contains Portscan, DDoS,

and more. Note that while we generally adhere to the authors’

instructions of which features to drop, we decide to remove

additional ones, which we deem of questionable generalizabil-

ity, e. g., checksums, unit IDs, raw ACK numbers etc.

B. ML Workflow

We apply StratifiedGroupKFold() from sklearn [57], group-

ing samples in 30s bins based on each dataset’s timestamp4.

This avoids completely random shuffling, thus preserving

some temporal structure. We utilize three folds (i. e., K = 3

train-test-splits) to ensure each sample is tested once. Cate-

gorical features are one-hot-encoded, and constant features are

discarded. Note that we also encode low cardinality features

(i. e., ≤ 5 unique values). After this initial preprocessing, we

now want to compare the decorrelated data with the exact

same workflow without decomposition. In our first approach

(henceforth: continuous pipelines), we standardize the data,

and compare the consensus pre- (Raw) and post-PCA, i. e.,

we treat all features in a more continuous/numerical way.

Analogously, in our second approach (henceforth: discrete

pipelines), we discretize all features to build the full indicator

matrix, and then compare the consensus pre- (Raw*) and post-

MCA, i. e., we treat all features in a more discrete/categorical

way. In other words, we take features like IATs and divide

number ranges into categories, e. g., “short” and “long”. For

CICIDS and CIDDS we perform discretization based on

quantiles into three bins (i. e., categories), whereas for Edge-

IIoT we utilize k-means (k = 3), since the quantile-based

approach resulted in too many empty bins. Besides sklearn

for the above, we use Prince [58] for MCA and PyTorch [59]

3This is before filtering low variance/handling non-numerical features.
4We drop over 100k samples for the Edge-IIoTset with invalid timestamps.

2025 21st International Conference on Network and Service Management (CNSM)



Raw PCA
0.00
0.20
0.40
0.60
0.80
1.00

Si
gn

ed
 U

C

CICIDS

Raw PCA
0.00
0.10
0.20
0.30
0.40
0.50

Si
gn

ed
 O

C

Benign
Malicious

CICIDS

Raw PCA
0.00
0.20
0.40
0.60
0.80
1.00

Si
gn

ed
 U

C

CIDDS

Raw PCA
0.00
0.10
0.20
0.30
0.40
0.50

Si
gn

ed
 O

C

CIDDS

Raw PCA
0.00
0.20
0.40
0.60
0.80
1.00

Si
gn

ed
 U

C

EdgeIIoT

Raw PCA
0.00
0.10
0.20
0.30
0.40
0.50

Si
gn

ed
 O

C
EdgeIIoT

(a) Continuous pipeline.

Raw* MCA
0.00
0.20
0.40
0.60
0.80
1.00

Si
gn

ed
 U

C

CICIDS

Raw* MCA
0.00
0.10
0.20
0.30
0.40
0.50

Si
gn

ed
 O

C

Benign
Malicious

CICIDS

Raw* MCA
0.00
0.20
0.40
0.60
0.80
1.00

Si
gn

ed
 U

C

CIDDS

Raw* MCA
0.00
0.10
0.20
0.30
0.40
0.50

Si
gn

ed
 O

C

CIDDS

Raw* MCA
0.00
0.20
0.40
0.60
0.80
1.00

Si
gn

ed
 U

C

EdgeIIoT

Raw* MCA
0.00
0.10
0.20
0.30
0.40
0.50

Si
gn

ed
 O

C

EdgeIIoT

(b) Discrete pipeline.

Fig. 2: Per-class-consensus pre- (raw) and post-PCA/MCA for DeepSHAP and LIME; MLP as underlying model.

TABLE I: F1-scores (micro and macro-avg.) for all datasets and preprocessing methods.

CICIDS CIDDS Edge-IIoT

Model F1 Raw PCA Raw* MCA Raw PCA Raw* MCA Raw PCA Raw* MCA

RF
micro 0.997 0.996 0.983 0.983 0.997 0.996 0.988 0.988 1.000 1.000 1.000 1.000

macro 0.997 0.996 0.982 0.982 0.995 0.993 0.979 0.979 1.000 1.000 1.000 1.000

MLP
micro 0.983 0.985 0.983 0.984 0.996 0.996 0.987 0.987 > 0.999 > 0.999 1.000 > 0.999

macro 0.981 0.984 0.982 0.982 0.993 0.993 0.978 0.978 > 0.999 > 0.999 1.000 > 0.999

for our DNN. After preprocessing, we balance training data

by sampling 100k samples per class.

Our goal is not to build the perfect model, rather a

lightweight but adequate one that enables parameter studies

and practical applicability. To isolate the effect of decorrela-

tion, we fix model parameters. We use a Random Forest (RF;

50 trees, max. depth 20) and a Multi-Layer-Perceptron (MLP;

two fully connected layers with 64 neurons, ReLU activations,

and dropout ratio of 0.5). Similar models are widely adopted

in research on NIDS [4], as well as XAI [11], [47], allowing

us to examine shallow ML and Deep Learning (DL) models.

C. Metrics for XAI Consensus

For the post-hoc explainers, we use SHAP and LIME, as

previously discussed. For SHAP, we opt for the more efficient,

model-specific implementations TreeSHAP and DeepSHAP.

To compare explanations generated by SHAP and LIME, we

adopt consensus metrics similar to those proposed by Krishna

et al. [11]. We use two forms of agreement: unordered (UC)

and ordered consensus (OC), based on the top-5 features. For

the UC, we simply compute the feature overlap, ignoring their

order of importance. For the OC, however, we care about how

many of these top features match in sequence until the first

mismatch. That is, we do not care if, e. g., only the third

feature matches if the first and/or second feature mismatch.

We argue that this “early agreement” is more intuitive than

simply comparing the ranks, since the topmost feature is

not only the most important for the model’s decision but

also for the human interpreting the explanations. In other

words, if there are disagreements on the first feature, the

explanation may already be deemed diverging, and agreements

on later features are less important. Last, for both UC and

OC we consider features as matching only if their sign also

matches, because a negative sign means the feature argues

against the predicted class, while a positive one supports

it, raising confusion and mistrust. As a concrete example,

take explanations {(f1,+), (f2,−), (f3,+), (f4,+), (f5,+), ...}

and {(f1,+), (f3,−), (f2,−), (f4,+), (f6,+), ...}, with signs in-

dicating whether features (f1, f2, ...) contribute positively or

negatively. The UC is then 3/5, since three features overlap

with matching sign. For the OC, both start with (f1,+), but

then (f2,−) ̸= (f3,−), so the match stops, giving 1/5.

V. EVALUATION

A. Impact of Decomposition on NIDS Data

To ensure that potential disagreements are not caused by

underperforming models, Table I shows F1-scores (micro and

macro) for all datasets, pipelines, and models. The RF tends to

perform slightly better for CICIDS in the continuous pipelines.

The discretized pipelines slightly decrease the F1-scores in a

few cases, as it might remove some details. Since Edge-IIoT

already consists of many categorical and binary features, it re-

mains unaffected. Nonetheless, the models perform adequately

across the board and ensure meaningful explanations.

Figure 2 illustrates the UC and OC between SHAP- and

LIME-based explanations as a barplot for the MLP for all

pipelines. The x-axis shows the preprocessing pipeline, while

the y-axis holds the normalized consensus (i. e., from 0 to

1), averaged over 100 random samples from the test set for
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(b) Discrete pipeline.

Fig. 3: Per-class-consensus pre- (raw) and post-PCA/MCA for TreeSHAP and LIME; RF as underlying model.

all three splits, i. e., each bar is made up by 3 · 100 values

(for both classes to account for imbalances). The errorbars

depict the 95% confidence intervals. We start with objective

descriptions, before diving into a more subjective discussion.

For the continuous pipeline in Figure 2a, we see that

decorrelation improves the UC significantly for all datasets

to roughly 60%, whereas the consensus on the raw features

is heavily dependent on the dataset. For the OC, PCA is also

able to establish some consensus, compared to almost zero

consensus for the raw approach. Naturally, since the OC is

much stricter, the consensus is generally lower. Interestingly,

for the discrete pipeline in Figure 2b, the UC for Edge-IIoT

jumps from almost zero consensus seen in the continuous

pipeline to around 80% for the raw features and applying MCA

actually decreases the consensus. For CICIDS and CIDDS,

however, the UC is improved by applying MCA. For the OC,

we see a trend similar to that for the PCA-based pipeline,

where MCA creates at least some agreement.

Figures 3a and 3b depict the UC and OC of SHAP and

LIME for the RF as underlying model analogously to the MLP.

Here, the results are mixed. For both PCA and MCA, we only

observe a meaningful impact for the CICIDS dataset. This

holds true for UC and OC, as well as PCA and MCA. For

CIDDS, the pre- and post-decorrelation consensus is similar

but slightly decreased, whereas for Edge-IIoT the UC on raw

features is near perfection and both consensus types do not

show major benefits for applying decorrelation.

Discussion: The only dataset that shows a consistent con-

sensus improvement under decorrelation is CICIDS, as it

generally contains more correlated features. In detail, some

features represent different statistical moments, which tend

to be naturally correlated (e. g., higher mean might come

along with higher maximum), as well as features split up by

traffic direction. Thus, it makes sense that decorrelation is the

most fruitful here. In addition, especially visible for the MLP,

the discrete pipelines generally are often preferable compared

to their continuous counterparts for Edge-IIoT (partially for

CIDDS, too). We hypothesize that this is due to the fact that

particularly Edge-IIoT contains many categorical variables.

Also, tree-based models generally do not care if features

are scaled or normalized, since they simply generate rules.

However, for MLP having features being strictly binary, thus

eliminating any disparity in feature ranges which might occur

with standardization and potential outliers, might make gradi-

ents more stable. Lastly, the RF responds mixed to PCA/MCA.

Our hypothesis is that the RF is better at filtering useless

features before any XAI is applied. In other words, the RF will

simply not use noisy features and opt for more meaningful

ones, while the MLP takes all features into consideration

due to its architecture. Especially since we use the model-

specific SHAP versions, this directly impacts the consensus.

Summarizing, while decorrelation can have a positive impact,

this is highly dependent on the dataset and underlying ML

model. Aligning encoding with feature types may also benefit

consensus. Overall, this highlights that consensus is highly

sensitive to seemingly small details.

B. Impact of Decomposition on Synthetic Data

To get a clearer idea when decorrelation is beneficial,

we shift our view to adjustable synthetic data. We utilize

sklearn’s make classification(), which has four configurable

feature types (initially, synthesized features are continuous):

informative, repeated, redundant, and useless. Informative

features are directly relevant to the target variable (i. e., class

label). Repeated features are exact duplications, redundant

features are linear combinations of others, and useless features

consist of pure noise. We additionally implement three custom

features: squared, cubed, and exponential, to examine non-

linear redundancies. Each run begins with ten informative

features. We incrementally add up to 50 features (in steps

of 10) for each type and measure consensus before and

after decorrelation. For every combination of feature type and

quantity, we synthesize 100 balanced datasets consisting of 1k

samples to ensure robust results, with train-test-splits of 80:20.
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Fig. 4: Performance and consensus pre decorrelation.

For this, Figure 4a depicts the results for the continuous

workflow for both RF and MLP for the pre-PCA features.

The x-axis represents the number of injected features (i. e.,

excluding the ten initial ones), while the y-axis represents the

accuracy and our two consensus types. Note that accuracy is

appropriate here, since the synthesized datasets are balanced.

The purple lines depict the MLP, while the red lines show the

RF. The different linestyles depict the four default features

of make classification(). Again, we start by providing neutral

figure descriptions before discussing them subjectively. Note

that we discuss the three custom feature types in the end, too.

For the accuracy, we see a slight drop in performance for

both models when extra informative or useless features are

added, since they either make the task more complex by

distributing information over more features or mask important

features via noise. The impact of extra features on the UC is

almost identical for both models with exception of redundant

features, where the RF appears to be more robust than the

MLP. Generally, both models are only robust for noisy fea-

tures, however. For the other three features, the UC declines

gradually. For the OC, we see similar trends, though the RF

generally tends to have a slight increased consensus.

Figure 4b shows the same analyses for the discrete workflow

for the pre-MCA features analogously. For the accuracy, we

see a similar trend like for the pre-PCA features, where

extra informative and useless features worsen both models’

performance. Though, for both models the overall accuracy

decreases, similarly to the NIDS data, due to potential infor-

mation loss. The UC also depicts similar findings to before,

with useless features not impacting the consensus, and the RF

appearing significantly more robust to redundant features. The
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Fig. 5: Performance and consensus gain post decorrelation.

UC is generally lower, and extra features have a greater impact

compared to the continuous pipeline. Similarly, the OC is also

much lower, but trends stay mostly comparable.

To actually analyze the impact of decorrelation, Figure 5a

shows the gains post-PCA. The general visualization remains

the same as in the previous figure, but the y-axis now illustrates

the gain after applying PCA, i. e., the differences in accuracy

and consensus. Additionally, the black dashed line at y = 0

visualizes the cutoff where decorrelation has a positive effect.

For the accuracy, we see that the MLP performs just like on

the raw features, even slightly better in some cases. The RF,

however, only keeps (relative) performance up on the infor-

mative features, whereas for the rest performance is gradually

decreasing. For the UC, we see mostly negative effects for the

useless features, whereas the other feature types are positively

impacted by this. Note that the informative features do indeed

contain correlations as well. The MLP also appears to benefit

more from PCA than the RF, with redundant features having a

neutral impact for the RF and most benefits for the MLP. The

OC trend is similar but clearer, where decorrelation impacts

all feature types except useless ones positively.

Figure 5b shows the gains post-MCA in the same fashion.

Here, too, MLP mostly maintains its performance compared

to the raw features, and the RF generally drops in accuracy,

though more pronounced compared to the continuous pipeline.

The UC is also impacted similarly, but also more pronounced,

with MLP benefiting even more and both models being more

prone to noise. For the OC, this impact is even greater, where

consensus is already significantly improved even before adding

any features, and even noisy features are positively impacted.

Lastly, for our three custom feature types, their impact
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Fig. 6: Per-class-consensus pre- (raw) and post-(S)PCA for DeepSHAP and LIME; MLP as underlying model.

can be summarized quite easily. In general, the cubed and

exponential features have a similar impact as the repeated

features, while the squared features behave noisier. This is

attributable to the fact that by squaring we lose the feature’s

sign, thus any relation gets blurrier, while cubing and expo-

nentiation are both still monotonic transformations. Though,

in the continuous pipeline decorrelation has less of an impact

on the OC, potentially since it does not capture the non-linear

relations, which is negated in the discrete pipeline by binning.

Discussion: The analyses shed some light on why the de-

composition has a positive or negative effect on the consensus

for actual NIDS data. Noisy features obfuscate decomposition,

as they may randomly correlate and get intermixed into

components with actually relevant features. Decomposition

is less beneficial for the RF, which handles noise, non-

linearity, and multicollinearity well. Thus, the feature rotation

or transformation may hinder the RF to form effective splits.

This is supported by the improved consensus for MLP and

the slight drop in classification performance for the RF when

decorrelation is applied. We hypothesize that we may not

observe this effect as clearly in the NIDS data, since for the

synthetic data noise and correlations are artificially “perfect”

and thus potentially induce stronger effects. The MCA-based

pipeline benefits more, especially for the OC, as the con-

sensus on raw discretized features is lower due to inflated

feature space. Since we discretize each feature into three bins,

the number of features is roughly multiplied by three, thus

choosing the “correct” features might become even harder,

since these binned features may also exhibit high correlations

(i. e., if a feature falls into one category, it cannot fall into

the other categories). MCA counteracts this by decorrelation.

Again, we hypothesize that this effect is less visible in NIDS

data, because it naturally contains some categorical features

and has different feature ranges or distributions, making it

more suitable for this pipeline. Overall, this confirms that

decorrelation has a positive impact when applied properly, but

also reinforces dependence on both model and preprocessing.

C. Interpretability of Components

After quantifying when decomposition is useful, what is

worth discussing next is the interpretability of the transformed

features, i. e., the components. After transformation, every

input feature is now a linear combination of the original

features. Thus, if a human expert is tasked to interpret the

resulting explanations, this might be more complex than in

the original feature space. There is, however, the option to

algorithmically limit the number of contributing features per

component with SPCA. SPCA modifies the traditional PCA by

enforcing sparsity constraints onto the component’s loadings,

i. e., each component depends only on a subset of features

instead of potentially all features, by controlling the regulariza-

tion parameter α. Higher values of α enforce higher sparsity.

So, normal PCA is essentially SPCA with α = 0. Unlike PCA,

SPCA does not guarantee uncorrelated components.

While SPCA is able to drastically increase sparsity and

thus interpretability, the number of non-zero loadings per

component is only indirectly controllable. To address this,

we also consider a custom SPCA approach (SPCA∗), where

we manually sparsify the PCA components by retaining only

the top n loadings and setting the rest to zero. This allows

precise control over the number of contributing features per

component, but also induces feature correlations again.

We substitute PCA with SPCA with α ∈ {0.01, 0.1, 1, 10}
and SPCA∗ with n ∈ {2, 4, 8, 16} and execute our XAI

pipeline again. Note that in terms of classification perfor-

mance, both approaches perform almost exactly like PCA.

For the consensus, Figure 6 shows our two consensus metrics

for both SPCA-based pipelines. We focus on the MLP and

CICIDS as a use case, since here PCA is the most fruitful.

Figures for the other datasets and the RF can be found in

the accompanying repository for the sake of transparency.

Generally, the trends in these cases are somewhat similar,

but less distinct (e. g., when PCA has no impact in the first

place). The bottom x-axis shows the consensus, while the y-

axis shows the applied transformation. Errorbars and colors

are identical to the previous analyses. The top x-axis shows

the average number of features contributing to a component,

depicted with a star. For the raw, untransformed features this

is one, since they only consist of themselves. For the PCA,

this is equal to the number of features. Again, we start with a

neutral description before discussing the results.

For both sparse transformations and both UC and OC, we

see a tradeoff between sparsity/regularization and consensus.

For the regular SPCA, we see that applying only a small

regularization still improves the consensus significantly. While

even this small regularization sparsifies the components drasti-
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cally compared to PCA, this still results in almost 30 features

per component for an alpha of 0.1, and around 45 for an alpha

of 0.01. We argue that explanations based on components that

are consisting of 30 features are still hard to interpret for a

human user. When increasing the alpha, the benefits disappear

and are only slightly visible. The custom SPCA∗ shows similar

trends, where the more loadings we set to zero, the more the

consensus decreases. Though, the consensus when setting the

number of non-zero loadings to 16 (and partially 8), shows a

similar consensus to regular SPCA with low regularization.

Discussion: The results are generally in accordance to our

previous analyses, since the sparser components are, the more

similar they become to the original features again, depicting

a tradeoff between interpretability and consensus. However,

even though we are able to sparsify the components drastically

with SPCA, this might still not be enough to make it truly

interpretable. The presented values are only average values,

meaning that specific components can be even denser, making

matters worse. As an alternative, the custom SPCA∗ is able

to achieve similar consensus increases, it is also able to

limit the maximum number of features, too. So, in general,

sparsifying the components can be a remedy to making PCA

more interpretable by design. However, this is only applicable

if PCA has a benefit in the first place. That is, as mentioned

previously, the effectiveness may vary with dataset and model.

To provide an overall practical guideline of all of our

previous analyses, decorrelation can increase agreement and

thus trust in downstream decisions, but is not one-size-fits-all.

Feature engineering remains necessary to remove useless fea-

tures that diffuse components. If few correlations are present,

decompositions may even hinder interpretation, while sparsity-

inducing variants can further aid decision-making by limiting

the number of contributing features.

D. Further Considerations and Limitations

Besides the in-depth analyses presented, we also briefly

explored additional aspects of the disagreement problem on

NIDS data that we find noteworthy. All figures corresponding

to these additional analyses can be found in the accompanying

repository as well, and are discussed briefly in the following.

So far, we have focused on intra-model consensus, i. e.,

comparing explainers for the same model. However, especially

when ensembles are used, it is valuable to examine agreement

between different models, i. e., inter-model consensus [44].

Our analyses on the NIDS data suggest that inter-model

consensus exhibits similar trends w.r.t. consensus improvement

after applying decomposition techniques. That is, decorrelation

proves to be most fruitful for CICIDS, while response to the

other two datasets is more mixed and inconsistent.

Additionally, while we have focused on binary classifica-

tion, we can naturally extend this to a multiclass problem,

especially relevant for downstream tasks like intrusion pre-

vention and containment. Again, results in multiclass settings

on the NIDS data reveal somewhat comparable overall trends

w.r.t. consensus, but with nuanced, class-specific variations.

This is potentially attributable to mixed detection accuracies

and complexity levels of the various attacks.

Besides PCA and MCA, we also experimented with Inde-

pendent Component Analysis (ICA), which enforces statistical

independence rather than mere decorrelation. ICA sometimes

reduced classification accuracy due to its stricter assumptions

on data, while mostly having less impact than PCA on con-

sensus. Additionally, Kernel PCA, capable of capturing non-

linear correlations via custom kernels, proved computationally

infeasible for the NIDS data, requiring terabytes of RAM.

Limitations: Besides the aspects above, there are additional

factors, which we did not explore further. For example, we

used fixed model configurations, but consensus may vary with

different hyperparameters (e. g., tree-depth of RF, training

duration and depth of MLP). For example, disagreements

could be greater for unpruned trees, or maybe “settle” if

we increase training durations. Moreover, we limited our

analysis to SHAP and LIME, which are both perturbation-

based explainers. Including a broader range of models and

explanation methods, such as gradient-based approaches, could

paint a more comprehensive picture. Likewise, we focused

on tabular data. Exploring more complex models and input

domains would further strengthen the analysis.

VI. CONCLUSION

This work investigated the impact of feature decorrelation

on the consensus of XAI methods in ML-based network

intrusion detection. We showed that decomposition techniques

such as PCA and MCA can significantly improve consensus

between explainers like SHAP and LIME, especially for

models and datasets prone to feature correlations. However,

the benefits vary depending on model type, preprocessing,

and dataset characteristics. Notably, decorrelation has a more

stable positive effect on MLPs, while RFs are more robust to

noise and correlation by design. To address the interpretability

loss, we explored SPCA and a custom sparsification approach.

While these methods improved component sparsity, the results

were mixed in terms of maintaining consensus, highlighting a

tradeoff between interpretability and agreement.

Our results underline that improving XAI consensus is not

one-size-fits-all. Decomposition can be a useful tool, but must

be aligned with model architecture and data characteristics. A

natural extension of this work is using more ML models and

XAI methods. Future work could explore whether inherently

interpretable models offer more stable and trustworthy expla-

nations, potentially avoiding the sensitivity issues observed

with post-hoc methods. In other words, if we already have

to be very careful when designing our ML pipeline anyway

in order to make post-hoc XAI robust, we may prefer to put

this energy more towards designing white-boxes.
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