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Abstract—Explainable Artificial Intelligence (XAI) is essential
for the acceptance of machine learning (ML) models, especially
in critical domains like network security. Administrators need
interpretable explanations to validate decisions, yet existing XAl
methods often suffer from low consensus, where different tech-
niques yield conflicting explanations. A key factor contributing to
this issue is the presence of correlated features, which allows mul-
tiple equivalent but divergent explanations. While decorrelation
techniques, such as Principal Component Analysis (PCA), can
mitigate this, they often reduce interpretability by abstracting
original features into complex combinations. This work investi-
gates whether feature decorrelation via decomposition techniques
can improve consensus among post-hoc XAI methods in the
context of ML-based network intrusion detection (ML-NIDS).
Using both NIDS and synthetic data, we analyze the effect of
decorrelation across different models and preprocessing. We find
that decorrelation can significantly improve consensus, but its
effectiveness is highly dependent on the underlying model, pre-
processing, and dataset characteristics. We also explore sparsity-
inducing variants of PCA to partially recover interpretability,
though results vary depending on the level of sparsity enforced.

Index Terms—Machine Learning, Intrusion Detection, Ex-
plainable Al, Disagreement Problem, Decorrelation, Decompo-
sition, PCA, MCA, XAI, ML, IDS, NIDS.

I. INTRODUCTION

The increasing reliance on machine learning (ML) models
in network security, e.g., [1]-[3], has brought significant
advancements in automating complex tasks like intrusion
detection, threat analysis, and anomaly detection. Yet, adop-
tion of such ML-based solutions by network administrators
depends strongly on their ability to comprehend the underlying
decision-making processes [4]. Explainable Artificial Intelli-
gence (XAI) [5], [6] has thus emerged as a critical requirement
in this domain. In network security, where decisions can
have severe implications, administrators are understandably
reluctant to rely on opaque black-box models. Beyond trust,
explainability also provides insights that help administrators
learn from the decisions made by these models, further enrich-
ing their expertise and improving overall security practices.

A diverse array of XAI methods has been developed to
address the interpretability of ML models (e.g., [7]-[9]).
These methods are often tailored to specific contexts, like
the type of problem (classification, regression), model (white-
box, black-box), or explanation (local, global). An important
challenge arises in situations where multiple XAI techniques
can be applied: the explanations generated by these methods
often lack consensus [10]. High consensus is essential for gen-
erating reliable explanations that users act upon confidently.
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Fig. 1: Decorrelation and XAI consensus.

As shown by Krishna et al. [11], conflicting explanations
undermine trust and create uncertainty about the reliability
of these methods, particularly in critical domains like network
security. Additionally, high disagreements enable adversaries
to manipulate explanations as they desire [12], [13].

One possible reason for this lack of consensus is the pres-
ence of correlated features in the dataset. Correlated features
enable multiple information-equivalent explanations, allowing
models to produce different but valid explanations, depending
on their internal structures and optimization strategies. While
feature decorrelation via data transformations, e. g., Principal
Component Analysis (PCA), or via selection of a subset of
uncorrelated features (feature selection) is generally recom-
mended in data preprocessing to improve model performance
and reduce model complexity, there has been limited explo-
ration of its impact on improving XAI consensus.

In this work, we test the hypothesis that removing cor-
relations through decomposition techniques can improve the
consensus of XAI methods. Figure 1 illustrates this idea,
where two explainers m; and mo select two different, but
correlated, features for explaining a decision (f; and f5). After
applying feature decomposition, these two correlated features
are projected into the same principal component (PC), thus the
two explainers can more easily agree. To this end, we apply
different methods such as PCA and Multiple Correspondence
Analysis (MCA), each requiring distinct preprocessing steps.
Since decompositions can reduce interpretability by mixing all
features into dense components, we also investigate sparsity-
inducing variants. While this yields more interpretable com-
ponents, it may also reintroduce correlations due to the loss of
orthogonality. By doing so, we aim to strike a balance between
improving consensus and maintaining interpretability.

Our key contributions are threefold: (i) we evaluate the
impact of feature decorrelation on XAI consensus for both use-
case-specific intrusion detection and configurable synthetic
datasets, (ii) we compare different decorrelation pipelines,
including PCA- and MCA-based approaches, and (iii) we
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investigate the trade-off between interpretability and consensus
when applying sparse variants of PCA. This complements our
previous work on the disagreement problem in NIDS, where
(a) we conducted a comprehensive analysis across diverse XAl
methods and models [10], and (b) we investigated how feature
selection strategies influence consensus [14]. Our code, as well
as supplementary material, is publicly available'.

Our work is structured as follows: Section II provides
information on NIDS, XA, and feature decomposition, while
Section III describes related works. The proposed methodol-
ogy, including datasets, ML workflow, and consensus metrics,
is detailed in Section IV. Results of our study are presented
in Section V. Lastly, Section VI highlights the key findings.

II. BACKGROUND

a) ML-based NIDS: Cyber intrusions refer to actions
that undermine the confidentiality, integrity, or availability
(so-called CIA triad) of systems and data [15]. To mitigate
intrusions, detection systems (IDS) and prevention systems
(IPS) are implemented. These systems can function either at
host-level (HIDS) to inspect local activities, or at network-
level (NIDS) to analyze network traffic. Network data may be
logged with varying degrees of detail, e. g., per packet or per
flow. Here, ML-NIDS have experienced increased attention
in recent years [4]. Although such models often outperform
traditional NIDS, their black-box nature limits interpretability.
In critical areas (like NIDS), such black-boxes may hinder
practical adoption. Thus, trust-building measures become es-
sential, particularly in light of legal requirements like the
European AI Act? and the GDPR’s “right to explanation” [16].

b) Explainable Al: Model explainability strengthens re-
quired trust, ultimately leading to the emergence of XAI.
Khani et al. [17] categorize XAl by four characteristics: their
scope, stage, compatibility, and algorithm type. The scope
can be local or global, i.e., explain the outcome of a single
prediction or the overall model. The stage distinguishes ante-
/in-hoc XAI suitable for inherently interpretable white-box
models before/during training, or post-hoc XAl which explains
black-box models after training. Compatibility specifies if the
explainer can be applied to any model or has constraints.
Last, the fype concerns how the explanation is generated.
The two most common types are perturbation- and gradient-
/backpropagation-based approaches. The former generates ex-
planations by concealing or permuting input features, while
the latter makes use of gradients, e.g., in Neural Networks
(NNs). Thus, perturbation-based approaches also tend to be
more model-agnostic compared to gradient-based ones [18].

¢) LIME and SHAP: Two prominent XAl approaches are
Local Interpretable Model-agnostic Explanations (LIME) [7]
and SHapley Additive exPlanations (SHAP) [8]. Both are
suited for local post-hoc explanations and are generally model-
agnostic. Though, SHAP also provides global explanations.
LIME works by constructing an interpretable linear proxy
model by learning the original model’s decision via input

Thttps://github.com/Isinfo3/cnsm2025- xai- nids-decomposition
Zhttps://eur-lex.europa.eu/eli/reg/2024/1689

perturbations (e.g., sampling new feature values), whereas
SHAP utilizes the concept of game-theoretic Shapley val-
ues [19], which assigns each feature its contribution to the
model’s prediction based on all feature “coalitions”. As men-
tioned, SHAP (KernelSHAP) is generally model-agnostic, and,
similar to LIME, makes use of a linear model. Though,
more efficient model-specific variants exist, such as TreeSHAP
and DeepSHAP. The former is tailored to internals of tree-
based models to compute exact SHAP values, while the latter
leverages the gradient-based DeepLIFT [9] to approximate
SHAP for Deep NNs (DNNG).

d) Disagreement Problem: One challenge that arises
with XAI was first coined “disagreement problem” by Krishna
et al. [11] and is often mentioned alongside the Rashomon set,
i.e., “the existence of multiple well-performing models for a
given task” [20, p. 2]. This problem describes the challenge
that XAI methods provide diverging explanations, making
them seem unreliable. This can even happen if the same model
and same explainer is used, simply due to different random
seeds [21]. This phenomenon has been observed in many
areas, ranging from malware analysis [22]-[24], software
maintenance [25], or NIDS [10], [24], [26], to other domains
that are not inherently computer-network-centric, e. g., meteo-
rological [27], [28] or medical data [29]. One reason contribut-
ing to this disagreement are (cor)related features [10], [27]-
[30], since such relationships generally complicate attribution,
possibly enabling multiple explanations.

e) Feature Decomposition: To address correlated fea-
tures, one common approach is feature decomposition, with
PCA being the most well-known representative. PCA works
by computing eigenvectors of the covariance matrix to define a
new orthogonal basis. Preferably, features are standardized to
avoid dominance of high-variance features. If all components
are retained, this basically rotates the original features, where
each component is a linear combination of input features.
PCA preserves Euclidean distances, best suited for continuous
data. Sparse PCA (SPCA) enforces sparsity of components to
improve interpretability, though losing perfect decorrelation.
MCA can be seen as PCA for categorical data. It performs
decomposition on the so-called complete indicator (one-hot)
matrix, i.e., only binary variables, indicating if a category
is present. MCA preserves chi-square distances, capturing
relationships in continuous space. In other words, while the
MCA input is binary, the output is not. Note that decompo-
sition and decorrelation, while technically distinct, are used
interchangeably here. Methods like PCA/MCA achieve both.

III. RELATED WORK
A. XAl-driven NIDS

NIDS research has already utilized XAI approaches, e.g.,
to generate explanations on local and global scopes [31], [32]
or for feature selection [17], [33], potentially even in an adver-
sarial way [34], [35]. Rather than simply explaining decisions,
many works have changed their view to comparing and testing
different explainers quantitatively, e. g., w.r.t. the completeness,
conciseness, consistency, robustness, and/or faithfulness to the
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ground truth of an explanation [22], [36]-[40], only to name
a few objective criteria of those works. Some works even
include qualitative user studies with security experts to gain
more subjective, practical insights [24].

Although some of the above works touch on the disagree-
ment problem, it typically plays a secondary role. In com-
parison, XAl consensus is the primary concern in our work.
Instead of merely identifying and/or measuring the extent of
XAI disagreement, as we have done in prior work [10], [14]
and now further extend, we aim for a deeper understanding of
its underlying causes and potential strategies to address it.

B. XAI beyond NIDS

In addition to IDS-centric works, other domains (e.g.,
images, languages, finances, healthcare, criminology) have
acknowledged challenges in XAI, tackling inconsistencies
and disagreements, or addressing other related aspects more
directly. Some works suggest joint or grouped feature impor-
tance [27], [30], [41], i.e., assigning attributions to feature
groups instead of single features. Others align explanations
by proposing frameworks for aggregation [42], [43] or to
guide practitioners and stakeholders [20], [44], [45], redefine
consensus functions [46], or adjust training objectives [47],
potentially compromising, to enforce consensus.

Alternatively, some approaches constrain explanations to
regions [48] by partitioning reference data to limit feature
interactions. Other approaches reduce the number of input
features directly to examine the effect on generated explana-
tions [28]. Note that some works indeed use decomposition
techniques like PCA in their XAI workflow, but merely as
a preprocessing step [49], to visualize explanations [50],
or to plot the aforementioned grouped feature interaction
effects [41], rather than examining the effect of decorrelation.

Finally, some studies systematically vary dataset character-
istics, such as number of features, samples, labels, or feature
dependencies (e.g., correlations or interactions) [29], [51].
Others examine preprocessing steps like feature scaling or
encoding [52], assess model-related factors, such as training
duration [53], or examine hyperparameters of the actual XAI
methods [13]. These investigations often leverage synthetic
datasets, which offer more control over data configurations.

Similarly to Laberge et al. [48], we find aggregations or
redefinitions do not grasp the problem’s “roots” and only
address its symptoms. Limiting features also artificially forces
consensus, so the effect of decorrelation is harder to study,
raising the question, how many and which features to cut.
Compared to others, we focus on simply transforming our
input without dropping information w.r.t. features, i.e., “ro-
tating” our data. To the best of our knowledge, this is one
of the first explorations of the disagreement problem within
NIDS in conjunction with our earlier analyses.

IV. METHODOLOGY

A. NIDS Datasets

First, CICIDS2017 [54] is currently one of the most com-
monly used datasets in NIDS literature [4]. This dataset is on

a flow basis, reporting statistical moments about inter-arrival
times (IATs), packet sizes etc., totaling to 77 features®. The
dataset depicts a week of varying attack scenarios, of which
we utilize the Wednesday subset, containing (Distributed) DoS
(DoS/DDoS) and almost 700k samples. To avoid overfitting
on artifacts that could be spoofed, we exclude IPs and ports,
which we do for the other datasets, too.

Our second dataset is CIDDS-001 [55], which comprises
NetFlow, one of the most popular network monitoring pro-
tocols in practice. The contained flow information is much
sparser due to this format. The dataset consists of different
weeks and vantage points, of which we utilize the first week,
which contains over 8 million data points, including Pingscan,
Portscan, Bruteforce, and DoS. Features include standard
NetFlow information, e.g., #packets, #bytes, or TCP flags.
We derive two more features to enrich it further: the flow IAT
and number of parallel flows, totaling to 14 features?.

The third dataset is the Edge-IloTset [56], which depicts
the most recent data, including more fine-granular features
from alerts and log data, totaling to 35 features® and over
two million samples. Features are extracted from a variety
of (Industrial) Internet of Things (IoT/IIoT) protocols (e.g.,
UDP, TCP, MODBUS, MQTT). It contains Portscan, DDoS,
and more. Note that while we generally adhere to the authors’
instructions of which features to drop, we decide to remove
additional ones, which we deem of questionable generalizabil-
ity, e. g., checksums, unit IDs, raw ACK numbers etc.

B. ML Workflow

We apply StratifiedGroupKFold() from sklearn [57], group-
ing samples in 30s bins based on each dataset’s timestamp®*.
This avoids completely random shuffling, thus preserving
some temporal structure. We utilize three folds (i.e., K = 3
train-test-splits) to ensure each sample is tested once. Cate-
gorical features are one-hot-encoded, and constant features are
discarded. Note that we also encode low cardinality features
(i.e., < 5 unique values). After this initial preprocessing, we
now want to compare the decorrelated data with the exact
same workflow without decomposition. In our first approach
(henceforth: continuous pipelines), we standardize the data,
and compare the consensus pre- (Raw) and post-PCA, i.e.,
we treat all features in a more continuous/numerical way.
Analogously, in our second approach (henceforth: discrete
pipelines), we discretize all features to build the full indicator
matrix, and then compare the consensus pre- (Raw*) and post-
MCA, i.e., we treat all features in a more discrete/categorical
way. In other words, we take features like IATs and divide
number ranges into categories, e.g., “short” and “long”. For
CICIDS and CIDDS we perform discretization based on
quantiles into three bins (i.e., categories), whereas for Edge-
IIoT we utilize k-means (k = 3), since the quantile-based
approach resulted in too many empty bins. Besides sklearn
for the above, we use Prince [58] for MCA and PyTorch [59]

3This is before filtering low variance/handling non-numerical features.
4We drop over 100k samples for the Edge-IloTset with invalid timestamps.
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Fig. 2: Per-class-consensus pre- (raw) and post-PCA/MCA for DeepSHAP and LIME; MLP as underlying model.
TABLE I: Fl-scores (micro and macro-avg.) for all datasets and preprocessing methods.
CICIDS CIDDS Edge-1IoT
Model  F1 Raw PCA | Raw* MCA Raw PCA | Raw* MCA Raw PCA | Raw* MCA
RF micro  0.997 0.996 0.983 0.983 0.997 0.996 0.988 0.988 1.000 1.000 1.000 1.000
macro  0.997 0.996 0.982 0.982 0.995 0.993 0.979 0.979 1.000 1.000 1.000 1.000
MLP micro  0.983 0.985 0.983 0.984 0.996 0.996 0.987 0.987 >0.999 > 0.999 1.000 > 0.999
macro  0.981 0.984 0.982 0.982 0.993 0.993 0.978 0978 >0.999 >0.999 | 1.000 > 0.999

for our DNN. After preprocessing, we balance training data
by sampling 100k samples per class.

Our goal is not to build the perfect model, rather a
lightweight but adequate one that enables parameter studies
and practical applicability. To isolate the effect of decorrela-
tion, we fix model parameters. We use a Random Forest (RF;
50 trees, max. depth 20) and a Multi-Layer-Perceptron (MLP;
two fully connected layers with 64 neurons, ReLU activations,
and dropout ratio of 0.5). Similar models are widely adopted
in research on NIDS [4], as well as XAI [11], [47], allowing
us to examine shallow ML and Deep Learning (DL) models.

C. Metrics for XAI Consensus

For the post-hoc explainers, we use SHAP and LIME, as
previously discussed. For SHAP, we opt for the more efficient,
model-specific implementations TreeSHAP and DeepSHAP.
To compare explanations generated by SHAP and LIME, we
adopt consensus metrics similar to those proposed by Krishna
et al. [11]. We use two forms of agreement: unordered (UC)
and ordered consensus (OC), based on the top-5 features. For
the UC, we simply compute the feature overlap, ignoring their
order of importance. For the OC, however, we care about how
many of these top features match in sequence until the first
mismatch. That is, we do not care if, e.g., only the third
feature matches if the first and/or second feature mismatch.
We argue that this “early agreement” is more intuitive than
simply comparing the ranks, since the topmost feature is
not only the most important for the model’s decision but
also for the human interpreting the explanations. In other
words, if there are disagreements on the first feature, the

explanation may already be deemed diverging, and agreements
on later features are less important. Last, for both UC and
OC we consider features as matching only if their sign also
matches, because a negative sign means the feature argues
against the predicted class, while a positive one supports
it, raising confusion and mistrust. As a concrete example,
take explanations {(fla +)7 (f27 7)7 (f3a +)v (f4v +)7 (f57 +)7 }
and {(flv +)7 (f37 _)7 (f27 _)’ (f4’ +)v (fGa +)7 }’ with signs in-
dicating whether features (f1, f2,...) contribute positively or
negatively. The UC is then 3/5, since three features overlap
with matching sign. For the OC, both start with (fi,+), but
then (f2, —) # (f3, —), so the match stops, giving 1/5.

V. EVALUATION
A. Impact of Decomposition on NIDS Data

To ensure that potential disagreements are not caused by
underperforming models, Table I shows F1-scores (micro and
macro) for all datasets, pipelines, and models. The RF tends to
perform slightly better for CICIDS in the continuous pipelines.
The discretized pipelines slightly decrease the F1-scores in a
few cases, as it might remove some details. Since Edge-IIoT
already consists of many categorical and binary features, it re-
mains unaffected. Nonetheless, the models perform adequately
across the board and ensure meaningful explanations.

Figure 2 illustrates the UC and OC between SHAP- and
LIME-based explanations as a barplot for the MLP for all
pipelines. The x-axis shows the preprocessing pipeline, while
the y-axis holds the normalized consensus (i.e., from O to
1), averaged over 100 random samples from the test set for
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Fig. 3: Per-class-consensus pre- (raw) and post-PCA/MCA for TreeSHAP and LIME; RF as underlying model.

all three splits, i.e., each bar is made up by 3 - 100 values
(for both classes to account for imbalances). The errorbars
depict the 95% confidence intervals. We start with objective
descriptions, before diving into a more subjective discussion.

For the continuous pipeline in Figure 2a, we see that
decorrelation improves the UC significantly for all datasets
to roughly 60%, whereas the consensus on the raw features
is heavily dependent on the dataset. For the OC, PCA is also
able to establish some consensus, compared to almost zero
consensus for the raw approach. Naturally, since the OC is
much stricter, the consensus is generally lower. Interestingly,
for the discrete pipeline in Figure 2b, the UC for Edge-IIoT
jumps from almost zero consensus seen in the continuous
pipeline to around 80% for the raw features and applying MCA
actually decreases the consensus. For CICIDS and CIDDS,
however, the UC is improved by applying MCA. For the OC,
we see a trend similar to that for the PCA-based pipeline,
where MCA creates at least some agreement.

Figures 3a and 3b depict the UC and OC of SHAP and
LIME for the RF as underlying model analogously to the MLP.
Here, the results are mixed. For both PCA and MCA, we only
observe a meaningful impact for the CICIDS dataset. This
holds true for UC and OC, as well as PCA and MCA. For
CIDDS, the pre- and post-decorrelation consensus is similar
but slightly decreased, whereas for Edge-IIoT the UC on raw
features is near perfection and both consensus types do not
show major benefits for applying decorrelation.

Discussion: The only dataset that shows a consistent con-
sensus improvement under decorrelation is CICIDS, as it
generally contains more correlated features. In detail, some
features represent different statistical moments, which tend
to be naturally correlated (e.g., higher mean might come
along with higher maximum), as well as features split up by
traffic direction. Thus, it makes sense that decorrelation is the
most fruitful here. In addition, especially visible for the MLP,
the discrete pipelines generally are often preferable compared
to their continuous counterparts for Edge-IloT (partially for

CIDDS, too). We hypothesize that this is due to the fact that
particularly Edge-IIoT contains many categorical variables.
Also, tree-based models generally do not care if features
are scaled or normalized, since they simply generate rules.
However, for MLP having features being strictly binary, thus
eliminating any disparity in feature ranges which might occur
with standardization and potential outliers, might make gradi-
ents more stable. Lastly, the RF responds mixed to PCA/MCA.
Our hypothesis is that the RF is better at filtering useless
features before any XAl is applied. In other words, the RF will
simply not use noisy features and opt for more meaningful
ones, while the MLP takes all features into consideration
due to its architecture. Especially since we use the model-
specific SHAP versions, this directly impacts the consensus.
Summarizing, while decorrelation can have a positive impact,
this is highly dependent on the dataset and underlying ML
model. Aligning encoding with feature types may also benefit
consensus. Overall, this highlights that consensus is highly
sensitive to seemingly small details.

B. Impact of Decomposition on Synthetic Data

To get a clearer idea when decorrelation is beneficial,
we shift our view to adjustable synthetic data. We utilize
sklearn’s make_classification(), which has four configurable
feature types (initially, synthesized features are continuous):
informative, repeated, redundant, and useless. Informative
features are directly relevant to the target variable (i.e., class
label). Repeated features are exact duplications, redundant
features are linear combinations of others, and useless features
consist of pure noise. We additionally implement three custom
features: squared, cubed, and exponential, to examine non-
linear redundancies. Each run begins with ten informative
features. We incrementally add up to 50 features (in steps
of 10) for each type and measure consensus before and
after decorrelation. For every combination of feature type and
quantity, we synthesize 100 balanced datasets consisting of 1k
samples to ensure robust results, with train-test-splits of 80:20.
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For this, Figure 4a depicts the results for the continuous
workflow for both RF and MLP for the pre-PCA features.
The x-axis represents the number of injected features (i.e.,
excluding the ten initial ones), while the y-axis represents the
accuracy and our two consensus types. Note that accuracy is
appropriate here, since the synthesized datasets are balanced.
The purple lines depict the MLP, while the red lines show the
RF. The different linestyles depict the four default features
of make_classification(). Again, we start by providing neutral
figure descriptions before discussing them subjectively. Note
that we discuss the three custom feature types in the end, too.

For the accuracy, we see a slight drop in performance for
both models when extra informative or useless features are
added, since they either make the task more complex by
distributing information over more features or mask important
features via noise. The impact of extra features on the UC is
almost identical for both models with exception of redundant
features, where the RF appears to be more robust than the
MLP. Generally, both models are only robust for noisy fea-
tures, however. For the other three features, the UC declines
gradually. For the OC, we see similar trends, though the RF
generally tends to have a slight increased consensus.

Figure 4b shows the same analyses for the discrete workflow
for the pre-MCA features analogously. For the accuracy, we
see a similar trend like for the pre-PCA features, where
extra informative and useless features worsen both models’
performance. Though, for both models the overall accuracy
decreases, similarly to the NIDS data, due to potential infor-
mation loss. The UC also depicts similar findings to before,
with useless features not impacting the consensus, and the RF
appearing significantly more robust to redundant features. The
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Fig. 5: Performance and consensus gain post decorrelation.

UC is generally lower, and extra features have a greater impact
compared to the continuous pipeline. Similarly, the OC is also
much lower, but trends stay mostly comparable.

To actually analyze the impact of decorrelation, Figure 5a
shows the gains post-PCA. The general visualization remains
the same as in the previous figure, but the y-axis now illustrates
the gain after applying PCA, i.e., the differences in accuracy
and consensus. Additionally, the black dashed line at y = 0
visualizes the cutoff where decorrelation has a positive effect.
For the accuracy, we see that the MLP performs just like on
the raw features, even slightly better in some cases. The RF,
however, only keeps (relative) performance up on the infor-
mative features, whereas for the rest performance is gradually
decreasing. For the UC, we see mostly negative effects for the
useless features, whereas the other feature types are positively
impacted by this. Note that the informative features do indeed
contain correlations as well. The MLP also appears to benefit
more from PCA than the RF, with redundant features having a
neutral impact for the RF and most benefits for the MLP. The
OC trend is similar but clearer, where decorrelation impacts
all feature types except useless ones positively.

Figure 5b shows the gains post-MCA in the same fashion.
Here, too, MLP mostly maintains its performance compared
to the raw features, and the RF generally drops in accuracy,
though more pronounced compared to the continuous pipeline.
The UC is also impacted similarly, but also more pronounced,
with MLP benefiting even more and both models being more
prone to noise. For the OC, this impact is even greater, where
consensus is already significantly improved even before adding
any features, and even noisy features are positively impacted.

Lastly, for our three custom feature types, their impact
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(a) XAl consensus after applying sklearn’s SPCA.
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(b) XAI consensus after applying customized SPCA*.

Fig. 6: Per-class-consensus pre- (raw) and post-(S)PCA for DeepSHAP and LIME; MLP as underlying model.

can be summarized quite easily. In general, the cubed and
exponential features have a similar impact as the repeated
features, while the squared features behave noisier. This is
attributable to the fact that by squaring we lose the feature’s
sign, thus any relation gets blurrier, while cubing and expo-
nentiation are both still monotonic transformations. Though,
in the continuous pipeline decorrelation has less of an impact
on the OC, potentially since it does not capture the non-linear
relations, which is negated in the discrete pipeline by binning.

Discussion: The analyses shed some light on why the de-
composition has a positive or negative effect on the consensus
for actual NIDS data. Noisy features obfuscate decomposition,
as they may randomly correlate and get intermixed into
components with actually relevant features. Decomposition
is less beneficial for the RF, which handles noise, non-
linearity, and multicollinearity well. Thus, the feature rotation
or transformation may hinder the RF to form effective splits.
This is supported by the improved consensus for MLP and
the slight drop in classification performance for the RF when
decorrelation is applied. We hypothesize that we may not
observe this effect as clearly in the NIDS data, since for the
synthetic data noise and correlations are artificially “perfect”
and thus potentially induce stronger effects. The MCA-based
pipeline benefits more, especially for the OC, as the con-
sensus on raw discretized features is lower due to inflated
feature space. Since we discretize each feature into three bins,
the number of features is roughly multiplied by three, thus
choosing the “correct” features might become even harder,
since these binned features may also exhibit high correlations
(i.e., if a feature falls into one category, it cannot fall into
the other categories). MCA counteracts this by decorrelation.
Again, we hypothesize that this effect is less visible in NIDS
data, because it naturally contains some categorical features
and has different feature ranges or distributions, making it
more suitable for this pipeline. Overall, this confirms that
decorrelation has a positive impact when applied properly, but
also reinforces dependence on both model and preprocessing.

C. Interpretability of Components

After quantifying when decomposition is useful, what is
worth discussing next is the interpretability of the transformed
features, i.e., the components. After transformation, every
input feature is now a linear combination of the original

features. Thus, if a human expert is tasked to interpret the
resulting explanations, this might be more complex than in
the original feature space. There is, however, the option to
algorithmically limit the number of contributing features per
component with SPCA. SPCA modifies the traditional PCA by
enforcing sparsity constraints onto the component’s loadings,
i.e., each component depends only on a subset of features
instead of potentially all features, by controlling the regulariza-
tion parameter «. Higher values of a enforce higher sparsity.
So, normal PCA is essentially SPCA with o« = 0. Unlike PCA,
SPCA does not guarantee uncorrelated components.

While SPCA is able to drastically increase sparsity and
thus interpretability, the number of non-zero loadings per
component is only indirectly controllable. To address this,
we also consider a custom SPCA approach (SPCA*), where
we manually sparsify the PCA components by retaining only
the top n loadings and setting the rest to zero. This allows
precise control over the number of contributing features per
component, but also induces feature correlations again.

We substitute PCA with SPCA with « € {0.01,0.1,1,10}
and SPCA* with n € {2,4,8,16} and execute our XAI
pipeline again. Note that in terms of classification perfor-
mance, both approaches perform almost exactly like PCA.
For the consensus, Figure 6 shows our two consensus metrics
for both SPCA-based pipelines. We focus on the MLP and
CICIDS as a use case, since here PCA is the most fruitful.
Figures for the other datasets and the RF can be found in
the accompanying repository for the sake of transparency.
Generally, the trends in these cases are somewhat similar,
but less distinct (e.g., when PCA has no impact in the first
place). The bottom x-axis shows the consensus, while the y-
axis shows the applied transformation. Errorbars and colors
are identical to the previous analyses. The top x-axis shows
the average number of features contributing to a component,
depicted with a star. For the raw, untransformed features this
is one, since they only consist of themselves. For the PCA,
this is equal to the number of features. Again, we start with a
neutral description before discussing the results.

For both sparse transformations and both UC and OC, we
see a tradeoff between sparsity/regularization and consensus.
For the regular SPCA, we see that applying only a small
regularization still improves the consensus significantly. While
even this small regularization sparsifies the components drasti-
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cally compared to PCA, this still results in almost 30 features
per component for an alpha of 0.1, and around 45 for an alpha
of 0.01. We argue that explanations based on components that
are consisting of 30 features are still hard to interpret for a
human user. When increasing the alpha, the benefits disappear
and are only slightly visible. The custom SPCA* shows similar
trends, where the more loadings we set to zero, the more the
consensus decreases. Though, the consensus when setting the
number of non-zero loadings to 16 (and partially 8), shows a
similar consensus to regular SPCA with low regularization.

Discussion: The results are generally in accordance to our
previous analyses, since the sparser components are, the more
similar they become to the original features again, depicting
a tradeoff between interpretability and consensus. However,
even though we are able to sparsify the components drastically
with SPCA, this might still not be enough to make it truly
interpretable. The presented values are only average values,
meaning that specific components can be even denser, making
matters worse. As an alternative, the custom SPCA* is able
to achieve similar consensus increases, it is also able to
limit the maximum number of features, too. So, in general,
sparsifying the components can be a remedy to making PCA
more interpretable by design. However, this is only applicable
if PCA has a benefit in the first place. That is, as mentioned
previously, the effectiveness may vary with dataset and model.

To provide an overall practical guideline of all of our
previous analyses, decorrelation can increase agreement and
thus trust in downstream decisions, but is not one-size-fits-all.
Feature engineering remains necessary to remove useless fea-
tures that diffuse components. If few correlations are present,
decompositions may even hinder interpretation, while sparsity-
inducing variants can further aid decision-making by limiting
the number of contributing features.

D. Further Considerations and Limitations

Besides the in-depth analyses presented, we also briefly
explored additional aspects of the disagreement problem on
NIDS data that we find noteworthy. All figures corresponding
to these additional analyses can be found in the accompanying
repository as well, and are discussed briefly in the following.

So far, we have focused on intra-model consensus, i.e.,
comparing explainers for the same model. However, especially
when ensembles are used, it is valuable to examine agreement
between different models, i.e., inter-model consensus [44].
Our analyses on the NIDS data suggest that inter-model
consensus exhibits similar trends w.r.t. consensus improvement
after applying decomposition techniques. That is, decorrelation
proves to be most fruitful for CICIDS, while response to the
other two datasets is more mixed and inconsistent.

Additionally, while we have focused on binary classifica-
tion, we can naturally extend this to a multiclass problem,
especially relevant for downstream tasks like intrusion pre-
vention and containment. Again, results in multiclass settings
on the NIDS data reveal somewhat comparable overall trends
w.r.t. consensus, but with nuanced, class-specific variations.

This is potentially attributable to mixed detection accuracies
and complexity levels of the various attacks.

Besides PCA and MCA, we also experimented with Inde-
pendent Component Analysis (ICA), which enforces statistical
independence rather than mere decorrelation. ICA sometimes
reduced classification accuracy due to its stricter assumptions
on data, while mostly having less impact than PCA on con-
sensus. Additionally, Kernel PCA, capable of capturing non-
linear correlations via custom kernels, proved computationally
infeasible for the NIDS data, requiring terabytes of RAM.

Limitations: Besides the aspects above, there are additional
factors, which we did not explore further. For example, we
used fixed model configurations, but consensus may vary with
different hyperparameters (e.g., tree-depth of RF, training
duration and depth of MLP). For example, disagreements
could be greater for unpruned trees, or maybe “settle” if
we increase training durations. Moreover, we limited our
analysis to SHAP and LIME, which are both perturbation-
based explainers. Including a broader range of models and
explanation methods, such as gradient-based approaches, could
paint a more comprehensive picture. Likewise, we focused
on tabular data. Exploring more complex models and input
domains would further strengthen the analysis.

VI. CONCLUSION

This work investigated the impact of feature decorrelation
on the consensus of XAI methods in ML-based network
intrusion detection. We showed that decomposition techniques
such as PCA and MCA can significantly improve consensus
between explainers like SHAP and LIME, especially for
models and datasets prone to feature correlations. However,
the benefits vary depending on model type, preprocessing,
and dataset characteristics. Notably, decorrelation has a more
stable positive effect on MLPs, while RFs are more robust to
noise and correlation by design. To address the interpretability
loss, we explored SPCA and a custom sparsification approach.
While these methods improved component sparsity, the results
were mixed in terms of maintaining consensus, highlighting a
tradeoff between interpretability and agreement.

Our results underline that improving XAI consensus is not
one-size-fits-all. Decomposition can be a useful tool, but must
be aligned with model architecture and data characteristics. A
natural extension of this work is using more ML models and
XAI methods. Future work could explore whether inherently
interpretable models offer more stable and trustworthy expla-
nations, potentially avoiding the sensitivity issues observed
with post-hoc methods. In other words, if we already have
to be very careful when designing our ML pipeline anyway
in order to make post-hoc XAI robust, we may prefer to put
this energy more towards designing white-boxes.
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