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Abstract—Application fingerprinting is essential for network
management and security, enabling accurate traffic classification
and the enforcement of Quality of Service (QoS) policies. In
this work, we propose a scalable method for mobile application
fingerprinting that leverages MinHash and Locality-Sensitive
Hashing (LSH) to efficiently identify behavioral similarities in
encrypted network traces. By restricting comparisons to high-
similarity candidates, our approach significantly reduces com-
putational complexity while preserving accuracy and enabling
the detection of previously unseen applications. Evaluated on the
ReCon dataset, the method achieves an average accuracy of 83%
across app identification and unseen app detection tasks, with a
reduction in comparison complexity from O(n2) to O(n logn).
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I. INTRODUCTION

The rapid growth of mobile applications and the widespread
use of encryption have posed significant challenges for net-
work traffic analysis. In particular, identifying which appli-
cations generate observed traffic—commonly known as ap-
plication fingerprinting—is a crucial capability for modern
network operators. It supports a wide range of applications,
including traffic shaping, intrusion detection, access control,
and Quality-of-Service (QoS) enforcement [1]. However, tra-
ditional inspection-based methods are no longer effective,
as most mobile traffic is encrypted and lacks distinguishing
payload content [2, 3].

To address this, prior research has shifted toward behav-
ioral and structural analysis of traffic metadata. Supervised
learning methods, such as ML-NetLang [4], model application
behavior by extracting symbolic representations of destination
sequences and training classifiers for app identification. These
methods achieve high accuracy but rely heavily on labeled
datasets and cannot generalize to unseen applications [5, 6].
Unsupervised and semi-supervised approaches like Flow-
Print [2] attempt to cluster behavior based on co-occurrence
of destinations, but often incur substantial computational costs
due to the need for pairwise similarity computation.

A recent line of work has explored hash-based representa-
tions for efficient traffic fingerprinting. For instance, LSIF [1]
applies Locality-Sensitive Hashing (LSH) to device-level traf-
fic for fast classification without relying on handcrafted fea-
tures or training. However, such approaches remain device-
centric and lack the granularity required to distinguish between
applications running on the same device.

In this work1, we present a lightweight and scalable method
for application-level fingerprinting that overcomes these lim-
itations. Our approach models each network trace as a sym-
bolic sequence of destination addresses, converts them into
sets of k-shingles to capture local behavioral patterns, and
applies MinHash to produce compact, similarity-preserving
signatures. These signatures serve as fingerprints of application
behavior and are indexed using LSH to enable fast approxi-
mate matching. Unlike classifier-based methods, our technique
does not require labeled training data and supports open-set
identification, allowing the system to identify both known
and previously unseen applications. This makes it particularly
suitable for dynamic, large-scale network environments where
efficiency and adaptability are essential.

The objective of this work is to evaluate the feasibility and
scalability of MinHash–LSH for encrypted mobile application
fingerprinting. Specifically, we assess whether Jaccard simi-
larity is suitable for comparing execution traces, examine the
accuracy of MinHash approximations, analyze the impact of
key parameters such as the number of hash functions and
band size, and demonstrate the effectiveness of the approach
in recognizing both known applications and previously unseen
ones. Unlike classifier-based methods, our technique requires
no retraining, supports open-set identification, and is well-
suited for dynamic, large-scale network environments where
efficiency and adaptability are essential.

The main contributions of this paper are as follows:
• We introduce a scalable application-level fingerprinting

method that combines MinHash with LSH for encrypted
traffic analysis.

• We systematically evaluate the accuracy and parameter
sensitivity of the approach using ReCon dataset [7, 8].

• We demonstrate that the method enables both recognition
of known applications and detection of unseen ones,
making it suitable for open-world deployments.

II. BACKGROUND: LOCALITY-SENSITIVE HASHING

Locality-Sensitive Hashing (LSH) is a probabilistic tech-
nique for efficient similarity search in large datasets. It is
particularly effective for approximating Jaccard similarity be-
tween sets, enabling scalable matching without exhaustive
pairwise comparisons [9].

1The source code is available at: https://gitlab.utwente.nl/s2888327/minhash-
lsh.git
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A. From Traces to Sets: Shingling

Network traces can be abstracted as sequences of symbolic
events, such as destination identifiers represented by tuples of
(IP address, port), or TLS certificate fields. To convert these
sequences into sets, we apply k-shingling, which extracts all
contiguous substrings of length k from a trace.

Example. Let k = 2 and consider the following three traces:
• Trace A: abcde
• Trace B: abfde
• Trace C: xyzpq
We obtain the shingle sets:

SA = {ab,bc,cd,de}
SB = {ab,bf,fd,de}
SC = {xy,yz,zp,pq}

Jaccard Similarity:

J(A,B) =
|A ∩B|
|A ∪B|

(1)

J(A,B) =
|{ab,de}|

|{ab,bc,cd,de,bf,fd}|
=

2

6
≈ 0.33

J(A,C) = 0, J(B,C) = 0

B. MinHash: Compact Similarity Estimation

To avoid storing full sets, we compute MinHash
signatures—fixed-size vectors that approximate set similarity
using multiple hash functions.

Example: Suppose the hash function h1(x) maps shingles
to integers as follows:

h1(x) : ab = 1, bc = 3, cd = 4, de = 2, bf = 6,
fd = 7, xy = 8, yz = 9, zp = 10, pq = 11

Then the minimum hash values for each trace are:

minh1(SA) = min{1, 3, 4, 2} = 1

minh1(SB) = min{1, 6, 7, 2} = 1

minh1(SC) = min{8, 9, 10, 11} = 8

Traces A and B share the same minimum hash under h1

and are thus considered similar by this function. Trace C has
a different minimum and is considered dissimilar.

Estimated similarity:

Ĵ(A,B) =
1

m

m∑
i=1

⊮ [hi(A) = hi(B)]

C. LSH Bucketing: Efficient Candidate Generation

MinHash signatures are divided into b bands of r rows each.
A match in any band flags a candidate pair.

Example: Assume we use two hash functions, h1 and h2,
to generate MinHash signatures for traces A, B, and C. After
applying both hash functions to the shingle sets, we obtain:

A = [1, 1]

B = [1, 0]

C = [8, 6]

With b = 2 bands of r = 1 row:
• A and B share band 1 (1) → candidate pair.
• C differs in both bands → not a candidate.

D. Collision Probability

Given Jaccard similarity s, the probability of at least one
band match:

Pcandidate(s) = 1− (1− sr)b

This behaves as a soft threshold: high-similarity pairs are
likely to collide, low-similarity pairs are filtered out. LSH en-
ables scalable approximate matching by combining symbolic
representation via k-shingling, compact MinHash signatures,
and banded hashing for efficient candidate generation. This
framework is well-suited for mobile application fingerprinting
on encrypted traffic at scale.

III. METHODOLOGY

A. Dataset and Trace Generation

We evaluate our method using the ReCon dataset [7, 8],
which comprises 7, 665 traffic traces collected from 512 pop-
ular Android applications across multiple versions and years.
The dataset is generated by executing apps on physical devices
using automated interaction scripts to simulate user behavior.
For this study, we randomly select 100 applications and extract
10 traces per app, resulting in 1, 000 total traces.

Each trace is transformed into a symbolic behavioral se-
quence using the Trace Generator from ML-NetLang [4]. The
transformation consists of the following steps:

1) Extract flow-level information from packet captures,
including timestamps, destination IPs, ports, and TLS
certificates.

2) Sort all flows chronologically based on the timestamp
of their first packet.

3) Map each unique destination (e.g., (IP, port) or TLS
certificate) to a symbolic token Sj .

4) Replace flows with their corresponding symbols to pro-
duce an ordered sequence representing the application’s
behavioral trace.

These symbolic traces serve as compact, application-specific
representations of network behavior and form the basis for
fingerprinting.

B. Shingling and Similarity Analysis

To quantify the similarity between symbolic traces, we rep-
resent them as sets of k-shingles—contiguous subsequences of
length k. We compute the actual Jaccard similarity J(A,B)
between all trace pairs using Equation 1.

To evaluate whether this metric separates traces of the
same application (intra-class) from different ones (inter-class),
we plot the normalized similarity distributions for varying k.
Figure 1b shows that k = 2 produces the clearest separation,
with the smallest overlap (0.227), indicating that 2-shingles
capture behavioral structure effectively.
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(a) 1-shingle (b) 2-shingle (c) 3-shingle

Fig. 1: Normalized frequency distributions of actual Jaccard similarity values for different k-shingle sizes. Lower overlap
indicates better separation between same-app and different-app traces.

Fig. 2: System overview of the proposed mobile application fingerprinting pipeline using MinHash and LSH.

Fig. 3: MSE across different numbers of hash functions after
setting the number of shingles to 2.

C. MinHash Approximation

To reduce the cost of computing exact Jaccard similarities,
we employ MinHash to approximate set similarity. Each
trace is hashed using m independent hash functions, and the
minimum value under each function forms a signature vector.
The estimated Jaccard similarity is given by:

Ĵ(A,B) =
1

m

m∑
i=1

⊮[hi(A) = hi(B)] (2)

We analyze the trade-off between estimation accuracy and
computational overhead by computing the mean squared error
(MSE) between J and Ĵ for different values of m. As shown in
Figure 3, the error decreases with increasing m and stabilizes
around m = 150, which we adopt for all experiments.

D. LSH-Based Fingerprinting System

Our fingerprinting pipeline has two main stages: enrollment
and identification (Figure 2). Enrollment: Given a new trace,
we generate a 2-shingle set, compute a MinHash signature,

and insert it into b LSH buckets (bands). Each bucket acts as
an index for fast retrieval of similar traces.

Identification: An incoming trace is processed identically.
Its MinHash signature is compared against enrolled signatures
within matching buckets. If a match is found, the trace is
assigned to the corresponding application. If not, it is flagged
as an unseen app.

This architecture enables scalable, semi-supervised finger-
printing without the need for training classifiers, while remain-
ing robust to previously unseen behaviors.

IV. EVALUATION AND RESULTS

We evaluate our MinHash and LSH-based fingerprinting
framework through two key tasks: multi-class app identifi-
cation and binary unseen app detection. All evaluations use
1, 000 symbolic traces (10 per app) from 100 Android appli-
cations in the ReCon dataset [7, 8], transformed into 2-shingles
and encoded into 150-dimensional MinHash signatures.

A. Metrics and LSH Parameters

We report accuracy, precision, recall, and F1-score metrics
used in traffic fingerprinting literature [4, 2, 10, 11]. These
metrics measure not only the classification quality of the
system, but also its robustness under open-world assumptions.

MinHash signatures are divided into b bands of size r =
m/b. Table I summarizes our configurations. As shown in [12],
higher b improves sensitivity (recall) while lower b increases
selectivity (precision).

TABLE I: Band size for different number of bands (m = 150)

Bands (b) Band Size (r)
150 1
75 2
50 3
30 5
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B. Application Identification (Seen Apps)

We evaluated the system’s ability to identify traces from
known apps using 5-fold stratified cross-validation. For each
app, 8 traces are used for training and 2 for testing. Queries
are matched using Jaccard similarity to LSH candidates, and
majority voting determines the predicted label.

TABLE II: Classification performance on seen apps across
different band configurations.

Bands (b) Accuracy Precision Recall F1 Score
150 0.8527 ± 0.0428 0.8144 ± 0.0733 0.7752 ± 0.0851 0.7772 ± 0.0778
75 0.7795 ± 0.0570 0.7343 ± 0.0957 0.6777 ± 0.1001 0.6858 ± 0.0948
50 0.3186 ± 0.0708 0.4153 ± 0.0827 0.2877 ± 0.0710 0.3287 ± 0.0725
30 0.0645 ± 0.0341 0.0954 ± 0.0534 0.0629 ± 0.0335 0.0736 ± 0.0399

C. Detection of Previously Unseen Apps

We evaluate unseen app detection by splitting the dataset
into 80 "seen" apps for training/testing and 20 "unseen"
apps for testing only. For seen apps, we use 8 traces for
training and 2 for testing; all 10 traces of unseen apps are
used in the test set, simulating real-world scenarios with
new app appearances. We apply 5-fold cross-validation for
stability. During inference, if a test trace does not exceed
a Jaccard similarity threshold with any training trace, it is
labeled ‘"unseen"; otherwise, we assign the most similar app
using majority voting among LSH candidates. Table III reports
results for thresholds 0.05 to 0.25

TABLE III: Unseen app detection results across different
bands and similarity thresholds.

Threshold Bands (b) Accuracy Precision Recall F1 Score

0.05

150 0.5783 ± 0.0067 0.9664 ± 0.0226 0.2500 ± 0.0141 0.3969 ± 0.0168
75 0.6839 ± 0.0079 0.8813 ± 0.0274 0.4990 ± 0.0102 0.6369 ± 0.0070
50 0.7083 ± 0.0107 0.6676 ± 0.0099 0.9470 ± 0.0068 0.7830 ± 0.0055
30 0.5906 ± 0.0022 0.5757 ± 0.0013 1.0000 ± 0.0000 0.7307 ± 0.0011

0.10

150 0.8011 ± 0.0111 0.8419 ± 0.0181 0.7910 ± 0.0128 0.8155 ± 0.0093
75 0.7883 ± 0.0116 0.8073 ± 0.0187 0.8140 ± 0.0116 0.8104 ± 0.0084
50 0.6928 ± 0.0057 0.6482 ± 0.0049 0.9780 ± 0.0024 0.7796 ± 0.0029
30 0.5906 ± 0.0022 0.5757 ± 0.0013 1.0000 ± 0.0000 0.7307 ± 0.0011

0.15

150 0.7433 ± 0.0080 0.6950 ± 0.0062 0.9590 ± 0.0037 0.8059 ± 0.0055
75 0.7372 ± 0.0054 0.6894 ± 0.0040 0.9590 ± 0.0037 0.8022 ± 0.0038
50 0.6544 ± 0.0028 0.6183 ± 0.0022 0.9880 ± 0.0040 0.7606 ± 0.0015
30 0.5906 ± 0.0022 0.5757 ± 0.0013 1.0000 ± 0.0000 0.7307 ± 0.0011

0.20

150 0.6628 ± 0.0067 0.6237 ± 0.0045 0.9910 ± 0.0020 0.7656 ± 0.0038
75 0.6628 ± 0.0067 0.6237 ± 0.0045 0.9910 ± 0.0020 0.7656 ± 0.0038
50 0.6289 ± 0.0062 0.6000 ± 0.0040 0.9960 ± 0.0020 0.7489 ± 0.0032
30 0.5906 ± 0.0022 0.5757 ± 0.0013 1.0000 ± 0.0000 0.7307 ± 0.0011

0.25

150 0.6161 ± 0.0054 0.5918 ± 0.0034 0.9960 ± 0.0020 0.7425 ± 0.0028
75 0.6161 ± 0.0054 0.5918 ± 0.0034 0.9960 ± 0.0020 0.7425 ± 0.0028
50 0.6117 ± 0.0067 0.5890 ± 0.0041 0.9960 ± 0.0020 0.7403 ± 0.0035
30 0.5906 ± 0.0022 0.5757 ± 0.0013 1.0000 ± 0.0000 0.7307 ± 0.0011

The highest F1-score (81.55%) is achieved at threshold 0.10
with 150 bands. Lower thresholds favor precision, while higher
thresholds inflate false positives. These results affirm that
moderate similarity thresholds best balance accuracy, recall,
and robustness to new behaviors. The system demonstrates
reliable fingerprinting across known and unknown applica-
tions. A configuration of 150 bands and a Jaccard threshold
of 0.10 consistently delivers the best performance, confirming
the method’s suitability for scalable and resilient mobile traffic
analysis.

V. RELATED WORK

Prior work on mobile traffic analysis spans supervised
deep learning models, symbolic approaches, and hash-based
fingerprinting. Mashnoor et al. [1] employ Nilsimsa-based

LSH for IoT device identification, achieving 94% accuracy.
Their LSIF-R method computes digest-based fingerprints tai-
lored to device traffic but lacks support for unseen-device
detection. Our method instead applies MinHash over tokenized
symbolic sequences for scalable, app-level identification, in-
cluding novel apps. Wang et al. [5] introduce App-Net, a
hybrid CNN–biLSTM architecture that learns representations
from TLS traffic sequences. It reports 93.2% accuracy on
80 apps but is restricted to closed-world classification and
requires extensive labeled training data. By contrast, our
LSH-based method is lightweight, training-free, and supports
unknown-app detection. FlowPrint [2] generates fingerprints
by clustering flows using destination IPs and temporal patterns,
achieving an accuracy of 85.5% to detect unknown applica-
tions. Although effective, it relies on pairwise comparisons
in all generated fingerprints, assigning labels based on the
most similar matches, resulting in a computational complexity
of O(n2). NetLang [4] models traces as k-TSS automata
and classifies with SVMs, achieving 97% accuracy on An-
droid/iOS apps. It requires pairwise comparisons to generate
numerical features and cannot detect unseen apps. Our semi-
supervised method, while less accurate, supports new-app
detection. Liu et al. [6] propose TransECA-Net, combining
CNNs and Transformers with attention for general encrypted
traffic classification, achieving ∼98% accuracy. Though highly
accurate, it lacks support for new-class detection and is com-
putationally intensive.

TABLE IV: Comparison of App Identification Methods
Method (Source) Accuracy Precision Recall F1 Score Detection of Previously Unseen Apps Complexity
Our method (LSH) 85.27% 81.44% 77.52% 77.72% Yes O(n logn)
App-Net [5] 93.2% – – 91.2% No O(n2)
FlowPrint [2] 94.47% 94.7% 94.47% 94.58% Yes O(n2)
ML-NetLang [4] 97.0% 97.0% 97.0% 96.0% No O(n2)
TransECA-Net [6] ≈98.0% ≈98.0% ≈98.0% ≈98.0% No O(n2)

Our LSH pipeline offers a trade-off: while less accurate than
deep models, it is simple, scalable and not requiring labels or
retraining.

VI. DISCUSSION

We evaluated the feasibility of using Locality-Sensitive
Hashing (LSH) for fingerprinting mobile application behavior
over symbolic execution traces. By applying 2-shingle tok-
enization, 150 MinHash functions, and a banding scheme of
150 bands (with band size 1), we achieved high separation
between known and previously unseen applications. These
results suggest that approximate similarity detection using
MinHash provides a robust foundation for structural pattern
extraction in encrypted mobile traffic.

While promising, several factors limit the generalizability
and robustness of this approach.

Robustness to evasion. LSH-based fingerprints reflect
surface-level structural properties of traffic sequences. As
such, they remain vulnerable to adversarial noise injection
or mimicry attacks. An application designed to interleave
benign-looking flows or replay parts of another app’s trace
may bypass similarity thresholds. Although maintaining such
evasion without compromising user experience is non-trivial,
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this threat highlights the need for robustness testing under
adversarial conditions.

Shared infrastructure effects. We observed that applica-
tions heavily reliant on shared third-party services (e.g., ad
platforms, telemetry endpoints) produce traces with high inter-
class similarity. These overlaps increase false positives and
reduce discriminability. Techniques that incorporate frequency
weighting or temporal segmentation may help de-emphasize
generic flows and amplify app-specific behaviors.

Multi-app concurrency. Our evaluation assumes that each
trace corresponds to a single foreground application. In prac-
tice, traces may represent blended activity from multiple
apps or background services. Accurately decomposing such
traces remains challenging without fine-grained context (e.g.,
foreground app labels, timestamps). Extending LSH-based
fingerprinting to mixed-traffic scenarios will require traffic
segmentation or session attribution mechanisms.

Scalability and deployment. A key advantage of our
approach is its low computational cost. MinHash signatures
are compact, and LSH lookup scales sublinearly with database
size. Unlike supervised models, our method requires no re-
training to accommodate new applications. This property en-
ables deployment on constrained devices or in high-throughput
monitoring settings. However, overall accuracy falls due to
the probabilistic nature of LSH. Future work should aim to
improve accuracy, for example by creating signatures over the
most temporal correlated destination addresses instead of using
all destination addresses, as suggested in FlowPrint [2].

VII. CONCLUSION AND FUTURE WORK

We presented a scalable fingerprinting framework for mo-
bile applications using MinHash signature generation, and
LSH-based similarity detection. Our method transforms behav-
ioral traces into 2-shingle sets, compresses them with 150 hash
functions, and organizes them in 150 LSH bands for fast re-
trieval and comparison. Evaluated on a dataset of 1, 000 traces
from 100 Android apps, the system achieved 85.37% accuracy
for known applications, and 80.11% accuracy for detecting
unknown apps. The approach demonstrates practical utility,
supports encrypted traffic, and scales well without retraining.
Future work includes exploring adaptive thresholds, improving
resistance to generic or adversarial traffic, and extending
support to concurrent app execution scenarios. Additionally,
integrating frequency or temporal weighting into symbolic
signatures may further enhance robustness and accuracy. Our
results position LSH as a viable, interpretable baseline for
efficient mobile app fingerprinting.
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