2025 21st International Conference on Network and Service Management (CNSM)

HideMe: Hiding VMs from Co-Residency Attacks
Using Network-Level Traffic Redirection

Bogdan-Nicolae Stianculete
EEMCS
University of Twente
Enschede, the Netherlands
david.bnicolae@gmail.com

Abstract—Virtual Machine (VM) co-residency occurs when two
virtual machines belonging to different users share the same
physical host. Co-residency brings important security implica-
tions when one of the VMs is malicious: side-channel leakage,
denial of service, and performance degradation are all possible
attack vectors that can be leveraged. Achieving co-residency is
a two-step process: VM placement and detection. While most
of the literature focuses on preventing physical placement, we
address the under-explored second step: preventing co-residency
confirmation. We present HideMe, a modular, lightweight system
that detects malicious probes based on dynamic host behavior and
redirects them to decoy VMs. Evaluated in two realistic scenarios,
HideMe demonstrates high efficacy, preventing 100% of attacks
in consistent traffic environments and 97% in highly variable
traffic, all with zero false positives and under strict visibility
constraints. As contribution, we also release Hide me under an
open-source license, provide deployment instructions for network
operators, and outline directions for further improvement.

I. INTRODUCTION

The world is moving at an unprecedented speed. This
creates an ever-increasing demand for quick deployment, in-
creased scalability and availability of services. Naturally, the
Cloud has emerged as the popular choice for meeting this
demand due to its low cost, pay for what you use policy [1],
[2]. The rising adoption of Cloud infrastructure often leads to
co-residency, phenomena in which VMs from different users
share the same physical host.

From a security perspective, when a malicious actor
achieves co-residency, it gains access to a new category
of attack vectors, known as side-channel attacks [3], [4].
During these attacks, the adversary exploits the fact that his
VM and the victim’s share the same hardware (i.e. memory,
processor) to steal sensitive information, or disrupt the victim
by hindering its access to the shared resources. There are two
steps in achieving co-residency:

1. VM Spawning: in which the adversary launches a high
number of VMs to maximize the chance that one of them will
share the same physical host as the victim.

2. Co-Residency Probing: during which the adversary per-
forms some sort of test to identify whether one of the VMs
they launched has been placed on the same physical host as
the victim. Most commonly these tests involve side-channels
[5] and/or probing the victim’s public API [6].

978-3-903176-75-1 ©2025 IFIP

Raffaele Sommese
DACS/EEMCS
University of Twente
Enschede, the Netherlands
r.sommeselutwente.nl

While there have been numerous advances in defensive
mechanisms aimed at preventing the attacker from co-locating
itself with its victim, mainly through better placement strate-
gies [7]-[9] and virtual machine migrations (proactive de-
fenses), these approaches are inherently limited. Regardless
of how robust the placement strategy may be, the attacker
can overcome it by spawning a sufficiently large number of
virtual machines. Once co-location is achieved, the defensive
mechanism has been rendered useless.

This creates a need for a different array of security measures
called reactive defenses, which spring into action after the
adversary achieves co-location. Despite their complementary
nature, little attention has been given to this type of defenses,
leaving a gap in the security landscape.

In this paper, we explore this gap by proposing a prac-
tical network-level solution that prevents the attacker from
confirming co-residency. Our system, HideMe, identifies and
thwarts co-residency tests as they happen, effectively denying
the adversary the knowledge that their VM shares the same
host as the target. Our main contributions are as follows:
(i) we present HideMe: a proof-of-concept solution to identify
co-residency probes, using a minimal amount of information.
(i) we present actionable mitigation strategies with limited
impact on the availability and performance of the protected
service. (iii) we provide the source code and documentation
for the proposed solution.

Through this work, we shift the focus from placement-
centric to detection-centric mitigation, therefore adding a
complementary layer of defense to the existing landscape.
Furthermore, we empower both cloud providers and users
to reactively protect against co-residency attacks in multi-
tenant environments. The solution we propose is modular,
configurable and can be seamlessly integrated into existing
infrastructure.

II. RELATED WORK

Qiu et al. propose in [10] a novel deployment strategy for
VMs that achieves less than 1% probability of achieving VM
co-residency. Similarly, Y. Peng et al develop in [8] a different
algorithm, based on multi-tenant classification. X. Liang [11]
follows the same line of thought and focuses on reducing the
chance at achieving co-location. The work of these papers

2025 21st International Conference on Network and Service Management (CNSM)

is on proactive defense by designing robust VM placement
algorithms. Y. Han [12] even shows that using a pool of
algorithms and shifting between them achieves better results
for preventing co-residency. We complement their results by
creating a defensive mechanism for the scenarios in which
the attacker manages to bypass this algorithm and achieve co-
location.

On a different note, A. O. F. Atya [13] shifts the focus
from proactive to reactive defense, by designing a novel VM
migration algorithm. The main limitation in their work is the
small scale on which their algorithm was tested (1 victim VM
and 2 attack VMs). In a real attack, the adversary would launch
tens or even hundreds of VMs, which would exponentially
increase the probability that even after migration, the VM
is still co-resident with the adversary. We take a different
approach, by redirecting the attacker’s traffic and denying
the very knowledge of co-residency without risking SLA
violations from the cloud provider and downtime for the
victim.

Miao et al. [9] propose a scheme that reduces the chance of
VM co-residency through secure placement and migration of
conflicting VMs. Their approach lowers co-residency to 10%
on average. However, the main limitation is that an adversary
needs only one successful placement to cause harm. In 10%
of the cases, the adversary still *'wins’. Our work improves on
this by ensuring they have no chance to *win’.

III. PROPOSED SOLUTION

Our goal is not only to demonstrate feasibility, but also
to design a solution for detecting and thwarting co-residency
probes that can be naturally integrated into existing cloud envi-
ronments. This requires a three-step algorithm that: (i) capture
the network packets (both legitimate and malicious ones)
(ii) determine which hosts are most likely testing for co-res-
idency, and (iii) apply mitigation measures for the identified
hosts.

In designing our solution, we chose to align it with the
Software Defined Networking (SDN) paradigm, which natu-
rally fits our needs due to the loose coupling between packet
monitoring, decision-making, and mitigation. Specifically, data
collection and enforcement reside entirely in the data-plane,
where a programmable switch gathers per-packet metrics,
while decisions are handled by the control-plane. This design
also allows the solution to easily scale to cloud-level demands.

A. Threat Model

When selecting our metrics, we also aimed to identify the
minimal amount of information needed to reliably detect co-
residency probes. To this end, we considered the following
constraints in our model:

o Limited visibility of adversary activity: The algorithm
can only see the probes addressed to the victim’s server
and is unaware of any communication between the
Command & Control server and the malicious virtual
machines. Furthermore, any preparatory steps taken by
the adversary prior to probing are also not known.

« Encrypted payload: The payload of the packet is under
encryption (e.g. by employing TLS) and cannot be used
to distinguish co-residency probes.

o Adversary unawareness: We assume the adversary is un-
aware of the existence of a filtering mechanism at network
level. The assumption is a direct consequence of the
limited visibility assumed earlier.

In this limited-visibility scenario, HideMe lacks the in-
formation required to link multiple hosts to a single master
controller and cannot anticipate which of them will be used
for the next probe. If the adversary becomes aware of the
filtering algorithm (i.e., the last assumption no longer holds), it
can evade detection by distributing probes across a sufficiently
large set of hosts. We leave the analysis of less-restricted
contexts, with improved visibility and informed adversaries,
to future work.

As a consequence of our limited visibility, the only informa-
tion we can make use of are the number and size of incoming
packets, and the metadata present in packet headers. In the next
sub-section, we will show how we aggregate that information
into three metrics: (i) average number of packets, (ii) average
number of connections, and (iii) average packet size.

For simplicity, and without loss of generality, we assume
communications use TCP as Layer 4 protocol, as it underlies
most common application-layer protocols for public APIs
that an adversary might probe. However, our approach is
not limited to TCP: for UDP, we can estimate connection
counts by inspecting the first packet for identifying header
information (e.g., the CONNECT packet in MQTT or the
ConnectionID in QUIC) or by counting unique (SRC IP,
DST IP, SRC port, DST port, protocol) flows.

B. Host Evaluation

In our system, packet collection is performed by a P4
[14] programmable switch in the data plane. Beyond regular
forwarding, we leverage the switch to collect statistics on bytes
and packets sent by each host. These values are then processed
by the control plane to produce three metrics:

1) Average Number of TCP Connection Initiations (C)

_ H{p € Plp.syn = 1 A p.ack = 0}
N At
2) Average Number of Packets (P)

c

_ 7l
At
3) Average Size of Packets (S)

P

> pep b-size
P
where P is the set of all the packets intercepted by the

switch which are inbound to the victim’s server, and ¢ is
time. By host behavior, we understand the tuple of metrics

S:

2025 21st International Conference on Network and Service Management (CNSM)

(C,P,S). We then compute the average host behavior as a
tuple of (G¢,Gp,Gp) where:

M,
G = Zﬁ"’ VM € {C,P,S}

and H is the set of all distinct hosts which have sent inbound
traffic to the victim’s server. We can use the host’s behavior
to find out its deviation from the average as:

Ay = (Ach, Apn, Ash)

where Ay = |1.0 — GMI\Z and M € {C,P,S} is one
of the previously defined metrics. We say a host is suspect
if its behavior deviation is higher than a given threshold
T=Tc,Tp,Ts) where Tpy € RY M € {C, P, S}. Formally
we define the following function for evaluating the host’s
behavior:

Suspect : H x R? — {0,1}

Suspect(h,T) = /\ Ann > T

Me{C,P,S}
C. Initiating Mitigation

If a host h is flagged as suspect enough times w.r.t time,
that is

Z Suspect(h,T) > Tsyspect
At

that host is considered as actively testing for co-residency
and HideMe will initiate security measures. This works in
reverse as well: if a host (who was previously considered
malicious) stops being flagged as suspect enough times w.r.t
time, that is

Z(l — Suspect(h,T)) > Thenign
At

the previously initiated mitigation will no longer be applied
to the host. We also enforce that Tyepign >> Tsuspectl to
ensure the system responds rapidly to potential threats while
preventing oscillating attackers from easily shedding their
malicious status.

D. Possible Mitigation Measures
We identified two major ways in which we can deny the
adversary the information of co-residency:

IWe say a >> b if limg 500 2 = 0, that is if b = o(a) as a — co.

a

1) Dropping the adversary’s packets: is ineffective because
the adversary can immediately tell that the packets are being
dropped deliberately by probing the victim’s address with
a benign device. This will prompt the adversary to simply
continue probing from a different device and switch again once
it is also flagged. However, by dropping the packet, we can
be completely certain that the suspect host cannot learn of
co-residency.

2) Redirecting the adversary’s packets to a different server:
is completely invisible to the adversary, and reveals no in-
formation about possible defensive mechanisms, as there are
multiple commonly used middleware which are responsible
(among others) for traffic redirection: load balancers, proxies,
etc. Therefore, the adversary will not be prompted (as in the
previous scenario) to change devices, as to them everything
will look normal. The drawbacks of this approach are the fact
that there is a possibility that the server we redirect the traffic
to lies on the same physical host, and the need for one or
more clone VMs to which we can redirect traffic. The first
drawback can be mitigated if the cloud provider keeps an
internal mapping of which VMs are deployed to which host.
HideMe could then make use of such a map to ensure that the
traffic is redirected to a different host.

E. Traffic Adaptation

Another important aspect is that the developed algorithm
(in this case the thresholds) must adapt to traffic changes.
From the perspective of our algorithm there are three types of
changes: horizontal changes (the number of hosts fluctuates),
vertical changes (the hosts’ behavior fluctuates) and a
combination of the two.

In the first case, no adaptation is needed for the thresholds,
as they already model the traffic well enough. If anything,
a greater convergence to benign behavior will lead to faster
detection of suspect hosts and improved accuracy. To make
HideMe adapt quickly to possible vertical or diagonal
changes, we reconfigure the way we aggregate metrics, every
time mitigation is triggered for a host, as follows:

1) All the hosts for which mitigation has been triggered are
saved in a set called H’, and are excluded from the global
average, which in turn becomes:

o 2nen—w Mn
M -

2) For the hosts A/ € H’' we consider them as active
testers for co-residency unless they change their behavior
consistently with the other hosts. More formally, we
check if:

Mh’| 2ner—w Aun
Gy H—H|

If for a host A’ &€ H' the above check is fulfilled
enough times w.r.t time, that host will be removed from #’,

1.0 —

2025 21st International Conference on Network and Service Management (CNSM)

and its activity will be evaluated according to the original
Suspect(h,T) function.

F. Initial Threshold Selection & Multiple Behaviors

Before deployment, we recommend a thorough traffic anal-
ysis to determine 2 things: (i) The number of distinct benign
behaviors, and (ii) The average deviation for each behavior.

For each type of benign behavior identified, determining
the initial threshold T' = (T, Tp, Ts) can be formulated as a
constraint optimization problem, that is:

T=(Tc,Tp,Ts)
subject to Vh e H, 3IM € {C,P,S},

minimize
hy < Ty

where 7 is the set of hosts observed during traffic analysis.
For simplicity, the value of 7' can also be set just above
the highest benign deviation (or a little lower) to ensure low
false-positive rates. If the benign hosts cannot be put all into
one category (e.g., there are different behaviors) our solution
can be extended by setting initial global averages for each
behavior. This will cause HideMe to first classify hosts based
on the average to which their behavior is closest, before
starting the normal flow described above.

In this paper, we do not explore multiple host behaviors as
our purpose is to quantify the suitability of our solution in the
simpler scenario where all benign hosts are assumed to behave
similarly, and we leave that to future work.

IV. TESTING METHODOLOGY

The primary benefit of testing HideMe in a cloud envi-
ronment is the uncertainty of co-residency, enabling scenarios
where an adversary may or may not have a co-resident VM.
However, in our context, the presence or absence of a co-
resident VM does not affect the algorithm’s observations or
decisions. Another key feature of the cloud is the availability
of multiple hosts communicating over the network, allowing
high-throughput traffic generation and address diversification.
We argue that this too is non-essential, since high-throughput
traffic can be generated locally, albeit with some performance
trade-offs, and host diversification can be simulated using
spoofing techniques. For stateful connections, we maintain a
mapping from spoofed addresses to actual host addresses.

Given that HideMe is intended as a proof-of-concept, and
not as a fully-fledged deployment-ready solution, we find
that the costs of using a Cloud environment far outweigh
the benefits. Therefore, we decided to conduct our testing
exclusively in a local environment, which we explain below.

A. The Local Testbed

To emulate the testing network, we used Mininet [15], a
lightweight emulator that creates virtual hosts, switches, and
links on a single machine. This tool enables reproducible
results while preserving the fidelity of real TCP/UDP stacks,
routing, and traffic shaping. Since the algorithm’s performance
depends on host behavior rather than the scale of the environ-
ment, we use Mininet to emulate a minimal scenario suitable
for our algorithm (see Figure 1).

Host h3

Host h4

Switch s1
HideMe

d @ Switch s2
Host h1
HTTPS Server

Redirected Traffic

Normal Traffic
Host h2
Adversary

Host hb

Fig. 1. The Mininet Environment

In this environment, the metric aggregation and decision
making is run by the controlling script, while data collection
and rule enforcement befalls unto the first switch.

B. Benign Traffic Generation

A key limitation of our work is the representativeness of
the traffic used in our simulation compared to the diverse real-
world traffic HideMe might observe in deployment. Since the
algorithm quantifies behavior, traffic patterns depend heavily
on the specific use case. For example, traffic from a High
Frequency Trading (HFT) application differs significantly from
that of a social-media web service.

To address this, we used publicly available PCAP files
containing real-world web application traffic [16] and HTTP
request-response pairs [17], replayed via tcpreplay (for
PCAPs) and Grafana K6 (for HTTPS traffic). Although this
traffic cannot represent every use case, it offers valuable insight
into how our solution might behave in realistic scenarios.

C. The Adversary

One of the fastest co-residency detection methods was
proposed by Bates et al. [18], achieving detection in under
10 seconds. However, it requires the target and adversary
to share the same NIC, a fragile assumption in modern
cloud infrastructures. In our testing, we use this time as a
conservative upper-bound.

NIC-independent methods, such as the Prime+Probing
method proposed by Inci et al. [19], albeit slower, do not rely
on this assumption and can be easily applied in public clouds.
Still, it detects the presence of some co-resident VM, whereas
the adversary aims to locate a specific target. In our testing,
the adversary implements the memory bus locking technique to
detect co-residency, simultaneously probing the victim’s public
API to confirm co-residency with its target.

Such methods need to be correlated with the probing of
the victim’s public API in order to attribute the observed
results to a specific attack. We argue that a single detection
round is insufficient for reliable confirmation. A one-time
performance degradation observed at the public API could
be attributed to numerous external factors, such as transient

2025 21st International Conference on Network and Service Management (CNSM)

network congestion or high server load, rather than the ad-
versary’s actions. Therefore, we conclude that an adversary
using similar methods requires at least 2 rounds of detection
to reliably confirm co-residency with its target.

Therefore, we say the adversary has conducted a successful
test if the probing traffic is not redirected within the first 20
seconds (covering 2 conservative rounds of detection). Accord-
ingly, a test case passes if the adversary is unsuccessful, and
fails if the adversary conducts at least one successful test.

For the test-cases that have not failed (i.e. the adversary is
redirected within 20 seconds), we extract the packet counters
from the two switches and use it to compute metrics such as
recall and accuracy. All test-cases follow the same structure
but differ in duration (taking between 1 and 7 minutes) and
traffic model. Generally, shorter test cases aim to identify
whether the adversary is successfully filtered out within the
allotted time limit, while longer ones observe the long-term
behavior of HideMe.

D. Test-Case Scenarios & Performance Metrics

To overcome the fact that our solution is tested in a
simulated environment we have opted to use traffic from two
real-world examples: HTTP pull requests sent to the Google’s
Guava repository [17], and anonymized HTTPS traffic cap-
tured from a campus network [16]. Our choice in selecting the
scenarios is grounded in diversity. Given that the performance
of our solution is strictly tied to the traffic model at hand,
we wanted to compare said performance in two fundamentally
different models. The first scenario presents requests with large
payloads, sent in a consistent rate (controllable by us) while
the second one presents inconsistent small-payload behavior.
Below, we briefly discuss how we model each scenario:

1) The Guava Repository: in this scenario, we generate our
own traffic based on the request - response pairs provided, as
no PCAP of an actual run is available. We have used Grafana
K6 to iterate through the requests in a loop, and had the server
reply with the matching response. Due to this, the rate at
which pull-requests are made is directly controllable by us
(by increasing / decreasing the hosts - horizontal change; or
the number of virtual users - vertical change). Due to
the higher degree of control, we have tested both types of
changes using this scenario.

2) The Campus Network: The authors in [16] have col-
lected a packet traces captured during seven days of mon-
itoring from eight servers across a large campus network.
The traces contain encrypted HTTP traffic over TLS 1.2. For
the second scenario we have selected one of the provided
PCAPs (corresponding to the last day of observation). Using
tcpreplay on the hosts, we feed our algorithm with both
server and response pairs. One of the key differences between
the scenarios is that here we have multiple probes which act
as servers. Therefore, our switch was slightly modified to be
aware of that. On top of that, we have no control over the rate
of the requests as well as the number of distinct IPs. Due to
this, we only modeled vertical changes in this scenario.

Our results are represented as two-fold: (i) event-level
results, where we analyze algorithm decisions such as host
redirection and test failures, and (ii) packet-level results, where
we aggregate the packets that reached (or not) the target server.
All the results are collected at the end of a test-case, and follow
the following definitions:

V. RESULTS

In this section we evaluate the effectiveness of HideMe in
multiple test-cases covering a wide array of traffic models. In
particular, we aim to uncover:

o Does HideMe redirect the adversary within the allotted
time limit of 20 seconds?
« Does HideMe maintain high accuracy and recall without
causing false positives?
« How robust is the system under changing traffic condi-
tions?
We present a summary of our results across both scenarios
and highlight each in detail. We use those results to determine
the strengths and weaknesses of our approach.

A. Scenario 1: Guava repository

In Table I we exposed the packet metrics for this scenario.
We observe a rate of 0 false-positives with a fast time-to-detect
of just 6 seconds on average. Upon further analysis, we have
attributed the results to the constant behavior of the benign
hosts. We also notice from subtly higher metrics in the case
of horizontal changes that HideMe benefits from these type
of changes to the traffic (both increases and decreases of the
number of hosts), as opposed to vertical changes which
have a more negative impact on the performance.

In terms of event metrics, we have noticed only 1 event
(redirection) in all the test cases. The redirection happens
within the first 20 seconds, and the host redirected is the
adversary. This means that at event level the accuracy of
HideMe is 100% (all test cases pass), and the rate of O false
positives is also maintained.

B. Scenario 2: The campus network

In table II we observe a considerable worse performance
than in the first scenario, with a time-to-detect twice as high.
The main difference between the two scenarios is that in the
case of the Campus network, the traffic pattern is inconsistent:
benign hosts come and go. This in turn led to fluctuating global
averages, which slowed down the co-residency detection. A
surprising result is the fact that the vertical changes
had no significant impact on the performance compared to the
negative impact observed earlier.

In terms of event metrics, we have noticed only 1 event
(redirection) in all the test cases. The redirected host is the
adversary. However, redirection does not happen within the
20-second limit in all test cases. Overall, the proposed solution
achieves a test pass rate of 96.95% in the case of stale traffic,
and 97.77% for vertical changes. The highest observed time
is 23 seconds, which is just above the imposed limit. These
preliminary results are a strong indicative that the proposed

2025 21st International Conference on Network and Service Management (CNSM)

TABLE I
PERFORMANCE METRICS FOR SCENARIO 1. THE SOLUTION DEMONSTRATES FAST DETECTION TIMES AND HIGH ACCURACY WITH ZERO
FALSE-POSITIVES IN A STABLE TRAFFIC ENVIRONMENT

Traffic FPR FNR Pass Rate Accuracy Time to Redirect
Stale 0% 45.98% 100% 99.26% 6.39 sec.
Horizontal 0% 38.85% 100% 99.62% 6.20 sec.
Vertical 0% 49.86% 100% 99.43% 6.55 sec.
TABLE II

PERFORMANCE METRICS FOR SCENARIO 2. HIDEME’S PERFORMANCE IS DEGRADED BY INCONSISTENT BEHAVIOR

Traffic FPR FNR Pass Rate Accuracy Time to Redirect
Stale 0% 74.10% 96.95% 97.73% 14.99 sec.
Vertical 0% 80.40% 97.77% 97.96% 14.96 sec.

solution has potential for real-world applications, in which the
traffic behavior is more chaotic.

C. Key Takeaways

Referring back to the questions posed, the results (albeit
affected by artifacts) show that the adversary is successfully
redirected, and mitigation measures remain active for the
duration of the test case. Therefore, we have achieved 0
false positives at both packet and event level. Consistent
behavior proves to be the ideal scenario for HideMe, giving
an incredibly fast time of detection. When inconsistent host
behavior is introduced, HideMe maintains a test case pass rate
of more than 97% with an average time to detect lower than
20 seconds.

The effect of vertical changes varies between the
two scenarios, and we conclude that we require a third one to
be able to predict when a vertical change is beneficial
and when not. In future works we plan to scale up the
number of hosts and test for more complex scenarios where
the adversary employs evasive measures.

The number of connection initiations proved to be the key
metric to distinguish between co-residency probes and benign
traffic in the second scenario, while in the first one that role
was played by the average packet size. In scenarios closer
to reality, where benign behavior is inconsistent, the average
number of connection initiations provides a key discrepancy
between probes and benign usage.

VI. CONSIDERATIONS FOR OPERATORS

One of our contributions is releasing the source code of
the filtering algorithm. When refactoring the release, we have
opted to keep the integration effort to a minimum. Therefore,
our code was developed with the following attributes in mind:

o Hot Reloading: Changes in HideMe’s configuration are

detected at runtime, and the filter can re-purpose itself
around the new configuration.

o Modularity: The source code should be easily integrated

in larger, more complex modules.

o Self-containment: The source code should be self-

contained and should not make assumptions about the

underlying packet collection and host mitigation mecha-
nisms.

« Extensibility: The filtering algorithm should be easily
extensible to support new metrics.

Therefore, we have implemented the filtering algorithm in
a event-oriented fashion. The implementation communicates
with the rest of the system by publishing and subscribing for
events. Since the filtering mechanism is completely decoupled
from packet collection and host integration, it can be easily
included in any system, regardless of the network paradigm
they adhere to (if any) or the choice of technologies.

We provide more details on how to integrate and deploy
the solution on our public GitHub? repository. Currently, the
solution is intended for private and semi-private Clouds where
the operator knows the address of the servers intended for
protection.

VII. LIMITATIONS & FUTURE DIRECTIONS

First, our solution currently assumes a single behavior pat-
tern among benign users. Therefore, more research is required
to evaluate the performance of HideMe in scenarios where
hosts exhibit distinct behaviors. Furthermore, the test scenarios
can be expanded to evaluate the algorithm’s performance under
high stress scenarios, where P4 counter overflows or packet
drops due to overloads may occur.

Second, the threat model can be expanded to give the
adversary knowledge of the existence of a similar filtering
mechanism. This will prompt it to employ evasive actions such
as distributing the probes and adding random delays between
requests. We aim to quantify the impact of such measures
and answer if the current solution successfully combats these
evasive actions or if adjustments are required.

Third, our tests were conducted in a controlled and sim-
ulated environment. Through future research we aim to de-
termine whether there are noticeable differences between our
simulations and practical real-world deployment. This includes
dealing with overflow errors and reducing computation over-
head.

Zhttps://github.com/BNStanculete/CoResidency

2025 21st International Conference on Network and Service Management (CNSM)

Finally, through this research we present a lower-bound on
the amount of information needed to single-out co-residency
tests from benign behavior. Future research could assume
more knowledge (usually from the perspective of the network
operator) and identify key indicators of such probes which
would greatly improve performance and accuracy.

VIII. CONCLUSION

In this paper we have approached the problem of malicious
co-residency in the Cloud from a different perspective. Instead
of advocating for better placement strategies (which reduce the
odds of co-residency, but can still be beaten through persever-
ance), we propose a reactive method to deny the adversary the
knowledge of co-residency using minimal observable network
information.

Our approach is grounded in runtime behavioral analy-
sis and integrates seamlessly with event-driven architectures.
While traffic redirection introduces risks such as increased
latency, packet loss or SLA violations, our approach achieves
a 0% rate of false positives emphasizing its safety and practi-
cality.

Furthermore, the modular and self-contained design allows
for compatibility with virtually any infrastructure, including
SDN-based, hybrid or even legacy; without requiring major
changes. Through this work we aim to enable deployable, low-
risk reactive defensive measures against the co-resident threat.

REFERENCES

[1] D.Lowe and B. Galhotra, “An overview of pricing mod-
els for using cloud services with analysis on pay-per-use
model,” International Journal of Engineering & Tech-
nology, vol. 7, no. 3.12, 2018.

[2] A. N. Cirlan, “Mining for cost awareness in cloud
computing: A study of aws,” M.S. thesis, University
of Groningen, 2024.

[3] FE Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee,
“Last-level cache side-channel attacks are practical,” in
2015 IEEE symposium on security and privacy, IEEE,
2015.

[4] G. Irazoqui, T. Eisenbarth, and B. Sunar, “Cross pro-
cessor cache attacks,” in Proceedings of the 11th ACM
on Asia conference on computer and communications
security, 2016.

[5] Y. Zhang, A. Juels, A. Oprea, and M. K. Reiter,
“Homealone: Co-residency detection in the cloud via
side-channel analysis,” in 2011 IEEE symposium on
security and privacy, IEEE, 2011.

[6] A. Bates, B. Mood, J. Pletcher, H. Pruse, M. Valafar,
and K. Butler, “Detecting co-residency with active
traffic analysis techniques,” in Proceedings of the 2012
ACM Workshop on Cloud computing security workshop,
2012.

[7] A. Srivastava and N. Kumar, “A secure vm placement
strategy to defend against co-residence attack in cloud
datacentres,” International Journal of Computer Net-
work and Information Security, vol. 16, no. 2, 2024.

(8]

[9]

[11]

[12]

[15]

Y. Peng, X. Jiang, S. Wang, Y. Xiang, and L. Xing,
“An improved co-resident attack defense strategy based
on multi-level tenant classification in public cloud plat-
forms,” Electronics, vol. 13, no. 16, 2024.

F. Miao, L. Wang, and Z. Wu, “A vm placement based
approach to proactively mitigate co-resident attacks in
cloud,” in 2018 IEEE Symposium on Computers and
Communications (ISCC), IEEE, 2018.

Y. Qiu, Q. Shen, Y. Luo, C. Li, and Z. Wu, “A
secure virtual machine deployment strategy to re-
duce co-residency in cloud,” in 2017 IEEE Trust-
com/BigDataSE/ICESS, 1EEE, 2017.

X. Liang, X. Gui, A. Jian, and D. Ren, “Mitigating
cloud co-resident attacks via grouping-based virtual
machine placement strategy,” in 2017 IEEE 36th Inter-
national Performance Computing and Communications
Conference (IPCCC), 2017.

Y. Han, J. Chan, T. Alpcan, and C. Leckie, “Using
virtual machine allocation policies to defend against
co-resident attacks in cloud computing,” IEEE Trans-
actions on Dependable and Secure Computing, vol. 14,
no. 1, 2015.

A. O. F. Atya, Z. Qian, S. V. Krishnamurthy, T. La
Porta, P. McDaniel, and L. M. Marvel, “Catch me if
you can: A closer look at malicious co-residency on
the cloud,” IEEE/ACM Transactions on Networking,
vol. 27, no. 2, 2019.

P. Bosshart, D. Daly, G. Gibb, et al., “P4: Program-
ming protocol-independent packet processors,” ACM
SIGCOMM Computer Communication Review, vol. 44,
no. 3, 2014.

B. Lantz, B. Heller, and N. McKeown, “A network
in a laptop: Rapid prototyping for software-defined
networks,” in Proceedings of the 9th ACM SIGCOMM
Workshop on Hot Topics in Networks (HotNets), 2010.
S. §paéek, P. Velan, P. Celeda, and D. Tovarnak,
“Encrypted web traffic dataset: Event logs and packet
traces,” Data in Brief, vol. 42, 2022.

T. Bhagya, J. Dietrich, H. Guesgen, and S. Ver-
steeg, “Ghtraffic: A dataset for reproducible research
in service-oriented computing,” in 2018 IEEE Interna-
tional Conference on Web Services (ICWS), IEEE, 2018.
A. Bates, B. Mood, J. Pletcher, H. Pruse, M. Valafar,
and K. R. B. Butler, “On detecting co-resident cloud
instances using network flow watermarking techniques,”
International Journal of Information Security, vol. 13,
no. 2, 2014.

M. S. Inci, B. Gulmezoglu, T. Eisenbarth, and B. Sunar,
“Co-location detection on the cloud,” in Constructive
Side-Channel Analysis and Secure Design (COSADE),
ser. Lecture Notes in Computer Science, vol. 9689,
2016.

