
Learning Semantic Congestion Control
for Cyber Physical Systems

Polina Kutsevol, Yash Deshpande, Wolfgang Kellerer
Chair of Communication Networks, Technical University of Munich, Germany

Email: {polina.kutsevol, yash.deshpande, wolfgang.kellerer}@tum.de

Abstract—Goal-oriented (GO) semantic communication facil-
itates scaling modern networks with growing real-time traffic
generated within networked Cyber Physical Systems (CPSs).
Network resource management in GO communication prioritizes
data effectiveness for the application goal. This implies reducing
network resources allocated to low-priority information. Existing
GO approaches often lack generalization, because they tailor
particular network schemes to particular applications. In the
current work, we propose a practical GO scheme operating in
the transport layer (TL) middleware, i.e., not requiring specific
hardware or network structure. Using Reinforcement Learning
(RL), the proposed GO RL TL captures the potential contribution
of the currently sampled observed state to the real-time CPS
process evolution at the remote monitor. Together with the
network congestion level, the state’s effect on the application goal
determines whether the distributed sensors deploying GO RL TL
agents accept corresponding packets into the network or discard
them. The offline environment for training uses the real data
traces of traffic patterns and application dynamics. The model
generalizes to arbitrary network and application setups present
in traces by learning the corresponding inter-dependencies from
data. The extensive hardware tests witness the adaptability of
the proposed GO RL TL, as well as its superiority in application
performance compared to competitors. GO RL TL improves
remote estimation mean-squared error by 20% to 100% in static
network conditions, and by ∼30% in the dynamic setup.

I. INTRODUCTION

The modern advancements in networking technologies en-
able modular and more flexible setups of real-time Cyber
Physical Systems (CPSs). Industrial IoT, Smart Homes and
Cities, medical and robotic devices include more and more
communication-supported operations, often realized via wire-
less networks [1]. However, the communication capacities are
often not enough to promptly deliver massive amounts of
real-time sensory data. CPSs’ application performance is, in
turn, highly sensitive to network adverse effects. For instance,
Fig. 1 demonstrates the dynamics of a real-time control
process actuated towards zero. The periodically sampled state
measurements are transmitted to the actuator over a wireless
network. A fast sampling rate, as in the left plot of Fig. 1, leads
to increased network congestion and higher round-trip times
(RTTs). Only observing the delayed dynamics, the actuator
becomes less effective, and the process significantly deviates

The authors acknowledge the financial support by the Federal Ministry
of Research, Technology and Space of Germany in the programme of
“Souverän. Digital. Vernetzt.”. Joint project 6G-life, project identification
number: 16KISK002, and by the Bavarian State Ministry for Economic
Affairs, Regional Development and Energy (StMWi) project KI.FABRIK
(grant no. DIK0249).

0 10 20 30 400

10

20

30

40

St
at

e 
ab

s

0 10 20 30 40
Time steps 0 10 20 30 40 0

25
50
75
100
125
150

RT
T 

[m
s]

Fig. 1: Example dynamics of the process actuated towards zero set-
point, including fast, slow and state-based sampling. The actuator ob-
serves delayed state samples after the transmission over the network.
The bars’ x-coordinate corresponds to the transmission instance, and
the height of the bar - experienced round-trip time (RTT).

from the setpoint. That is, the application performance is
disturbed. A straightforward way to reduce congestion and,
by that, lower delays is to decrease the sampling rate, as
shown in the middle plot in Fig. 1. However, it can also
be detrimental because the process gets destabilized between
the actuation points. The natural solution to facilitate stability
when the transmission opportunities are limited is to trigger
measurements not periodically but when the deviation gets
higher, as given in the right plot in Fig. 1, i.e., directly include
the application content into decision-making.

This is an example of applying the novel concept of
semantic goal-oriented (GO) communication [2]. It is often
applied in the CPS field due to the strong dependence of
the CPS performance on the network conditions. Semantic
communication emphasized the significance of the transmitted
data for the communication purpose. Information crucial for
the application gets priority when managing scarce network
resources. Improved process stability in the right plot in Fig. 1
witnesses the benefits of the GO communications approach,
involving sampling the state measurements based on their
effect on further actuation.

A joint network application co-design often implies tailoring
specific communication mechanisms to specific applications
and considering nuanced application-network interplay. For
example, control theory approaches use precise network mod-
eling to ensure stability under network constraints [3] and
develop joint transmission-control strategies [4]. Network-
oriented schemes incorporate general mechanisms for real-
time applications [5], not tailored for particular CPSs. Alter-
natively, there are works proposing particular protocol modifi-
cations like scheduling over WiFi [6] or 5G [7]. Thus, existing
semantic communication approaches often have limited gener-

2025 21st International Conference on Network and Service Management (CNSM)

978-3-903176-75-1 ©2025 IFIP



alization capabilities. In networking, end-to-end transmission
control is realized at the Transport Layer (TL). Similarly,
we aim at hardware- and infrastructure-independent GO TL
design, enhancing end-to-end application performance for a
generic underlying network. We envision that software-based
GO TL can be implemented in the middleware between the
CPS application and the native networking TL. Thus, no
hardware modification or updates are required, enabling easy
deployment in practical setups with different wireless equip-
ment. Installing a custom middleware still relies on software
updates, which are, nevertheless, more feasible, owing to
the programmability of modern OS-based Systems on Chip
(SoC).1

Generally, GO approaches are evolving around the effec-
tiveness concept, which refers to the contribution of a certain
piece of data to the application goal [8]. For example, for
CPSs that involve remote monitoring, the sensor can consider
the expected improvement in the estimation accuracy when
evaluating the effectiveness of recent measurements. Certain
network structures, e.g., fixed delay setups with Bernoulli
dropouts, allow for the analytical modeling of the effectiveness
[3]. However, for general TL with unbounded and correlated
delays and packet losses, the propagation of data through the
network and its exact influence on the receiver in the future are
difficult to track. We propose utilizing a data-driven approach
to empirically capture the effect of transmitting the informa-
tion on the future application dynamics from experience. In
particular, the decision maker of our proposed GO TL is a
Reinforcement Learning (RL) agent. It is trained to identify
how the sensor’s decision to transmit or discard detected
data affects future system dynamics and which decision is
more beneficial to the application, given available network
resources.

RL is often utilized when dealing with decision mak-
ers interacting with dynamic environments, especially if the
environment’s state space is large. For example, multiple
recent studies [9]–[11] integrate RL into congestion control
mechanisms at TL, where the decision about the transmission
rate is made to fit the available bandwidth. Even when assisted
by RL, the existing TL approaches optimize the sending rate
for conventional networking metrics, such as throughput and
delay, which do not always translate to superior application
performance [12]. The CPS performance is directly considered
in the control theory field, often referring to RL to solve evolu-
tionary tasks and optimize the control strategy. For Networked
Control Systems (NCSs), communication cost is modeled as
an additional term in the optimization objective. RL is utilized
to jointly design transmission triggering and control policies
[4]. However, such works normally do not include a realistic
network but rather assign each transmission a constant cost.
The architecture we propose in this work considers both
the congestion status and explicit application performance.
Therefore, the GO RL-based TL (GO RL TL) can be applied

1For instance, from the SoCs discussed later and listed in Table I, the
majority are OS-based and support user-defined applications, simplifying the
software integration of the middleware TL.

in realistic setups and minimize network adverse effects on
the control efficiency in CPS.

An important practical issue of RL-based approaches ap-
plied for real-time control is the fact that the RL agent
often cannot train online using the physical plant directly,
because suboptimal decisions can irreversibly destabilize the
system. Constructing the model of the physical environment,
including its communication counterpart, requires considerable
effort and should be individualized for each networking setup.
In this work, we propose a framework that uses collected
network traces to build an offline environment for the RL
agent by recording possible state transitions in the historical
data, depending on the transmission decisions2. This method
generalizes to arbitrary communication scenarios and enables
capturing complicated network-application interdependencies
in an empirical way.

The contributions of this work are summarized as follows:

• We propose a semantic RL-based transport layer design
GO RL TL that targets the real-time CPS performance
improvement, without restricting to a particular applica-
tion or network structure. An RL agent integrated within
the CPS sensor decides whether to transmit or discard
sensed real-time process measurements based on their
effect on the control process evolution and the network
congestion level.

• The proposed framework solves practical issues of de-
ploying RL models by designing an offline environment
for training from the collected data traces. As a result, the
trained model can adapt to varying network conditions
present in the traces. The collected data traces, as well
as the source code for the offline environment, training,
and deploying the model are available in the open-source
repository [13].

• We perform an extensive experimental testing of the GO
RL TL using wireless IIoT Zolertia sensors [14], imple-
menting an IEEE 802.15.4 network stack [15]. We test
various control policies and scenarios with dynamically
changing congestion level. The proposed method is able
to outperform all the State of the Art (SotA) approaches
and demonstrates superior adaptation capabilities.

• To effectively manage SoCs constituting the majority of
CPS deployment, we present the guidelines on how the
Device Management entity can select a preferred TL
configuration. The choice depends on the SoC’s hardware
capabilities and required application performance, and
explores the RL model’s memory footprint-effectiveness
tradeoff. Considering multiple available SoC models, we
validate the feasibility of GO RL TL. Interestingly, for
particularly low storage capabilities, the GO RL TL is
not recommended.

2Note that online training necessitates suboptimal exploration decisions
in the deployment phase. Initial data collection for the offline environment
is more flexible and can be done prior to deployment, as we discuss in
Section V-D. Furthermore, the offline environment enables tuning the model
on the run without affecting the real CPS.

2025 21st International Conference on Network and Service Management (CNSM)



II. RELATED WORK

Utilizing RL for congestion control is becoming more
evident in recent research works and implementations [9]–
[11]. In contrast to conventional congestion control relying
on a set of pre-defined rules, RL-based schemes can be more
effective when adapting to non-stationary scenarios. Moreover,
exploiting a flexible reward design, the sending rate for various
streams can be adapted according to their specific require-
ments. These requirements, though, are still formulated using
conventional network metrics such as latency, reliability, and
throughput. Networking RL-based congestion control schemes
do not explicitly consider application performance, as semantic
approaches require.

When referring to control theory, the RL here is widely
utilized to define policies optimizing specific control objec-
tives. To limit the transmission frequency in NCSs, the com-
munication cost term can be integrated into the optimization
objective [4], [7], [16]. Such approaches, referred to as event-
triggering, normally cannot be extended to control the network
congestion level and do not include the influence of network
adverse effects on the real-time applications, which cannot be
ignored in general networking setups.

For the scenarios with predictable transmission outcomes,
i.e., for scheduling transmissions within time slots, the works
[17]–[19] propose centralized RL approaches maximizing ap-
plication performance. In contrast, the works [20]–[22] tackle
the distributed transmission control design using multi-agent
RL (MARL). [21] integrates constant communication cost
into the objective, while agents are pre-trained with multiple
cost values to generalize for various congestion levels. Both
training and testing are performed in the simulator, but control
loops do not influence each other through the network during
training. In the tests with multiple loops, the communication
cost converges to the value where the loops also do not
affect each other. Therefore, it is not clear how the approach
proposed in [21] will perform in real scenarios where this
mutual influence persists. The work [22] mentions the ability
to generalize for different networking scenarios. However, it
performs training and testing in the same simulator, which
puts the efficiency of the proposed distributed transmission
schemes in the real world in question. Incorporating non-
negligible network delays and losses is the main difference
of this work from [21], [22] because of the time causality that
changes the environment construction.

Similar feasibility issues are common for all the RL-based
transmission techniques for control applications. RL methods
require either an online setting or a precise environment simu-
lation [23]. An online setting is used for RL-based congestion
control, but it is not feasible for real-time mission-critical
CPSs. The abstract simulators cannot assure the translation of
the superior RL performance into real life. Detailed simulators
have to be tailored to a specific scenario and do not generalize.
In this work, we solve this issue by using historical data to
construct an offline environment model. Such a design not only
enhances the practical feasibility of the proposed GO RL TL,

Fig. 2: Framework overview, including 1) pre-training (traces collec-
tion); 2) offline training; and 3) model distribution and deployment.

but also introduces versatility in a wide range of applications
and networking setups.

III. SYSTEM MODEL

We consider a set of N dynamic processes, where the
remote sensors Si observe the real-time state of the physical
plants Pi, as illustrated in the bottom of Fig. 2. The sensors
transmit observations to the monitors Mi over an arbitrary
network, where the received data is used for estimation of the
current process state and possibly for further plant actuation
to the desired set point. This scenario is the generalization
of the setups we considered in our previous work [12],
[24]. The typical CPS use-cases include cruise [21], process,
temperature control, robotics [22], and trajectory tracking [6].
3GPP specifies delay requirements of 10 − 40ms for such
real-time systems. The discrete plant state dynamics have the
following form:

xi[k + 1] = f(xi[k],ui[k],ωi[k]), (1)

with xi[k] ∈ Rn denoting the state of the plant Pi at time
step k, ui[k] ∈ Rm being a control input, and ωi[k] ∈ Rn

is a Gaussian process noise. Example process dynamics is
illustrated in Fig. 1.

Due to network adverse effects, such as communication
delays and losses, the monitor is not guaranteed to receive all
actual state measurements. Therefore, it builds an estimation
of the current state based on past measurements. If at the
time step k, the controller receives a measurement xi[ν(k)]
generated at time step ν(k), it updates an Minimum Mean
Squared Error (MMSE) estimation x̂i[t] of the plant state for
time steps t ∈ [ν(k), k] as follows:

x̂i[t] =


xi[t], if t = ν(k),

E[f(x̂i[t− 1],ui[t− 1],ωi[t− 1])|
|x̂i[t− 1],ui[t− 1]], otherwise.

(2)
In other words, the controller uses a fresh state as an estimation
if it is available. Otherwise, it propagates the last available
state according to the process model (1) to get an MMSE
estimation for the current time step.

2025 21st International Conference on Network and Service Management (CNSM)



If the monitor’s ultimate objective is to drive the plant to
a reference setpoint, the controller uses current estimation
x̂i[k] to define an actuation input ui[k]. We do not enforce
a particular control algorithm to determine ui[k]. The control
strategies used for our evaluations are given in Section V.

In the context of real-time monitoring and control, the
receiver benefits from more timely sensor data because this
data refines the estimation and facilitates efficient actuation.
On the other hand, each transmission consumes network
resources, potentially increasing the congestion level and dis-
turbing the timely delivery of other measurements that can be
of higher significance. An overarching optimization problem
lies in defining a distributed goal-oriented transport layer
admission scheme π applied by the sensor to filter the
most significant data for the application, given the available
network resources. At each time step, the sensor Si calculates
δi[k] = πi(si[k]) ∈ {0, 1} that dictates the decision regarding
admitting xi[k] to the underlying network. Here, si[k] is the
overall process state perceived by the sensor. Admitted packets
are passed down the network stack to the networking TL
responsible for establishing and keeping the connection to
the receiver. The GO TL cannot further affect the status of
the transmitted packet, meaning that the proposed mechanism
does not induce any hardware modifications to the setup.
Upon receiving a packet containing the state measurement,
the controller issues the transmission of the reception acknowl-
edgment (ACK). Similar to data packets, ACK packets can be
delayed or lost in the network. Packets rejected by the goal-
oriented TL are discarded without further consideration.

We do not put any limitations on the network structure.
The only requirement is the ability of the sensor to interface
to the networking TL and acquire the current network status of
previously transmitted packets, i.e., whether they are already
ACKed, considered lost due to ACK timeout, or their status
is yet unknown3.

IV. REINFORCEMENT LEARNING MODEL

The sensor’s decision to accept or reject a sample af-
fects the overall system state, including not only fu-
ture receiver’s actions in this particular loop, but also
the network congestion state and, consequently, other net-
work users. This dynamic system can be described by the
Markov Decision Process (MDP) model defined by the tu-
ple (S,A, Pa(st, st+1), Ra(st, st+1)). Here, S defines a state
space, A is a set of admissible actions, Pa(st, st+1) is the
transition probability between states depending on the taken
action, and Ra(st, st+1) is the one-stage reward. The ultimate
goal of the decision maker is to maximize the cumulative
discounted reward. The achieved maximum is defined as:

Q∗(s0) = max
at=π∗(st)

∞∑
t=0

γt
∑
st+1

Pat(st, st+1)Rat(st, st+1),

(3)
3Note that triggering ACK at the receiver can also be done by the

application process, i.e., we do not assume any reliability mechanism for
the underlying networking TL.

where γ is a discount factor. The policy of interest π∗(st)
achieving Q∗(s0) can be found by solving the functional
Bellman equation:

Q∗(s) = max
a

∑
s′

(Pa(st, st+1)Ra(st, st+1) + γQ∗(st+1)).

(4)
(4) is solved iteratively via updating Q(s) with currently
optimal actions until the left and right sides of (4) converge.

Next, we define the components of MDP for the considered
CPS setup. Sensors’ decisions at TL are done locally in a
distributed manner, with no interaction between sensors, apart
from mutual influence through the communication network.
Therefore, the action space A is defined by δ[k] ∈ {0, 1}
for accepting or discarding the recent state measurement.4

To design a semantic TL facilitating the application goal and
congestion control, the reward includes two terms:

Ra(st, st+1) = Ra,app(st, st+1) +Ra,comm(st, st+1), (5)

where Ra,app(st, st+1) reflects a contribution of the decision a
into the monitoring or control objective and Ra,comm(st, st+1)
is a communication cost for increasing the congestion level.

Individual sensors cannot observe the overall system state,
because they do not have access to all the components of the
underlying network. The network state is defined through the
current and past decisions of all the network users and com-
munication mechanisms along the network path. Therefore,
the considered MDP process is partially observed (POMDP),
and sensor observations are not necessarily Markovian5. Such
systems can be tackled by including a context and defining an
MDP state by the window of past observations and decisions
[25]. As a result, a POMDP is approximated with a classical
MDP, solved with conventional optimization methods. We
define a state of the approximate MDP at time step k as:

sk = (p[k−W ], p[k−W + 1], ... , p[k− 1], T [k],x[k]), (6)

including the tags p[t] for past TL decisions in the window of
W time steps and corresponding transmission statuses:

p[t] =


0, if δ[t] = 0,

1, if δ[t] = 1 and x[t] is ACKed,
2, if δ[t] = 1 and x[t] is not ACKed.

(7)

T [k] reflects the current network state in terms of achieved
throughput over the window WT >> W , i.e., WT is suffi-
ciently large to capture the bandwidth available to a certain
sender-receiver pair:

T [t] =

∑t−1
i=t−WT

p[i]|(p[i] = 1)∑t−1
i=t−WT

d[i]|(p[i] = 1)
, (8)

where d[i] is the delay of the packet containing x[i] extracted
from the corresponding ACK. T [t] is the total packet data rate

4From now on, we omit the index identifying a control loop for the sake
of notation simplicity.

5These are the reasons for stability issues if the problem is tackled by
MARL with an objective to achieve the global control performance, and
the decision space being the combination of all the local decisions. Another
complication is a variable number of agents. Therefore, similarly to [21], we
solve the problem independently for a single agent, while the decisions of
others are part of the stochastic environment evolution.

2025 21st International Conference on Network and Service Management (CNSM)



over WT in pkt/ms. We stress that the state only includes the
variables directly observed by the sensor.

In (5), the application counterpart Ra,app(st, st+1) repre-
sents the effectiveness of st+1 w.r.t. the application goal.
For instance, if the monitoring task is considered, the sensor
uses st+1 to infer the expected controller estimation error. In
this work, we focus on real-time control, and the application
performance is measured by the deviation of the plant state
x[t+ 1] from the reference.

To prevent network over-utilization when admitting the
packet, we define Ra,comm(st, st+1) to be proportional to
the instantaneous sending rate. With that, we reduce bursts of
admitted packets, detrimental to real-time applications due to
network buffering. If the sensor observes a lower bandwidth,
it should be more conservative when admitting further pack-
ets. Therefore, Ra,comm(st, st+1) is inversely proportional to
T [t+ 1]:

Ra,comm(st, st+1) = −a×
∑t1

i=t−W p[i]|(p[i] > 0)

T [t+ 1]
. (9)

As follows from (9), discarding the packet, i.e., a = δ[t] = 0
does not incur communication cost.

The last component of MDP is the transition model
Pa(st, st+1). For realistic network setups, building the detailed
environment model is not feasible. RL can handle model-free
scenarios by learning the transitions via direct interactions with
an environment. When designing a TL as an enhancement
for existing CPS setups, suboptimal interactions can disturb
the stability of the involved control loops. Moreover, online
RL would require the sensors to perform training locally,
demanding considerable computing resources. Real-life de-
ployments often feature low-cost SoCs that do not provide
such capabilities. We address these issues by designing a data-
driven offline environment from past traces collected from the
considered deployment. The training of π∗ can be done using
remote compute resources, i.e., in the Device Management
entity in the edge or cloud server.

In detail, we reshape the collected dynamics of {p[t]},
quantized {x[t]}, and {T [t]} to form the states st and record
all the consecutive (st, st+1) pairs. For each unique st, we
record the list L(st) of observed st+1. To limit the mem-
ory footprint of the model, the lists containing more than
100 entries are truncated, so their probability distribution is
maintained. The resulting dictionary {st, L(st)} represents an
empirical environment model. Real transitions are emulated
by sampling a random entry from L(st), without the need for
direct interaction with the environment.

The state dimensionality increases exponentially with W ,
constraining the usage of dynamic programming to find exact
π∗. It would require iterating over all the states at each
optimization round. Moreover, policy and value iteration are
sensitive to potential model errors w.r.t. the real environment.
These facts motivate an offline RL approach that learns the Q-
function iteratively from a subset of sampled state transitions.

The overall framework is depicted in Fig. 2. The sensors
collect observation traces, including process dynamics and
ACK statistics, before deploying an RL agent, and transfer

them to the Device Management entity. This data is used to
build an offline environment for training. We stress that the
environment reflects the network configurations available in
data traces. For instance, if the data were collected in scenarios
featuring both scarce and unconstrained network resources,
the offline model would be able to emulate typical system
evolution in any of the present settings.

The offline Q-network maps each possible system state st to
the Q-function value Q∗(st). Due to high state dimensionality,
we use a neural network for this mapping. The resulting deep
Q-network (DQN) [26] includes a replay buffer that stores
sampled transitions and serves as a source of uncorrelated
inputs for training the target and Q neural networks. The
target network is updated less frequently than the Q-network
to facilitate learning stability.

The distributed trained policy π∗ that maps the state to a
binary action - an admission decision - is populated back to
all the sensors. Now, the sensors can make an instantaneous
TL decision based on the real-time observed system state.
We envision that the sensor can continue collecting data
traces, so the offline model can be augmented if the network
conditions drastically change, and the agent can be post-trained
accordingly. However, implementing such a setup is left for
future work.

V. USE-CASE SCENARIOS

In our evaluations, we focus on the use-case of controlling
a linear plant, where the monitors Mi aim to drive the plant
to the zero set-point by applying a control input ui[k], as
illustrated at the bottom of Fig. 2. Linear models are widely
utilized in control theory research and in practice due to their
simplicity and efficiency [3], [7], [17]. Keeping the plant in the
desired position is an ultimate real-time application objective
assisted by GO RL TL. To demonstrate the versatility of our
approach against various application parameters, we explore
two types of control laws: a Linear Quadratic Gaussian (LQG)
controller [27] and a Proportional-Integral-Derivative (PID)
controller [28].

We use Linear Time-Invariant plant state model that reads
as:

xi[k + 1] = Aixi[k] +Biui[k] + ωi[k], (10)

where Ai and Bi are state and input matrices defined by the
application. Under this model, the MMSE estimation takes the
following form:

x̂i[k] = A
∆i[k]
i xi[νi(k)] +

∆i[k]∑
q=1

Aq−1
i Biui[k − q], (11)

where ∆i[k] = k− νi(k) is an instantaneous Age of Informa-
tion (AoI) at the receiver. 6

A. LQG controller

The LQG controller is proven to be optimal to minimize an
LQG cost under scenarios satisfying the separation principle,

6AoI captures timeliness and is one of the semi-semantic metrics widely
used for real-time applications. In this work, we compare the effectiveness of
the AoI-based schemes to the methods considering the information content
beyond age.

2025 21st International Conference on Network and Service Management (CNSM)



i.e., where the observer and the controller function can be
designed individually. The LQG cost is defined as:

Ji ≜ lim sup
T →∞

(
1

T

T −1∑
k=0

(xi,k)
TQixi,k + (ui,k)

TRiui,k

)
,

(12)
where Qi and Ri are weighting parameters. The control law
minimizing (12) reads as:

ui,k = −Kix̂i,k, (13)

in which Ki can be calculated numerically [27]. The LQG
controller is not optimal in many realistic scenarios, e.g., when
there is no perfect monitor-sensor ACK link7. A suboptimal
LQG controller is still popular due to its straightforward design
and usage. The Go RL TL is designed to improve application
performance in real setups. Thus, the demonstration of the
enhancement of the ultimate LQG control performance has
a significant practical value. A similar conclusion applies to
a PID controller, one of the most popular controllers for
industrial applications.
B. PID controller

PID controllers are popular within a wide range of scenarios
due to their simplicity of operation and tuning. The actuation
input of the PID controller includes three terms:

ui[k] = −Kp,ix̂i[k]−Ki,i

k∑
t=0

x̂i[t]−Kd,i(x̂i[k]−x̂i[k−1]).

(14)
The first proportional term is tuned by the Kp,i parameter.

It eliminates existing state error w.r.t. the zero set-point. The
second integral term defined through Ki,i corrects the remain-
ing accumulated steady-state errors. Finally, the differential
term set by Kd,i dampens the applied force. The utilized PID
parameters are available at [13].

C. Communication scenario

GO RL TL we propose in this work is integrated through
middleware and generalizes for different communication net-
works. For the evaluation, we use a real setup featuring low-
power, low-cost Zolertia ReMote wireless sensors [14] tailored
for industrial applications. The sensors implement an IEEE
802.15.4 communication stack [15] at the Medium Access
Control (MAC) and lower OSI layers, supporting up to 250
kbps data rate. A contention-based access scheme implies
a strong mutual influence of individual control loops on
each other through the communication network. The sensors
attempt to access the wireless channel randomly, leading to
collisions, which, in turn, magnify the experienced delays and
packet drop rates 8.

The application dynamics for each loop are emulated on
the PC as independent processes. One process is for the plant
and the sensor sampling its state, and one for the controller.
Every 10ms, sensors form a separate packet with a current

7We refer the reader to our previous work [12], [24] for more detailed
discussion on applying GO TL with LQG controllers.

8Testing different network scenarios, i.e., control over the Internet, is an
important direction for future work.

state. As we have shown in [12], for such fast dynamics, the
sensors have to discard some of the observed data. Otherwise,
the generated traffic overwhelms the network, and the loops
are destabilized. GO RL TL prioritizes more significant data
that is pushed to the ReMote associated with the sensor for
further wireless transmission to the ReMote corresponding to
the controller. All the data received by the second ReMote is
transferred to the controller process on the PC, which performs
real-time plant actuation. The controller Zolertia replies with
an ACK after each successful reception.

D. Training Framework

The data for the offline environment model is collected
by running 1 to 5 LQG or PID control loops, with sensors
randomly accepting state measurements. We vary average
traffic generation rates to capture all the feasible congestion
levels. It is essential that collected traces capture various
network conditions and the effect of different traffic patterns
on the congestion level. An important direction for future work
is defining the boundaries of RL generalization, i.e., exploiting
trained GO RL TL with more real loops than have been
present in the traces. We envision that instead of running the
real control process, one can collect the network-related statis-
tics, i.e., the transmission timestamps and the delay samples.
Using these inputs, the corresponding application dynamics
can be reconstructed with the help of the available control
emulators. In that way, one can avoid operating a mission-
critical system with a suboptimal transmission scheme. If the
GO RL TL scheme is integrated into the existing setup,
previously collected network traces can be reused.

We train one agent for the LQG controller and one for
the PID controller, which can be utilized for any network
configuration. Target and Q-networks within the DQN Agent
are deep neural networks with 3 fully connected layers, 2
activation and 2 normalization layers in between. The model
parameters, as well as other relevant numerical values, are
given at [13], together with the collected data and model
source code.

VI. EXPERIMENTAL RESULTS

To analyze the performance of the proposed RL TL, we
compare it to the following benchmarks:

• Zero-Wait Event-Triggering (ZW ET) accepts the up-
dates to the network when the deviation between the
measured state and the augmented controller estimation
exceeds the threshold 9. To avoid potential buffering,
further packets are not accepted when there are active
Outstanding Packets (OPs) awaiting ACKs. We have
proposed ZW ET as a proof of concept for GO TL in
our previous work [12].

• Age Control Protocol (ACP) is a SotA TL scheme that
adapts the sending rate to minimize AoI at the receiver
[5]. Using ACKs, ACP tracks the changes in the amount

9The sensor replicates the controller process to augment its current estima-
tion. From the sensor perspective, the controller is aware of ACKed packets
only. Uncertainty regarding the exact controller state creates a mismatch
between the augmented by sensor and real estimation.

2025 21st International Conference on Network and Service Management (CNSM)



1 2 3 4 5
Number of loops

5

10

15

20

25

30
M

SE
LQG controller

GO RL TL
ZW ET
ACP
WiSwarm
VoU

1 2 3 4 5
Number of loops

5

10

15

20

M
SE

PID controller
GO RL TL
ZW ET
ACP
WiSwarm
VoU

Fig. 3: Experimental MSE of benchmark TLs compared to the
proposed GO RL TL when the number of control loops is fixed
throughout a run.

of backlogged packets and adjusts it to reduce AoI.
This scheme only considers data timeliness and does not
include its effectiveness.

• WiSwarm is a SotA approach [6] designed for the TL
scheduling over WiFi. The centralized entity, aware of
the exact state of all the sensors, grants the transmission
opportunity to one loop at each time step, prioritizing
maximum Whittle index, a function of AoI and ex-
act estimation error. This scheme cannot be integrated
into distributed setups and serves as an interference-free
benchmark.

• Value of Information (VoU) - based TL is the scheme
we proposed in [24]. There, the sensor evaluates the
efficiency of sampled updates by augmenting the esti-
mation error and compares it to a dynamic congestion-
aware transmission cost scaled by the threshold. ZW
ET disregards the OPs’ influence on the augmentation.
In contrast, VoU uses an abstract network model to
estimate the network status of OPs and their influence
on estimation.

Note that in [12], we have shown that the conventional
schemes, such as TCP, UDP, and classical event-triggering
from control theory, do not sustain system stability under the
same network conditions as in the current work.

As an application performance metric, we consider the mean
squared error (MSE) of state deviation from the zero set point.
For each scheme, we perform 5 simulation runs, each by 5000
time steps, i.e., 50s. As a result, for each control loop, for each
run, we get:

MSE =
1

4001

5000∑
k=1000

xi[k]
2, (15)

where the first 1000 time steps are excluded to eliminate
transient phase influence.

1 2 3 4 5
Number of loops

40

50

60

Pe
r l

oo
p 

th
ro

ug
hp

ut
, p

kt
/s

PID controller
GO RL TL
ZW ET
ACP
WiSwarm
VoU

1 2 3 4 5
Number of loops

0.1

0.2

0.3

0.4

0.5

0.6

Tr
af

fic
 R

at
io

PID controller
GO RL TL
ZW ET
ACP
WiSwarm
VoU

Fig. 4: Experimental throughput per loop and the ratio of transmitted
traffic w.r.t. all the sensed data of benchmark TLs compared to the
proposed GO RL TL.

A. Static number of control loops

In the first set of experiments, we fix the number of active
control loops. The results are shown in Fig. 3 and 4. For the
threshold-based schemes (ZW ET, VoU), we manually pick
the best-performing threshold for a given number of loops10.
GO RL TL, ACP, and WiSwarm adapt to the instantaneous
network state and do not require adjusting the parameters.

Similar trends can be observed for both controller types:
LQG and PID. First of all, ACP, the only method not consider-
ing the data effectiveness, leads to the worst application perfor-
mance, especially with a high congestion level. Nevertheless,
as shown in Fig. 4, ACP maintains a conservative sending
rate, preventing congestion and consistently showing high
throughput. Therefore, optimizing for conventional networking
metrics such as throughput does not ensure the application
performance. All other techniques keep MSE limited for up
to 5 control loops. More advanced triggering method VoU
consistently outperforms ZW ET, suggesting that a more
elaborate analysis of effectiveness-transmission cost tradeoff is
a promising approach in GO TL. On average, VoU allows for
more traffic, sacrificing the throughput, and therefore higher
congestion level and higher delays. Nevertheless, by getting
more important status updates through the network, VoU
improves MSE. Centralized WiSwarm naturally adapts to
a varying number of users requesting resources. Combined
with the application weights explicitly including the estimation
error, WiSwarm provides a competitive performance. The
transmission coordination enabled by scheduling puts both the
traffic amount and the throughput to a maximum among other
methods, witnessing effective congestion avoidance. Unfortu-

10For higher congestion levels, i.e., more loops, a greater threshold value
assures that the sensor maintains a conservative sending rate, and only the
most significant data is transmitted.

2025 21st International Conference on Network and Service Management (CNSM)



nately, WiSwarm cannot be used in arbitrary scenarios where
a centralized scheduler and instant access to estimation errors
cannot be provided.

Most importantly, fully distributed GO RL TL outperforms
all other techniques for N ≥ 3. If the network resources are
over-provisioned, e.g., with N = 1, the best performance is
achieved when all the state measurements are admitted to
the network. GO RL TL does not cover this corner case
and, therefore, performs slightly worse. The reason is that the
model is unified for varying congestion levels. Even with mild
network constraints, transmitting bursts of packets can result
in the complete loop destabilization. In contrast, lowering the
sending rate w.r.t. the optimal does not have such a significant
effect. The RL model behaves more conservatively to avoid
drastic performance degradation. To sum up, the ability of RL
to generalize comes with suboptimal performance for corner
cases. Nevertheless, for more scarce network resources, the
GO RL TL scheme shows at least 20% better MSE than
other benchmarks for the PID controller and almost 100%
better for the LQG controller. Similar to VoU, the GO RL
TL optimizes the transmission decisions to minimize future
MSE. The network-related performance of GO RL TL and
VoU is also similar, i.e., higher congestion level as the price
for more updates being delivered and better resulting MSE.
The difference is that the data-driven offline environment
used for RL captures the update effectiveness even if the
corresponding packet faces delays and losses that are hard
to model analytically11. Moreover, GO RL TL does not
require threshold adaptation to a particular congestion level,
as opposed to VoU. To sum up on the evolution of our
own work, the superior ability of VoU w.r.t. ZW ET and
of GO RL TL w.r.t. VoU to generalize for different network
conditions translates into better application performance of the
corresponding TL methods.

B. Dynamic number of heterogeneous control loops

In the next experiment, we test the adaptability of the dif-
ferent TL schemes to dynamic network conditions. Moreover,
instead of homogeneous controllers of the same type, the new
setting features heterogeneous applications. In more detail, the
maximum number of simultaneously active control loops is
fixed to 5, 2 of which implement a PID controller and 3 -
an LQG controller. An application process within each loop
wakes up and suspends according to random patterns following
an exponential distribution. As a result, the number of active
loops and the congestion level change randomly over time.
homogeneous For ZW ET and VoU, we pick the thresholds
conservatively, such that the applications do not destabilize
for the maximum expected congestion. For GO RL TL, the
sensors within PID and LQG loops deploy the models trained
with PID or LQG data, respectively. Note that for the offline
environment built for the PID controller, no data from the
mixed setup has been used, and vice versa. Therefore, this

11Note that WiSwarm avoids the necessity for such modeling due to
scheduled transmissions with constant one-slot delays.

GO RL T
L
ZW ET ACP

WiSwarm VoU

TL Method

101

102

M
SE

(a) Experimental MSE of bensh-
mark TLs compared to the pro-
posed GO RL TL for a dynamic
setup.

GO
 R

L 
TL

, 
 1

.2
 M

B
GO

 R
L 

TL
, 

 0
.6

 M
B

GO
 R

L 
TL

, 
 0

.3
 M

B
GO

 R
L 

TL
, 

 0
.1

5 
M

B Vo
U

TL Method

10

20

30

40

50

M
SE

(b) The MSE performance re-
duction if GO RL TL model is
truncated.

experiment verifies whether the RL model can generalize to
application configurations not present in the traces.

The results presented in Fig. 5a show that GO RL TL
outperforms WiSwarm and VoU by 30%, whereas ZW ET
and ACP perform considerably worse. VoU results in a sig-
nificant spread in recorded MSEs, meaning that some control
loops experience much higher state deviations. The WiSwarm
adaptation capability is natural due to the presence of the cen-
tralized scheduler. The proposed fully distributed GO RL TL
method exhibits consistently lower MSE while not requiring
any modifications to the RL models. We conclude that building
an environment that reflects the effect of different network
conditions on the particular control application is sufficient to
achieve high performance for the corresponding control loops
in divergent scenarios, where other traffic can be initiated by
arbitrary users.

C. Model Management in Practice

The superior GO RL TL performance comes with certain
training and deployment overheads. Training requires network
traces for building an offline environment, as well as server
compute resources. The training time, which is < 1h, does not
bring significant overhead, since it is done offline. However,
even if it is feasible to train the model, the local resources
of the SoCs deploying the RL model may not be enough
to operate it. A neural network within the RL model has
< 1ms inference time, which is not a significant addition to
the overall latency and fits within a 10ms sampling period. For
comparison, the inference is slower than the time required for
the decision of ZW ET, ACP, or WiSwarm, but considerably
faster than VoU, which takes up to 2ms [24].

Importantly, the model has to be stored in the sensor’s RAM,
which is often limited for low-cost devices. For instance,
the full model size for our parameters is ∼1.2MB. If local
RAM on SoCs is not enough, or if the deployment has mild
MSE demands, the model’s weights can be truncated without
the need for retraining, and its volume can be compressed.
Fig. 5b represents MSE performance when the full RL model
is deployed, and when its size is truncated. Up to 4-x size
reduction, the GO RL TL scheme still outperforms VoU.
However, if the model is truncated too drastically, deploying
GO RL TL is not beneficial, and the Device Management

2025 21st International Conference on Network and Service Management (CNSM)



SoC Model Protocol Support RAM Extendable
RW612 WiFi, 802.15.4 1.2MB 8MB
CC355xE WiFi 1MB 8MB
nRF54H20 802.15.4 1MB No
ESP32-S2 / H2 WiFi, 802.15.4 320kB 8MB
SiWx917Y WiFi 672kB 2MB
RTL8762G 802.15.4 384kB No
nRF52840 802.15.4 256kB No

TABLE I: Wireless SoCs supporting the WiFi or IEEE 802.15.4
protocols with different on-chip RAM capacity.

entity can suggest the VoU TL middleware instead, which has
a much smaller memory footprint. Indeed, VoU only requires
storing some ACK statistics, which do not have to be located
in RAM, the most constrained memory. Additionally, simple
models can be preferred over GO RL TL if it is expected
that network resources remain overprovisioned. In that case,
the straightforward ZW ET can show superior performance
at no operational costs.

Table I shows some exemplary wireless SoCs with on-chip
and extendable RAM capacity. It shows that a wide range of
capacities are available from different vendors for both WiFi
and 802.15.4 protocols. Many SoCs can natively accommodate
the 2-x size reduced model of GO RL TL. Extendable RAM
makes even a full-sized GO RL TL suitable for a wider range
of SoCs.

VII. CONCLUSION

In the current work, we have presented a highly practical
solution that enhances the networked CPS performance by 20
to 100%. Namely, we propose a semantic RL-based transport
layer middleware that enables distributed filtering of real-
time sensory data, facilitating both the CPS efficiency and
end-to-end congestion control.The data-driven approach brings
adaptability and versatility that are often missing in exist-
ing semantic communication mechanisms. However, particular
deployments have to carefully consider the tradeoffs related
to the need for data traces, as well as compute and storage
demands for training and inference. An important direction
for further work is online model adaptation to unforeseen
deployment changes. We envision that the Device Management
can continue training in the background using new data, and
local models will be updated upon divergence. A pre-trained
model that avoids network over-utilization can serve as an
initialization and as a rollback in case of unseen network
conditions. It is useful during training and model adaptation,
which time is not negligible for an online setting.

REFERENCES

[1] M. Bernas, A. Mykytyshyn, V. Kartashov, V. Levytskyi, and D. Mart-
janov, “The role of cyber-physical systems and internet of things in
development smart cities for industry 4.0.” in CITI, 2023, pp. 91–102.

[2] E. Uysal, O. Kaya, A. Ephremides, J. Gross, M. Codreanu, P. Popovski,
M. Assaad, G. Liva, A. Munari, B. Soret et al., “Semantic communi-
cations in networked systems: A data significance perspective,” IEEE
Network, vol. 36, no. 4, pp. 233–240, 2022.

[3] T. Chang, X. Cao, and W. X. Zheng, “A lightweight sensor scheduler
based on aoi function for remote state estimation over lossy wireless
channels,” IEEE Transactions on Automatic Control, vol. 69, no. 3, pp.
1697–1704, 2023.

[4] N. Funk, D. Baumann, V. Berenz, and S. Trimpe, “Learning event-
triggered control from data through joint optimization,” IFAC Journal
of Systems and Control, vol. 16, p. 100144, 2021.

[5] T. Shreedhar, S. K. Kaul, and R. D. Yates, “An age control transport
protocol for delivering fresh updates in the internet-of-things,” in 2019
IEEE WoWMoM. IEEE, 2019, pp. 1–7.

[6] V. Tripathi, I. Kadota, E. Tal, M. S. Rahman, A. Warren, S. Karaman, and
E. Modiano, “Wiswarm: Age-of-information-based wireless networking
for collaborative teams of uavs,” in IEEE INFOCOM 2023-. IEEE,
2023, pp. 1–10.

[7] A. Termehchi and M. Rasti, “A learning approach for joint design of
event-triggered control and power-efficient resource allocation,” IEEE
Transactions on Vehicular Technology, vol. 71, no. 6, pp. 6322–6334,
2022.

[8] F. Alawad and F. A. Kraemer, “Value of information in wireless sensor
network applications and the iot: A review,” IEEE Sensors Journal,
vol. 22, no. 10, pp. 9228–9245, 2022.

[9] N. Jay, N. Rotman, B. Godfrey, M. Schapira, and A. Tamar, “A deep
reinforcement learning perspective on internet congestion control,” in
International Conference on Machine Learning. PMLR, 2019, pp.
3050–3059.

[10] X. Nie, Y. Zhao, Z. Li, G. Chen, K. Sui, J. Zhang, Z. Ye, and D. Pei,
“Dynamic tcp initial windows and congestion control schemes through
reinforcement learning,” IEEE JSAC, vol. 37, no. 6, pp. 1231–1247,
2019.

[11] Y. Chen, H. Shi, Q. Weng, and Z. Shi, “Congestion control design of
multicast quic based on reinforcement learning,” in 2023 International
Conference on Ubiquitous Communication. IEEE, 2023, pp. 232–236.

[12] P. Kutsevol, O. Ayan, N. Pappas, and W. Kellerer, “Experimental study
of transport layer protocols for wireless networked control systems,” in
2023 20th Annual IEEE SECON. IEEE, 2023, pp. 438–446.

[13] “Goal-oriented rl transport layer,” 2025, the GitHub repository is avail-
able at: https://github.com/pkutsevol/GoRlTl.

[14] “Zolertia Remote: Lightweight Internet of Things hardware development
platform,” https://zolertia.io/product/re-mote/.

[15] “Ieee standard for low-rate wireless networks,” IEEE Std 802.15.4-2015
(Revision of IEEE Std 802.15.4-2011), 2016.

[16] D. Baumann, J.-J. Zhu, G. Martius, and S. Trimpe, “Deep reinforcement
learning for event-triggered control,” in 2018 IEEE CDC. IEEE, 2018,
pp. 943–950.

[17] J. Holm, F. Chiariotti, A. E. Kalør, B. Soret, T. B. Pedersen, and
P. Popovski, “Goal-oriented scheduling in sensor networks with applica-
tion timing awareness,” IEEE Transactions on Communications, vol. 71,
no. 8, pp. 4513–4527, 2023.

[18] B. Demirel, A. Ramaswamy, D. E. Quevedo, and H. Karl, “Deepcas:
A deep reinforcement learning algorithm for control-aware scheduling,”
IEEE Control Systems Letters, vol. 2, no. 4, pp. 737–742, 2018.

[19] A. S. Leong, A. Ramaswamy, D. E. Quevedo, H. Karl, and L. Shi, “Deep
reinforcement learning for wireless sensor scheduling in cyber–physical
systems,” Automatica, vol. 113, p. 108759, 2020.

[20] Y. Deshpande, O. Ayan, and W. Kellerer, “Improving aoi via learning-
based distributed mac in wireless networks,” in IEEE INFOCOM 2022,
2022, pp. 1–8.

[21] Z. Jiang, Z. Cao, S. Fu, F. Peng, S. Cao, S. Zhang, and S. Xu, “Revealing
much while saying less: Predictive wireless for status update,” in IEEE
INFOCOM 2020. IEEE, 2020, pp. 1419–1428.

[22] F. Mason, F. Chiariotti, A. Zanella, and P. Popovski, “Multi-agent
reinforcement learning for pragmatic communication and control,” arXiv
preprint arXiv:2302.14399, 2023.

[23] A. Murad, F. A. Kraemer, K. Bach, and G. Taylor, “Information-driven
adaptive sensing based on deep reinforcement learning,” in Proceedings
of the 10th International Conference on the Internet of Things, 2020,
pp. 1–8.

[24] P. Kutsevol, O. Ayan, N. Pappas, and W. Kellerer, “Goal-oriented
middleware filtering at transport layer based on value of updates,” arXiv
preprint arXiv:2502.17350, 2025.

[25] A. Kara and S. Yuksel, “Near optimality of finite memory feedback
policies in partially observed markov decision processes,” Journal of
Machine Learning Research, vol. 23, no. 11, pp. 1–46, 2022.

[26] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
nature, vol. 518, no. 7540, pp. 529–533, 2015.

[27] H. Kwakernaak and R. Sivan, Linear optimal control systems. Wiley-
interscience New York, 1972, vol. 1.

[28] A. Visioli, Practical PID control. Springer Science & Business Media,
2006.

2025 21st International Conference on Network and Service Management (CNSM)


