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Abstract—This work proposes a pipeline for Software Defined
Networking (SDN) that enables natural-language-based flow
rule configuration using large language models (LLMs). The
system addresses two key challenges: 1) the ambiguity and
incompleteness of natural language inputs, and 2) the difficulty of
reliably translating them into deployable SDN configurations. To
this end, the pipeline integrates: i) an intent recognition module
that refines user prompts via iterative clarification, and ii) a retry-
based correction mechanism that handles failed configurations
by regenerating and resubmitting corrected versions. These
components are combined with intermediate YAML genera-
tion, documentation-based enrichment, and final translation into
OpenFlow-compliant JSON for Ryu controllers. The pipeline is
evaluated on flow rule deployment tasks of varying complexity,
achieving an accuracy up to 96.7%, while maintaining cost-
efficiency with an estimated API cost of only $0.08 per 100
configurations and remaining model model-agnostic.

Index Terms—Software Defined Networking (SDN), Flow
Rule Automation, Ryu Controller, OpenFlow 1.3, Large Lan-
guage Models (LLMs), YAML-to-JSON Translation, Retrieval-
Augmented Generation (RAG), Intent-Based Networking, REST
API, Deterministic Retry Mechanism.

I. INTRODUCTION

Software Defined Networking (SDN) has significantly trans-
formed network management and control by enabling pro-
grammability, centralization, and dynamic policy enforce-
ment [1]. Despite these advancements, configuring SDN sys-
tems, such as defining flow rules in OpenFlow-based envi-
ronments, still requires considerable technical expertise [2].
Crafting syntactically and semantically correct flow entries
demands a detailed understanding of protocol fields, device-
specific configurations, and controller interfaces. This com-
plexity not only restricts SDN programmability to expert users
but also slows down operational agility.

In parallel, the emergence of large language models (LLMs)
has opened new avenues for network automation by enabling
the translation of high-level user intents into low-level config-
urations. However, applying LLMs to SDN tasks presents a
critical challenge: these models frequently generate unreliable
or hallucinated outputs, which poses a substantial risk when
configuring production networks. While recent studies have
begun exploring LLMs in networking [3], [4] [S], most lack
built-in mechanisms for error detection or correction, limiting
their practicality for real-world deployment.

To overcome these limitations, this paper proposes a
reliability-focused, LLM-driven pipeline for flow rule deploy-
ment in Ryu SDN environments. The proposed approach
combines three key components: (1) prompt clarification, (2)
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retrieval-augmented generation (RAG), and (3) a retry-and-
correction mechanism to enhance the robustness of generated
configurations. Given a user intent (e.g., “drop all IPv4 pack-
ets”), the pipeline not only produces valid flow rules but also
verifies their correctness post-deployment and autonomously
rectifies errors through iterative retries.

Consider, for example, a network operator issuing the intent:
“drop all IPv4 packets.” While semantically clear, this instruc-
tion omits critical fields such as the flow rule’s priority. Our
pipeline detects such ambiguities and responds by initiating a
clarification loop, where the LLM explicitly requests missing
parameters like the priority. After gathering the neces-
sary information, the model generates a structured YAML
representation of the flow rule and presents it to the user
for review. This intermediate step allows the user to verify
the configuration, and if needed, request corrections—such as
adjusting the priority or modifying match conditions—before
the pipeline proceeds to the final deployment phase.

By combining natural-language processing with domain-
specific validation, the proposed pipeline enables SDN config-
uration from high-level user intent. Experimental results across
flow rule tasks of increasing complexity confirm the system’s
effectiveness, achieving up to 96.7% deployment accuracy,
even in the presence of structurally complex inputs.

II. BACKGROUND AND RELATED WORK
A. Software Defined Networking and Flow Rule Management

SDN decouples the control plane from the data plane,
enabling centralized and programmable network manage-
ment [1]. Among SDN protocols, OpenFlow is widely adopted
as the southbound interface for communication between con-
trollers and switches. Popular SDN controllers such as Ryu,
ONOS, and OpenDaylight expose APIs that allow dynamic
flow rule management [6].

Figure 1 illustrates the layered SDN architecture adopted in
our system. In conventional setups, flow rules are manually
written and submitted to the SDN controller via REST APIs.
These rules are typically formatted in JSON and must conform
to the controller’s schema and the OpenFlow specification.
Once received, the controller such as Ryu interprets the rule
and installs it on the appropriate network devices through
the southbound interface. In our system, this process is
automated: user intents, expressed in natural language, are
parsed and translated by an LLM-based pipeline into JSON
configurations, which are then submitted to the controller for
deployment.
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Although SDN enables fine-grained control over packet for-
warding, the configuration of flow rules remains a technically
complex task. Each rule must adhere to the strict syntax and
semantics defined by the OpenFlow specification, including
correctly formatted match fields, actions, and priority val-
ues [1], [2]. As network scale and heterogeneity increase, the
number and diversity of flow rules grow accordingly, making
manual configuration both error-prone and inefficient [7].
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Fig. 1. High-level architecture of our LLM-assisted SDN pipeline integrating
user intent, REST API-based rule translation, and OpenFlow rule installation.

B. Natural Language Interfaces and LLMs in Network Au-
tomation

The use of natural language interfaces in networking is
gaining momentum, particularly as a means to abstract tech-
nical complexity for operators [8]. Initial research in this area
has focused on intent-based networking (IBN), where high-
level policy statements are compiled into low-level network
configurations [9] [10].These systems, however, often rely on
predefined grammars or domain-specific languages (DSLs),
limiting their flexibility and extensibility. In contrast, our work
is not a replacement but a complement: while IBN/DSL frame-
works provide structured and reliable pipelines, we investigate
whether LLMs can extend usability by enabling natural lan-
guage as a more flexible interface, handling ambiguity while
ensuring schema correctness.

Recent advances in LLMs, such as GPT-4 and Google Flash,
have demonstrated remarkable capabilities in structured gen-
eration, code synthesis, and prompt-based control flow [11].
Frameworks like LangChain [12] allow for the composition
of modular pipelines involving retrieval, reasoning, and struc-
tured output generation. In the context of communication
networks, LLMs have been applied to tasks such as documen-
tation, log analysis, and conversational troubleshooting [13].
However, their integration into closed-loop control pipelines
with built-in validation checks, retry mechanisms, and auto-
matic error correction for flow rule deployment (such as the
one proposed in this paper) remains largely unexplored.

C. Novelty of the Proposed Work

To the best of our knowledge, this work is the first to intro-
duce an LLM-agnostic pipeline for SDN flow rule deployment
that combines 1) an LLM-based intent recognition module,
capable of resolving ambiguous or partial natural language
prompts through iterative clarification, and 2) a retry-based
mechanism, namely, the retry module, for correcting failed

configurations, regenerate and resubmit revised versions of
the flow rule configuration. These two modules are the core
of the pipeline, enabling handling of incomplete or incorrect
user inputs. Unlike prior work [14] that focuses on static
intent translation or predefined rule templates, our system
dynamically enriches and disambiguates input to produce
semantically complete YAML configurations.

III. LLM-BASED FLOW RULE AUTOMATION PIPELINE

This section presents the architecture and internal logic of
our modular pipeline, which enables the automatic generation
and deployment of OpenFlow rules on the Ryu SDN controller
from natural language prompts. Figure 2 provides a visual
representation of the pipeline.

A. Pipeline Overview

The pipeline is composed of five primary stages spanning
three architectural layers: Application, Control, and Infrastruc-
ture.

1) User Input Interface: A network administrator interacts
with the system by submitting a natural language prompt
describing the intended network behavior (e.g., “block
all incoming IPv4 traffic”’). This component captures
both the raw prompt and a set of contextual metadata,
which may include the datapath identifier (DPID) and
the table_id. Notably, these contextual elements are
treated as fixed inputs external to the user’s specific
request and are injected upstream to improve the com-
pleteness and accuracy of downstream parsing.

2) Intent Recognition Module: The LLM interprets the
user’s initial natural language prompt and, if key param-
eters (e.g., priority, IP fields) are missing, it proceeds by
applying default values. It then generates a preliminary
YAML representation of the flow rule, shown in Figure
2, and presents it to the user for review. The user
can either accept the configuration or request specific
changes, for example, modifying the ‘priority‘ or add
new criteria. This clarification loop continues until the
user explicitly approves the YAML. For instance, if a
user inputs “create a flow rule to drop all IPv4 traffic,”
the system may assign a default priority of ‘100° and
generate a rule that matches on ‘ethType: 2048° with
no actions (to drop packets). If the user replies “make
priority 50,” the YAML is updated accordingly. Only
after confirmation from the user, the pipeline proceed to
the next stage.

3) Retrieval-Augmented Generation: The confirmed
YAML file is then passed to a LangChain-powered
Retrieval-Augmented Generation (RAG) module. This
stage dynamically enriches the LLM prompt by retriev-
ing technical documentation, specifically, structured text
extracted from the official Ryu controller web documen-
tation [15]. This knowledge base provides critical infor-
mation about acceptable field formats, required JSON
schema, and common usage patterns. The augmented
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Fig. 2. End-to-end architecture of the proposed LLM-based SDN pipeline. The user issues a prompt which is incrementally transformed, validated, and
installed as a valid OpenFlow rule in Ryu. On the right, an LLM-generated YAML file shows the intermediate structured configuration inside the pipeline.

4)

5)

prompt enables the model to generate fully conformant,
context-aware JSON configurations for the Ryu APL
Configuration Generator: The enriched YAML and
retrieved documentation are then processed by a second
LLM. The model is prompted to synthesize a valid JSON
object conforming to Ryu’s API schema. The JSON
includes match fields, actions, priority, device ID, and
table ID.

Retry Module: After the JSON is generated, it is sub-
mitted to the Ryu controller via a HTTP POST request.
If the response indicates failure (i.e., response code other
than 200), the system enters an automated retry loop
resending the request up to three times.This limit is
based on empirical evidence showing that additional
attempts beyond three yield negligible improvement in
success rate. If the rule is still not successfully installed
or the resulting flow table does not reflect the original
user intent, a correction loop is triggered. This loop
uses another LLM to revise the JSON by comparing
the installed flow table with the expected YAML speci-
fication. The corrected version is again submitted, with
up to three additional retries. If all retry and correction
attempts fail, control is returned to the user, along with
a detailed explanation (in natural language) and the last
attempted configuration, minimizing the need for human
manual intervention.

B. End-to-End Execution Logic

At a high level, the system executes the flow rule installation
process as follows:

1y

2)

The user submits a natural language prompt specifying
the intended flow rule behavior. Contextual metadata
is appended to the request; this includes the selected
datapath identifier (DPID) and the target table_id.
The prompt is parsed by an LLM-powered intent rec-
ognizer. If the input is incomplete or ambiguous, the
system initiates an interactive dialogue to collect the
missing information.

3) Once validated, a YAML representation of the flow rule
is generated and presented to the user for inspection and
optional manual refinement.

4) The finalized YAML file is passed to the RAG module,
which enriches the system prompt with domain-specific
knowledge retrieved from the official Ryu REST API
module documentation [15]. This guarantees consistency
with OpenFlow constraints and schema compliance.

5) The language model generates a JSON configuration
suitable for the Ryu SDN controller’s REST APIL.

6) The JSON object is submitted via HTTP POST to the
controller endpoint. The system waits for the response
and records the outcome.

7) Retry Module: If the controller returns a non-success
status code (non-2xx), the retry module is automatically
activated—without requiring human intervention. This
module autonomously performs: 1) Extraction and anal-
ysis of error feedback from the controller response 2)
Prompt regeneration and correction of fields likely caus-
ing the failure 3) Up to three controlled retry attempts,
spaced with a fixed delay to account for controller
latency

IV. NUMERICAL RESULTS AND EVALUATION SETTINGS
A. Emulation Environment

To test the pipeline in a realistic and controllable SDN envi-
ronment, we used Mininet [16] to emulate the network topol-
ogy and OpenFlow switches. Mininet provides a lightweight
virtual network that supports standard SDN protocols and inte-
grates seamlessly with the Ryu controller. Each test scenario
was instantiated as a custom Mininet topology with one or
more switches, allowing for consistent deployment of flow
rules and accurate monitoring of controller-switch interactions
during evaluation.

B. Accuracy for Varying Flow-Rule Complexity

1) Flow Rule Complexity: As a first step in evaluating the
robustness of our pipeline, we introduce a scalar complexity
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score C' to characterize the difficulty of each YAML-defined
flow rule. This score is calculated as the total number of con-
ditions used to match packets (M) and the number of actions
applied when a match occurs (A), such that C = M + A.

Based on this score, we classify flow rules into three
complexity tiers: Simple (C' < 3), Moderate (4 < C' < 6),
and Hard (C' > 7).

For example, a rule that matches on two packet properties
(such as protocol type and destination port) and applies one
action (such as forwarding the packet) has a complexity score
of C =2+ 1 =3, and is thus classified as Simple.

This metric enables consistent benchmarking of how struc-
tural and operational complexity affects LLM performance.
Higher C values imply greater disambiguation needs, schema
issues, and retries, making it a practical baseline.

2) Accuracy: To complement the complexity score and
provide a measure of practical effectiveness, we define a
second metric: accuracy. This metric focuses on the success
rate of deploying flow rules under real conditions. We use this
metric to assess the system’s performance across the three
complexity levels and with different LLM backends.Accuracy
is defined as the percentage of flow rules that were successfully
installed on the SDN controller within the allowed retry
attempts, i.e., at most three, while conforming to the user’s
original intent. Formally, we define the task accuracy A as:

N,
A= ;;‘“"l“ x 100 (1)
total

where Ngyecess 18 the number of correctly installed flow rules
(confirmed via flow table verification), and N is the total
number of flow rules submitted to the system.

Figure 3 reports the overall success rate achieved by two
leading LLMs (GPT-40-mini and Google Gemini Flash 1.5)
across the three predefined rule complexity levels. Accuracy
values are averaged over 35 unique test cases per complexity
tier, totaling 105 tasks per model. We generate each input
by randomly sampling a syntactically valid YAML flow rule,
categorized by our complexity metric. This choice allows us to
bypass ambiguity in natural language parsing and directly eval-
uate the system’s ability to validate, translate, and deploy rules
end-to-end. As expected, accuracy decreases with increasing
flow rule complexity. GPT-40-mini outperforms Gemini Flash
across all complexity levels, with a top Success rate of 96.7%
for simple tasks and a worst-case accuracy of 73.3% on high-
complexity rules. Error bars indicate 95% confidence intervals
over the sampled tasks.

C. Completion@k Analysis

To evaluate the impact of the retry module, we compute
the metric Completion@k, which measures the cumulative
percentage of tasks completed in k or less retries, for k €
{1,2,3}. We define Completion@k as:

CQk — Ncompleled@ k

x 100 2)
Nlotal

Accuracy by Complexity
93.3% (28/30)
83.3% (25/30)

96.7% (29/30)
86.7% (26/30)

100

73.3% (22/30)
66.7% (20/30)

80

60

Accuracy (%)
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20 Difficulty
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= High

GPT-40-mini Gemini Flash 1.5

Fig. 3. Accuracy by complexity and LLM model (with 95% C.1.).

where Neompleted@r 18 the number of tasks successfully com-
pleted within &k or fewer retry attempts, and Ny, is the total
number of tasks evaluated.

TABLE I
CUMULATIVE COMPLETION @K RESULTS FOR GPT-40-MINI

Difficulty Level | Completion@1 | Completion@2 | Completion@3
Simple 93.3% (28/30) | 96.7% (29/30) | 96.7% (29/30)
Moderate 76.7% (23/30) | 86.7% (26/30) | 86.7% (26/30)
High 50.0% (15/30) | 73.3% (22/30) | 83.3% (25/30)

Each value shows the percentage and count of completed tasks within k retries.

We observe that, while most low-complexity rules are
successfully completed on the first attempt, high-complexity
rules substantially benefit from retries. For instance, Comple-
tion@3 for high complexity reaches 83.3% (25/30), with only
50.0% of the rules being completed without retries due to
increased schema requirements and a higher chance of field-
level inconsistencies.

D. Resource Utilization and Cost Analysis

To evaluate the operational scalability of the proposed
LLM-assisted pipeline, we analyze the resource consumption
associated with each task, focusing on LLM token usage,
where a token is a basic unit of text used by language
models, typically representing a word or part of a word, and
the resulting projected API costs. For each natural language
prompt, the system performs:

« An initial intent parsing and clarification dialogue

o A RAG step using technical documentation

« Final JSON generation and potential retry/correction calls

We recorded the average input tokens per rule (sum of
tokens sent across all calls), the average output tokens per
rule (tokens produced by the model), and the projected cost
per 100 rules, calculated by multiplying the average token
counts by 100 and applying the pricing tiers.

Table II summarizes the average token consumption and
cost per 100 flow rule tasks across different complexity levels.

This analysis demonstrates that the pipeline remains cost-
effective for moderate-scale deployments (e.g., hundreds of
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TABLE 11
TOKEN USAGE AND ESTIMATED API COST PER 100 FLOW RULE TASKS
(GPT-40 MINI)
Rule Complexity Avg Input Avg Output | Cost (USD/100)
Simple 4950 Tokens 98 Tokens $0.0801
Moderate 5052.4 Tokens | 217.2 Tokens $0.0888
Hard 11276 Tokens | 724.4 Tokens $0.2126

Based on GPT-40 Mini pricing: $0.15/M input tokens, $0.60/M output tokens
(June 2025) [17].

rules/day); however, infrastructure overhead is not considered,
as it depends on factors such as energy prices, data center
resource efficiency, and site-specific operational constraints.

E. Ablation Study

To assess the contribution of each pipeline component, we
performed an ablation study by selectively removing the Retry
Module, the Retrieval-Augmented Generation (RAG) stage,
and the Intent Recognition Module, respectively. Figure 4
shows the resulting degradation in performance, broken down
by rule complexity.

GPT-40-mini: Accuracy by complexity

100

80

60

40

Accuracy (%)

Complexity
mm Simple
B Moderate

. High

20

No RAG

No Intent Module

Full Pipeline No Retry Module

Fig. 4. Ablation results on GPT-40-mini: performance by difficulty.

The full pipeline serves as a baseline. Notably, removing
the Retry Module reduces Accuracy on high-complexity tasks
from 73.3% to 60.0%. Eliminating the RAG stage causes
an even sharper drop to 46.7%, indicating its essential role
in ensuring schema correctness and semantic validity. The
removal of the Intent Recognition Module shows moderate but
non-negligible effects, especially in moderate and high tiers,
where ambiguity and under-specification are more common.

V. CONCLUSION AND FUTURE WORK

This paper presents a modular, LLM-driven pipeline for
natural language—based configuration of SDN flow rules. By
integrating intent recognition, retrieval-augmented generation,
and structured error recovery, the system enables robust, user-
friendly interaction with Ryu-based OpenFlow controllers.
The pipeline achieves high task accuracy (up to 96.7%) and
demonstrates resilience under increasing rule complexity. The
evaluation highlights the contribution of each component:
RAG ensures schema conformity, the retry module enhances
reliability in complex scenarios, and intent parsing guarantees

semantic completeness from the outset. Together, these mod-
ules constitute a principled architecture for closing the gap be-
tween high-level intent and low-level SDN configuration. The
pipeline is explicitly LLM-agnostic, allowing integration with
both commercial and open-source models. For reproducibility,
all API calls were executed using default parameter settings,
ensuring consistent evaluation conditions. Future research will
extend the pipeline to multi-controller and inter-domain envi-
ronments, incorporate real-time feedback loops with live SDN
telemetry (e.g., packet counters, congestion indicators), and
investigate adaptive retry strategies beyond the fixed three-
attempt policy to optimize robustness. In parallel, a broader
security perspective will be developed, analyzing potential
threats such as prompt injection and adversarial misuse of
natural language inputs.
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