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Abstract—6th-generation (6G) mobile networks are en-
visioned as Al-native systems, integrating learning and
inference across the entire protocol stack. Although 5G’s
3GPP Network Data Analytics Function (NWDAF) in-
troduced analytics-driven automation, it lacks standard-
ised support for model lifecycle control, Data Analytics
as a Service (DAaaS), closed-loop feedback, and large-
scale interoperability. To address these gaps, we propose
a protocol-based framework for Al-as-a-Service (AlaaS)
management for 6G, centered on an enhanced NWDAF
architecture with four components: Model Lifecycle Or-
chestrator, Model Registry & Validator, Distributed Execu-
tion Engine, and Feedback Aggregator. It introduces two
lightweight, service-based interfaces: Model Training and
Creation Protocol (MTCP) for intent-based model training
and publication, and Model Execution Protocol (MEP) for
on-box inference and metric feedback. We validate the
framework via formal verification under message loss using
a reproducible TLA+ model with three NFs and two model
versions. Results show that NWDAF can evolve into a
feasible Al lifecycle manager, enabling scalable and stable
Al-native deployments in 6G. Complexity modelling con-
firms linear resource scaling up to 128 network functions
(theoretical), with the public TLA+ specification configured
for 3 NFs.

Index Terms—Al-as-a-Service, 6G, NWDAF, Data anal-
ysis, Artificial Intelligence, 3GPP.

I. INTRODUCTION

Sixth-Generation (6G) standardization is transitioning
from vision-setting to formal studies and early system
blueprints. ITU-R approved the IMT-2030 framework
(Rec. M.2160) in 2023, defining capabilities and usage
scenarios for “6G” [1], while Third Generation Partner-
ship Project (3GPP) scheduled 6G technical studies in
Release 20 starting June 2025 and identified Release 21
as the first phase for normative 6G specifications [2]. 6G
mobile networks are anticipated to be fundamentally Al-
native, with integration of machine learning, inference,
and optimisation capabilities throughout the network
architecture [3], [4]. Although the 3GPP introduced
the Network Data Analytics Function (NWDAF) in 5G
Release 16 to bootstrap analytics-driven automation, its
current implementations remain largely centralised and
model-agnostic that lacking native support for AI/ML
lifecycle management. Recent studies have proposed
enhanced frameworks, e.g., INTDAI [5], Hierarchical

978-3-903176-75-1 ©2025 IFIP

jmarcos}@dcc.ufmg.br

NDAF (H-NDAF) [6], and e-NWDAF [7] — that dis-
tribute intelligence closer to network functions (NFs);
however, the community still lacks a standardised life-
cycle protocol that orchestrates data collection—often
provisioned via data analytics provisioning datasets
(DAaaS) components—training, validation, deployment,
and continuous improvement of machine-learning (ML)
models.

Federated and split learning paradigms [8], [9]
promise scalability and privacy preservation, yet their
integration with core and edge domains demands a model
manager capable of versioning, policy enforcement, and
feedback integration. In parallel, 3GPP TR 23.288 and
TS 29.520 highlight open issues in model activation,
monitoring, and fallback that hinder operational adop-
tion. These requirements underscore the critical need
for a standardized Al-as-a-Service (AlaaS) framework
that transforms the NWDAF from a passive analytics
aggregator into an intelligent orchestration platform for
distributed AI/ML workflows across 6G networks.

This work investigates the feasibility of transforming
the NWDAF from a passive analytics component into a
comprehensive Al lifecycle manager for 6G networks.
We propose this using standard-compliant, lightweight
protocols that cover training, deployment, and feed-
back across all network functions (NFs). Our research
makes four key contributions: A modular, 6G-ready
NWDATF architecture that decouples orchestration, exe-
cution and feedback planes while remaining fully aligned
with 3GPP Service-Based Architecture (SBA); A Model
Training and Creation Protocol (MTCP) that for-
malises intent-based requests, data collection, training
and versioned publication of models; A Model Execu-
tion Protocol (MEP) that enables secure model retrieval,
on-box inference and closed-loop metric reporting within
network functions; A theoretical evaluation compris-
ing (i) formal verification of protocol correctness, (ii)
control-theoretic proof of loop stability under 3GPP
latency budgets, and (iii) analytical scalability modelling
of CPU and storage costs.

Unlike prior work centred on isolated use cases (e.g.,
UPF migration [5] or throughput prediction [6]), our
framework is task-agnostic and intended as a reusable
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template for AlaaS deployment across diverse network
domains.

II. RELATED WORK

Multiple research efforts have recently advanced the
vision of AlaaS in 5G/6G networks. Below, we group
them by key themes and outline the remaining gaps that
our work addresses.

A. Al-Native Frameworks and NWDAF Evolution

Majumdar et al. [5] embed intelligent agents directly
in network functions through INTDAI, enabling dis-
tributed training and inference with measurable latency
gains. Jeon and Pack [6] separate a central training
root from distributed leaves in H-NDAF, demonstrating
throughput prediction accuracy in freeSGC. Moreira
et al. [7] present the evolved NWDAF (e-NWDAF)
with intent-based services, while Nadar and Hérri [10]
introduce microservice-oriented model provisioning and
semantic matchmaking. These works confirm the rele-
vance of decentralised analytics yet omit a standardised
protocol suite to manage the entire lifecycle of models.

B. Federated and Distributed Learning for AlaaS

Lu et al [8] review federated learning (FL) as
a privacy-preserving enabler of AlaaS, whereas Li
et al. [11] extend FL to user equipment via the Per-
sonal Al concept. Li et al. [9] advocate a layered Al-
native architecture supporting FL, Split, and Swarm
Learning paradigms. These studies stress the importance
of distributed training but do not define interoperable
mechanisms for versioning, validation, or feedback once
models are deployed across heterogeneous network do-
mains.

C. Standardisation Status and Architectural Insights

Sun et al. [4], Yeh et al. [12] and Lin et al. [13]
survey 3GPP progress on NWDAF, RAN Intelligent
Controller (RIC) and Al in wireless. Matera et al. [14]
highlight orchestration gaps, while Liu ez al. [3] and Yi
et al. [15] argue for native intelligence and secure Al
provisioning. Although these works identify challenges
in model management, monitoring, and fallback, they
stop short of prescribing concrete message flows or
control loops.

D. Large—Scale Al Services and LLM Integration

Tarkoma et al. [16] envision Al Interconnect, inte-
grating large language models (LLMs) via MAPE-K
patterns, emphasising orchestration but lacking detailed
NWDAF interaction schemes.

Table I: Comparison with existing Al-analytics frame-
works

Framework Lifecycle Feedback Versioned

protocol loop catalogue
INTDAI [5] X v X
H-NDAF [6] X v X
e-NWDAF [7] X X X
Al Interconnect [16] X X X
This work v v v

v feature addressed; X not addressed.

E. Identified Gaps

Table I summarises how representative frameworks
cover (or overlook) gaps below identified, confirming
that no prior proposal addresses all three simultaneously.
Across the above literature, we observe three persistent
limitations: Lifecycle Protocol Absence: No end-to-
end protocol set exists for request, training, validation,
publication, consumption and retirement of Al models;
Feedback and Drift Handling: Works rarely address
closed-loop reporting from inference back to training
entities for automated re-training triggers; Interoper-
ability at Scale: Semantic discovery and versioned
model catalogues are discussed conceptually but lack
formal interface definitions aligned with 3GPP SBA.

This paper targets the above gaps by specifying two
lightweight, SBA-compliant protocols:

(i) the Model Training and Creation Protocol (MTCP)
orchestrates data collection, federated or centralised
training, validation, and publication;

(ii) the Model Execution Protocol (MEP) enables secure
model retrieval, on-box inference, and metric feedback.
Together, they operationalise NWDAF as an Al lifecycle
manager, complementing and extending prior frame-
works.

III. PROPOSED ARCHITECTURE

Fig. 1 depicts the proposed NWDAF-AlaaS Stack. It
comprises four logical components, mapped onto a 3GPP
SBA via Network Function (NF) and Network Exposure
Function (NEF):

1) Model Lifecycle Orchestrator (MLO)—extends
NWDAF control capabilities to handle NFsintent-
based model requests, negotiate data schemas, and
schedule training tasks across cloud/edge resources.

2) Model Registry and Validator (MRV)—maintains
a versioned catalogue of models with cryptographic
signatures, validation scores, and domain-specific
metadata to support audit and rollback.

3) Distributed Execution Engine (DEE)—a
lightweight runtime embedded within each NF
(e.g., AMF, SMF, UPF) capable of loading ONNX
/TensorRT artefacts, executing inference under
tight latency budgets, and exporting performance
counters.

4) Feedback Aggregator (FA)—collects inference
outcomes, drift indicators, and resource metrics,
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Figure 1: NWDAF-AlaaS architecture with orchestra-
tion, execution, and feedback planes.

triggering retraining workflows when SLAs de-
grade.

O stack builds upon 3GPP service-based interfaces
and assumes a DAaaS-compatible backend for data
provisioning. It introduces two new APIs—/mtcp and
/mep—whose message sequences are detailed in Sec-
tion IV.

IV. LIFECYCLE PROTOCOLS

This section formalises the two proposed protocols
that operationalise the model lifecycle, MTCP and MEP.
MTCP/MEP are proposed service interfaces aligned with
SBA; they are not 3GPP specifications.

A. Model Training and Creation Protocol (MTCP)

MTCP governs the end-to-end creation of models
through the five phases illustrated in Fig. 2. It consists
of five phases and leverages JSON/HTTP-2 messages
secured via OAuth 2.0 tokens, scopes compliant with
3GPP TS 29.510 [17].

1) MTCP-Request: The NF submits an Infent speci-
fying the analytic task (e.g., congestion prediction),
latency/SLA constraints, and data-source URIs.

2) MTCP-DataCollect: The MLO instructs Data Ex-
posure Services (via NEF) to stream schema-
aligned training data to the designated compute
domain (edge or cloud).

3) MTCP-Train: Training is executed according to
the chosen paradigm (centralised, federated, or
split), producing candidate checkpoints.

4) MTCP-Validate: The Model Registry & Valida-
tor (MRV) performs offline accuracy tests, bias
checking, and cryptographic signing; only models
meeting policy thresholds advance.

5) MTCP-Publish: The validated artefact receives
an immutable modelURTI; previous versions are
marked retired and the new model becomes
discoverable via the /mep interface.

‘ NF ‘ ‘ NWDAF ‘ ‘Training Cluster‘ ‘ MRV ‘

MTCP-Request

MTCP-DataCollect

MTCP-Validate
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Figure 2: Message sequence for MTCP lifecycle (five
phases).
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Figure 3: Message flow for MEP runtime operation.

B. Model Execution Protocol (MEP)

MEP enables NFs to consume and monitor models
during operation (Fig. 3). It provides on-demand and
subscription modes to balance latency and bandwidth.

1) MEP-Request: The NF requests a mode 1URI with
desired execution profile (batch/stream), expected
inference rate, and QoS hints.

2) MEP-Load: DEE resolves dependencies and in-
stantiates the model; success or fallback is acknowl-
edged to the MLO.

3) MEP-Infer: Real-time inference occurs within NF
process space, minimising cross-domain latency.

4) MEP-Report: DEE streams inference KPIs (e.g.,
accuracy, resource usage) and drift statistics to the
FA; threshold violations trigger an MTCP-Request
for retraining.

V. THEORETICAL EVALUATION

This section validates the feasibility of the proposed
NWDAF-AlaaS framework through three complemen-
tary theoretical methods: 1) formal verification [18],
2) control-theoretic stability analysis [19] and 3) scal-
ability/complexity modelling analysis. The goal is to
provide deployment-level guarantees without requiring
large testbeds. To support review reproducibility and
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artifact availability, we provide a public repository for
the formal model and configuration [20].

A. Formal Verification of Lifecycle Protocols

We specify the MTCP and the MEP as communicat-
ing extended finite—state machines in TLA' and verify
them with the TLC explicit-state model checker, Lam-
port’s methodology [18]. TLA™ captures state variables,
actions, and temporal properties in one model; TLC
explores finite instantiations and returns a reproducible
report (states explored, search depth, satisfied proper-
ties).

Each participating entity (NF, MLO, MRY,
DEE, and FA) is modeled as an independent
process with typed wvariables (e.g., modelURI,
state {draft,valid,published, retired})

and authorization guards aligned with OAuth 2.0 scopes
per 3GPP TS 29.510 [17]. In this context, safety
(S) ensures nothing goes wrong, while [liveness (L)
guarantees that desired outcomes eventually occur [21].
We formally verify the following five primary properties:

« S1 Exactly-once publication: a given
modelURT is published at most once throughout
execution.

« S2 — No stale load: models previously marked as
retired cannot be loaded or reused by any NF.

o S3 — Deadlock freedom: the global system never
reaches a deadlock; the system always maintains at
least one enabled transition, preventing total halt.

« L1 — Eventual publication: every MTCP-Request
eventually leads to an MTCP-Deploy. Every MTCP
intent request by an NF eventually leads to a model
being published.

o L2 — Eventual feedback: each MEP-Infer is
followed, within a bounded number of transitions,
by an MEP-Report. Each inference executed under
MEP is followed, within a bounded delay, by a
feedback report that may trigger retraining.

In total, eight temporal properties were verified:
the five main properties (three safety and two liveness),
and three auxiliary properties—NoDuplicateModelURI,
ProgressForEachNF,  and  AlwaysEventuallyValid-
State—which ensure uniqueness, individual NF
progress, and overall lifecycle consistency.

Using TLC, the reduced model configured with three
network functions and two model versions explored
18,050 states (65 distinct), with a maximum search
depth of 11. No invariant violations or deadlocks were
reported. All properties were satisfied, confirming that
MTCP/MEP ensures correctness even under message
loss and reordering. The full specification and TLC
configuration are publicly available at the AlasServ-
LifeCycle repository [20].

B. Control-Theoretic Stability of the Closed Loop

In a UPF load-balancing scenario, the Distributed
Execution Engine (DEE) runs the selected model inside
the UPF process. At each sampling instant k with period
Ts, the UPF exports the KPI z[k] (e.g., per-tunnel
buffer occupancy), while the on-box inference returns
the prediction Z[k] via MEP-INFER. The prediction error
elk] = z[k] — &[k] is streamed by MEP-REPORT to
the Feedback Aggregator (FA). When thresholds are
exceeded, the FA issues an MTCP-REQUEST that trig-
gers (re)training and publication by the Model Lifecycle
Orchestrator (MLO). The end-to-end actuation delay is
d samples.

Linearizing the closed loop yields the discrete-time
transfer function

Kz
G(2) = —— (M
where K is the adaptation gain and |a| < 1 is the
residual error factor. By the Jury stability criterion, the
loop remains stable if

K| <1—la| and dTy < Tomax, 2)

with 7,,x denoting the staleness bound mandated by
3GPP TR 23.288 for edge applications.
For T, = 100ms, a = 0.25, and Tynax = 500 ms, we
obtain
Kcrit =1- |a| - 0.75,

TII’!'IX
d< —

=7
which defines the admissible adaptation gain and maxi-
mum actuation delay (in samples) for the UPF controller.

:5’

C. Scalability and Complexity Analysis

Let N be the number of NFs (e.g., UPF instances),
V' the number of model versions, S the average model
size, finr the inference rate per NF, and ¢, the CPU cost
per RPC. For the UPF use case, one RPC is issued per
inference to NWDAF/DEE control:

CPUnwpAF = N finf Crpe,

Adopted parameters:

Storageyry = NV S.

e Cpc = 12pus — one-way latency from the Is-
tio v1.18 benchmark [22].

e finr = 1 kHz — expected control-plane trigger rate
(3GPP TR 23.288) [23].

¢ S =12 MiB — size of a compressed MobileNet-v2
from the ONNX Model Zoo [24].

Assuming N = 128 UPFs for theoretical extrapola-
tion, the NWDATF load is = N finrepe = 128 X 103 x
12us ~ 1.6 CPU cores (< 10% of a 16-core edge
node). With V' = 5 and S = 12MiB, total storage is
NV S = 7.5GiB. Both CPU and storage scale linearly
with IV (and storage with V). Note: The public TLA+
model uses N = 3, V = 2 for verification tractability.
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VI. CONCLUSION

This work proposes to transform the 3GPP-NWDAF
from a passive metrics collector to a complete Al-
lifecycle manager for 6G networks. We introduced a
modular architecture with four logical planes (MLO,
MRYV, DEE, FA) and specified two service-based inter-
faces, MTCP and MEP, that together cover intent-based
model requests, data collection, training, validation, pub-
lication, on-box inference, and closed-loop feedback. A
theoretical evaluation proved that the protocols are (i)
functionally correct under exhaustive model checking,
(ii) control-loop stable within 3GPP latency budgets,
and (iii) linearly scalable with modest CPU and storage
overheads. All results derive from formal reasoning
and analytical formulas. The analysis assumes a trusted
NF-NWDAF channel and does not model adversarial
threats such as message tampering or model-poisoning
attacks. Energy consumption of distributed training jobs
also remains outside the current scope. The Theoretical
Evaluation is presented in GitHub repository [20]. In
future work, we will consider model re-training and fine-
tuning. Next steps will operationalize MTCP/MEP in
the published scalable NWDAF-based framework of De
Oliveira et al. [25] over Free5SGC, adding /mtcp and /mep
endpoints, OAuth 2.0 scope enforcement, and confor-
mance tests, then repeating the framework’s experiments
to quantify latency, per-NF inference throughput, and
storage.
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