
QR-MO: Q-Routing for Multi-Objective
Shortest-Path Computation in 5G-MEC Systems

Annisa Sarah
Dept. of Electrical Eng. and Computer Science

University of Stavanger
Stavanger, Norway
annisa.sarah@uis.no

Rosario G. Garroppo
Dept. of Information Eng.

University of Pisa
Pisa, Italy

rosario.garroppo@unipi.it

Gianfranco Nencioni
Dept. of Electrical Eng. and Computer Science

University of Stavanger
Stavanger, Norway

gianfranco.nencioni@uis.no

Abstract—Multi-access Edge Computing (MEC) is a promising
technology that provides low-latency processing capabilities. To
optimize the network performance in an MEC system, an
efficient routing path between a user and its serving MEC
host is essential. The network performance is characterized by
multiple attributes, including packet-loss probability, latency, and
jitter. A user service may require a particular combination of
such attributes, complicating the shortest-path computation. This
paper introduces Q-Routing for Multi-Objective shortest-path
computation (QR-MO), which simultaneously optimizes multiple
attributes. We compare the QR-MO’s solutions with the optimal
solutions provided by the Multi-objective Dijkstra Algorithm
(MDA). The results show the favorable potential of QR-MO.
After 100 episodes, QR-MO achieves 100% accuracy in networks
with low to moderate average node degrees, regardless of the size,
and more than 85% accuracy in networks with high average node
degrees.

Index Terms—multi-objective, shortest path, 5G, MEC.

I. INTRODUCTION

THE integration of 5G-and-Beyond networks and Multi-
access Edge Computing (MEC) is an example of in-

tegration between computing and communication. 5G-MEC
systems aim to offer ultra-low latency high-bandwidth com-
munication, real-time processing, and context awareness [1],
[2]. An MEC system consists of several computing platforms
positioned at the network edge, which are called MEC Hosts
(MEHs). In an MEC system, user traffic should be allocated
to the best path to the serving MEH to maintain a high-
performance service. Most studies use the shortest path [3],
[4]. However, shortest-path algorithms focus on one perfor-
mance attribute and are not suited to provide heterogeneous
services, as 5G is meant to. Network performance can be
measured on the basis of different attributes, such as latency,
jitter, and packet loss. A user may require different types of
service, which may have stringent requirements on one of
the attributes rather than another. Therefore, it is important to
select a routing path that accounts for multiple cost attributes
between a user and its serving MEH. This kind of problem is
called Multi-Objective Shortest-Path (MOSP) problem.

A MOSP problem can be addressed in two different ways:
(i) transforming the multiple objectives into a single combined
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objective [5]; (ii) generating the whole set of efficient paths
as a reference for a decision maker [6]. The first approach
computes the combined objective as a scalar function that
integrates various objectives by assigning weights to each one
based on their relative importance. The second approach is
general and outputs a Pareto set, a set of optimal solutions
that are non-dominated by each other and superior to the rest
of the solutions. The second approach is preferable because
the first approach requires the selection of the weight of each
objective before solving the optimization problem. The first
approach is not flexible because, in the case of a change of
the weights, the problem needs to be solved from scratch.

The solution of MOSP problems can be calculated using
optimal solution methods, such as ad-hoc mathematical pro-
gramming method [5], [6], or approximation methods, such as
Genetic Algorithm (GA) [7] or Reinforcement Learning (RL)
[8]. The optimal solution methods are usually used for MOSP
in specific network conditions and are not well-suited in a
dynamic network scenario. Approximation methods are there-
fore preferred in today’s networks that are highly dynamic.
RL-based methods are preferred because GA usually needs a
complicated representation and has scalability issues [7].

Regarding the RL-based solutions, Moffaert et al. [8] ad-
dress general multi-objective optimization, not specifically
solving the MOSP problem. In contrast, Yao et al. [9] address
a specific MOSP problem related to route planning in smart
cities, evaluating the efficacy of GA and RL, both of which
are approximation methods. Rao et al. [10] use RL to solve
dynamic MOSP problems, i.e., optimizing delay, packet loss
and throughput, by transforming multi-objective to weighted
single-objective. Although this approach performs well, it only
returns one solution. This solution depends on the selected
weights assigned to each attribute, rather than representing the
Pareto front. To the best of our knowledge, there have been
no efforts to evaluate the performance of approximating the
Pareto front by using RL for MOSP problem in a 5G-MEC
scenario and its effectiveness compared to optimal solutions.

This paper fills this gap by presenting an exploration of the
use of RL to obtain an approximation of the Pareto front to
solve an MOSP problem in 5G-MEC systems. We propose
an RL-based approach, called Q-Routing for Multi-Objective
shortest-path computation (QR-MO). Our initial study inves-
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tigates the accuracy of the solutions produced by QR-MO
compared to the optimal solutions computed by a traditional
deterministic algorithm, such as the Multi-Objective Dijkstra
Algorithm (MDA). The study is carried out on multiple 5G-
MEH networks under given conditions.

II. RELATED WORKS

The MOSP problem that seeks Pareto-optimal paths has
been addressed through exact methods (e.g., labelling algo-
rithms [11]) and heuristic strategies (e.g., evolutionary al-
gorithms [12]). Raith et al. [11] compare exact algorithms
(e.g., label-setting, dynamic programming) and empirically
show their poor scalability in dense networks. Although these
methods guarantee optimality, their computational overhead
becomes prohibitive in environments such as 5G networks,
where network conditions might change. This limitation mo-
tivates the need for lightweight, adaptive alternatives that can
efficiently approximate the optimal Pareto set in real-time.

Recent studies demonstrate the use of RL to approximate
the Pareto set in dynamic networks [13], [14]. These works
provide foundational insights into handling multiple objectives
in real-time scenarios, which is relevant in edge computing.
However, machine learning methods for multi-objective opti-
mization, including RL, have advanced broadly, but no effort
has been made for MOSP problems in 5G-MEC systems.

There have been several efforts instead to use RL to compute
paths by optimizing a single objective. One specific simplified
RL approach is called Q-learning. Q-learning has been adapted
for routing since Boyan and Littman’s Q-routing framework
[15] optimizes single-objective paths. However, there is a lack
of exploration in using Q-routing for multi-objective path
optimization. While some works have applied classical Q-
learning to routing problems, they often fail to address the
complexities of multi-objective scenarios or leverage improved
versions tailored for such tasks [16]. This gap highlights the
need for more advanced methods capable of handling multiple
objectives efficiently, particularly in 5G-MEC environment
given the unique constraints of the service deployed in 5G-
MEC systems [17].

In 5G-MEC systems, delivering Ultra-Reliable Low-
Latency Communication (URLLC) requires routing solutions
that balance multiple objectives, such as latency, jitter, and
packet loss, while adapting to network conditions. While
single-objective approaches minimize latency [18], they ignore
Pareto optimality. Multi-Dijkstra algorithms [6] compute the
exact Pareto set but are computationally prohibitive in dynamic
5G networks. RL-based methods such as Q-Routing [15] adapt
to network changes but focus on single objectives, leaving a
gap in joint optimization of path in 5G-MEC networks.

Our work is the first effort to solve a MOSP problem in 5G-
MEC systems using RL and has the following contributions:

• Extension of Q-Routing to Multi-Objective: while
Q-Routing [15] was designed for single-objective opti-
mization, we adapt it to MOSP through heuristic action
selection. This is the first adaptation of Q-Routing to
approximate a Pareto set.

sn

v1

v3

v2

MEH

v4

[0.0017,2,1]

[0
.0
01
,1
,2
] [0.0025,3,3]

[0.0025,3,3]

[0.0
005

,4,5
]

[0.00006,2,3]

[0
.0
02
3,
2,
1]

[0.00001,1,3]

[0.0025,4,6]

Fig. 1. Illustration of a MOSP problem

• Preliminary Validation of the Accuracy: QR-MO is
evaluated by computing the proximity to optimal solu-
tions, i.e. the Pareto set computed by MDA.

• Context-aware Path Computation in 5G-MEC sys-
tem: The evaluation is performed on various 5G-MEC
networks considering heterogeneous service requirements
for latency, jitter, and packet loss.

III. PROBLEM DEFINITION AND MDP REPRESENTATION

A MOSP problem can be illustrated as in Fig. 1. Given an
undirected graph G = (V, E) with nodes v ∈ V and edges
e ∈ E , each edge has J performance attributes, which are
also called cost attributes, ce = {ce1, ce2, . . . , ceJ}. In this
and the following sections, we do not define any specific cost
attribute to keep the problem formulation and solution general.
Specific cost attributes will be presented at the beginning of
Section V. Solving the MOSP problem means finding a path
that optimizes the different cost attributes, which are often
conflicting. We have to find a set of strictly non-dominated
sets, i.e., the Pareto set.

Defined P(sn,m) and Q(sn,m) as two paths from the source
node sn to the MEH m and defined cj(P ) and cj(Q) as the
j-th attribute of the cost vector for paths P and Q respectively,
the path P(sn,m) dominates the path Q(sn,m), denoted as
Psn,m ≺D Qsn,m, if the following condition is valid:

Psn,m ≺D Qsn,m ⇐⇒
(cj(Psn,m) ≤ cj(Qsn,m) ∀j ∈ [1 .. J ])

∧ (∃k ∈ [1 .. J ] : ck(Psn,m) < ck(Qsn,m))

(1)

This means that each of the cost attributes of path P(sn,m) is
less than or equal to those of path Q(sn,m). Furthermore, there
exists at least one cost attribute path P(sn,m) that is strictly
less than the one of path Q(sn,m).

Defined P(sn,m) as a path from the source node sn to node
m.

minF(x) =


f1(x)
f2(x)

...
fJ(x)

 , (2)

The objective of the MOSP problem is to minimize all cost
attributes associated with the selected path, as expressed in
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Eq. 2, where the cost function for each attribute j is defined
as follows.

fj(x) =
∑
e∈E

cej · xe, j = 1, 2, . . . , J. (3)

In Eq. 3, the function fj(x) calculates the total cost for the j-th
cost attribute across the selected edges in the path. Specifically,
for each edge e ∈ E , the cost cej associated with the j-
th attribute is weighted by the decision variable xe, which
indicates whether the edge e is included in the path (xe = 1)
or not (xe = 0).

The optimization is subject to the following constraints:

xe ∈ {0, 1}, ∀e ∈ E . (4)

∑
e∈Adj(v)

xe =


1, if v = sn,

1, if v = m,

2, if v ∈ V ̸∈ {sn,m},
0, otherwise.

(5)

Eq. 4 ensures that each edge e ∈ E is either selected or not,
represented by the binary decision variable xe.

Eq. 5 shows the flow conservation constraint that ensures
that the selected edges form a valid path. At the source node
sn, exactly one edge should be selected for the path. Similarly,
at the destination node, exactly one edge should be selected
for the path. For any intermediate node, exactly two edges
must be selected. Lastly, nodes that are not part of the path
have no selected edges.

IV. PROPOSED SOLUTION

RL traditionally optimizes a single scalar reward, yet many
real-world problems involve multiple conflicting objectives
[19]. Multi-objective RL can be categorized as: (i) utility-based
vs Pareto-based, and (ii) single-policy vs multi-policy [19].

Utility-based approaches focus on optimizing a single
scalarized reward function, which combines multiple objec-
tives into a weighted sum or other forms of aggregation.
Although this simplifies the optimization problem, it requires
predefined weights or utility functions, which are often diffi-
cult to determine [10], [20]. On the other hand, Pareto-based
approaches aim to identify a set of Pareto-optimal solutions,
each representing a trade-off where improving one objective
would degrade another. This provides decision-makers with
more flexibility in choosing the most appropriate solution
based on specific preferences or priorities [21]–[23].

Single-policy methods aim to learn a single optimal solu-
tion, typically tailored to a fixed utility function. However,
these methods do not accommodate uncertain preferences,
which limits their applicability in real-world scenarios [19].
In contrast, multi-policy approaches generate a diverse set of
solutions, offering greater adaptability to varying or evolving
preferences, which is crucial in environments with competing
objectives or changing constraints [23].

By leveraging Pareto-based and multi-policy approaches,
multi-objective RL can better address the complexities of real-
world decision making, providing not only a broader set of

solutions but also more robust adaptability to diverse needs.
The proposed QR-MO algorithm builds on these principles
by approximating the Pareto front and adopting a multi-
policy approach. Using RL and heuristic action selection, QR-
MO identifies a diverse set of Pareto-optimal solutions, each
representing a trade-off between conflicting objectives. This
multi-policy capability ensures that QR-MO adapts effectively
to evolving preferences in real-time environments, such as
5G-MEC systems, where conditions and requirements are
constantly changing.

A. Q-learning

Q-learning is a model-free algorithm that learns the state-
action value (or Q value). The Q-value represents the expected
total value for a particular action a in a given state s. The
Q-value is generally updated according to the update rule in
Eq. 6. To update the Q-values, we have to sum three factors:
the current values (1 − α) · Q(s, a), the reward r of taking
action a from state s, and the maximum reward that can be
obtained from next state s′, max

a
Q(s′, a′). The Q-learning

algorithm stores the state-action values in a Q-table, which
will be updated until they converge or certain criteria are met.

Q(s, a)← (1−α) ·Q(s, a) + α · (r+ γ ·max
a

Q(s′, a′)) (6)

Q(s, a)← (1−α)·Q(s, a)+α·(cs,a+ min
a′∈neighbors of s′

Q(s′, a′))

(7)
Boyan and Littman [15] proposed a modified Q-learning for
a routing problem, namely Q-routing. The Q-routing does not
need the discount factor as in the generic Q-learning technique
(γ = 1). The Q-routing aims to minimize the future cost
(i.e., minimize the total latency) instead of maximizing the
future reward. For the Q-routing, the Q-update equation will
be slightly changed as in Eq. 7. The state s is the current node
v, where |S| = |V| and the action a is the edge e from the
current node minus the incoming edge. The Q-values of state
s, taking action a that leads to the next state s′, are updated
by the sum of the current value, the cost attributes cs,a of the
action a, and the minimum cost attributes of the neighbors of
the next state s′ to reach the end node.

B. QR-MO

The problem with the classical Q-routing technique is that it
can only consider one cost. Algorithm 1 shows the modified Q-
routing algorithm that addresses the multi-objective problem,
namely Q-Routing for Multi-Objective problem (QR-MO). The
Q-routing implementation in our work is a modification of the
code from [24]. In contrast, the Q-table in the proposed QR-
MO stores multiple values for each Q(s, a), corresponding
to the various cost attributes considered. To choose the best
action a in each state s, the QR-MO simultaneously considers
different criteria by using a heuristic approach. Consequently,
QR-MO can generate J solutions, i.e., each solution is the
best solution for a specific attribute.

Algorithm 1 presents the detailed steps for the QR-MO.
We first initialize a network graph G, set a start node nS
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Algorithm 1 QR-MO for Path Selection
1: Initialize: Load the network graph G; A start node nS and end

node nE ; Number of episodes N ; Cost matrix R; Uniform Q;
Empty memory B; Learning rate α; ϵ for the epsilon-greedy
action selection.

2: for i to N do
3: Initialize t = 0
4: Initialize the current state to the start node st = nS

5: while st ̸= nE do
6: Check next possible nodes from st
7: Choose at by using an ϵ-greedy policy as below:

8: at =

{
random a, if p = ϵ

DominanceSelection(at−1, st, Qt), if p = 1− ϵ
9: Perform the chosen action at, transition to st+1

10: Q(st, at)← UpdateQ(R, Qt, st, at, α)
11: Update the current state st = st+1

12: Get the route li ← {nS , ..., nE} and Q-values Qi

13: Check and store the best cost and path B ← UpdateBest-
Path(li, G,B,Qi,i)

14: Return: (1) Q (2) B

and an end node nE , a cost matrix R, uniform Q-values for
all pairs of state s ∈ S and action a ∈ A, and an empty
variable B to store the record of best Q-values, best paths and
best cost of each cost attribute j while learning throughout
episodes. We also set the RL hyper-parameters: learning rate
α and epsilon greedy parameter ϵ. Then, for each episode, the
QR-MO agent learns the path from starting node nS to reach
end node nE by selecting a proper action a on the current
state s. We employ a ϵ-greedy policy to select an action,
meaning that the QR-MO agent will take a random action with
probability ϵ and a greedy action (i.e., take the best action)
with probability 1-ϵ. The ϵ-greedy policy is useful to balance
the exploration and exploitation of the learning to seek an
optimal policy. The best action for the QR-MO can be selected
by using a heuristic algorithm called DominanceSelection.
Algorithm DominanceSelection has been adapted from the
paper [6] and used to evaluate the domination of the cost
attributes of neighbouring edges.

Algorithm 2 DominanceSelection
1: Input: Previous selected action at−1; Current state st; Learned

policy Q.
2: Initialize: Defined Akeys as the set of the possible actions (edges

to neighboring nodes) from state st excluding the previous se-
lected action at−1, i.e., incoming edge; An empty dictionary D to
store dominance scores for each action D(a) = 0 ∀a ∈ Akeys

3: for each (ax, ay) ∈ Cpairs do
4: for each cost index j do
5: if Qj(st, ax) ≤ Qj(st, ay) then
6: Increment D(ax) by 1
7: if Qj(st, ax) > Qj(st, ay) then
8: Increment D(ay) by 1
9: Select the best action:

10: adom ← argmaxa∈Akeys D(a)
11: Return: adom

Algorithm DominanceSelection needs three inputs: previous
selected action at−1, current state st, and Q-values at timestep

t, Qt. The previously selected action at−1 is the action that
made the agent visit the current state st, i.e., the incoming
edge. We initialize a dictionary D to count the dominance
scores for each action. Then, all possible actions from current
state a ∈ Akeys are categorized as pairs (ax, ay) ∈ Cpairs

where x ∈ Akeys, y ∈ Akeys, x ̸= y. All possible actions
Akeys are all edges connecting to the current node st, except
the incoming edge, which is the previously selected action
at−1. For each pair (ax, ay), we investigate the dominance
based on each cost attribute j and count the dominance scores
of all actions. The best action adom is the one with the highest
scores among all possible actions Akeys and is returned to
Algorithm 1.

Algorithm 3 UpdateBestPath
1: Input: Network graph G; Q-values matrix for episode i

Qi; Start node nS and end node nE ; Route of current
episode i, li from nS to reach end nE , Stored memory
B=[{lB1 , cl

B
1 , QB

1 }, {lB2 , cl
B
2 , QB

2 }, {lB3 , cl
B
3 , QB

3 }]
2: Initialize: Costs of route li, cli = {cli1 , c

li
2 , c

li
3 }

3: for each j in cj do
4: if clij <cl

B
j then

5: Update best cost j on memory cl
B
j ← clij

6: Update best route for cost j on memory cl
B
j ← li

7: Store QB
j ← Qi

8: return updated B

In Algorithm 1, the Q-value Q(st, at) is then updated using
Eq. 7. After reaching the end node nE , the route li and Q-
values Qi are stored. Lastly, we have to check the best cost,
route, and Q-values B by using the Algorithm UpdateBest-
Path. Algorithm UpdateBestPath evaluates the learned route,
cost, and Q-values on episode i by comparing it with the
tuple {lBj , cl

B
j , QB

j }, where lBj is the current best route of
attribute j, cl

B
j is the tuple of all cost attributes concerning

the route lBj , and QB
j is the Q-values or policy to generate

the route lBj . The stored memory is then compared. If the
learned cost of attribute j on episode i is better than the best
cost j in the memory B, then the memory is updated. This
algorithm ensures that the QR-MO returns multiple solutions,
considering all cost attributes simultaneously, compared to
classic Q-routing, which only returns one solution.

C. Complexity Analysis

QR-MO operates on a graph with |V| nodes, |E| edges, and
J cost attributes. It iterates over N episodes, refining paths
via a While loop that explores the graph and selects actions at
each node. Algorithm DominanceSelection compares action
pairs, requiring O(d2 · J) operations per node with degree
d. Since traversal involves up to |V| nodes, the per-episode
complexity is O(|V| · J · d2), where d ≤ |E|/|V|. Algorithm
UpdateBestPath evaluates paths with O(J) operations per
path, which is negligible compared to selection. Thus, the
total complexity of QR-MO is O(N · |V| ·J · d2). Substituting
d2 ∼ (|E|/|V)|2, it simplifies to O(N ·J · |E|2/|V|). For sparse
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graphs (|E| ∼ |V|), this reduces to O(N · |V| · J), while for
dense graphs (|E| ∼ |V|2), it scales as O(N · |V|3 · J).

Comparing QR-MO to existing Pareto optimal algorithms,
such as MDA, highlights key efficiency trade-offs. As pre-
sented by Casas et al. [6], MDA maintains multiple non-
dominated labels per node. Let L be the average number
of labels per node and Lmax be the maximum number of
labels at any node, then MDA has a complexity equal to
O
(
|V| · J

(
L · log |E|+ L2

max · |E|
))

.
Heap operations introduce a logarithmic term, while dom-

inance checks scale quadratically with L2
max when J ≥ 3,

making MDA expensive for high-dimensional cases (i.e., sce-
narios where the number of cost attributes J is high). As
J increases, the number of non-dominated solutions grows,
making dominance checks more computationally expensive.
The term L2

max · |E| dominates for high J (J ≥ 3). For high
J , the number of stored labels per node increases due to the
growth in non-dominated solutions. The dominance check in
MDA requires comparing each label against others, leading
to a worst-case complexity of O(L2

max) per edge. Since Lmax

increases with J , the term L2
max · |E| dominates, making MDA

less efficient in high-dimensional settings.
In practical applications, QR-MO is preferable for sparse

graphs or high J , avoiding quadratic label growth that hampers
MDA in multi-objective settings. MDA remains effective in
low-dimensional, highly connected graphs, where efficient
queue operations mitigate dominance check overhead.

V. EXPERIMENTAL RESULTS

We have developed our simulator that takes the network
graphs from the dataset [25], which has three synthetic graphs
and one real network scenario for a 5G-MEC system in Milan
City Centre (MCC). The MCC graph has been interpolated
from OpenCellID. There are four network topologies, i.e.,
25N50E, 100N150E, 30N35E, and 50N50E. 25N50E means
that the network consists of 25 nodes and 50 edges. These
network topologies have been selected because they represent
a 5G-MEC system with a variety of network characteristics.
25N50E and 100N150E have a high average node degree, with
3 or 4 edges per node, respectively. MCC and 50N50E have
a low average node degree of 2.3 and 2, respectively.

The dataset provides only the network structural information
and assumes the same cost for all edges. We have modified
the cost values and consider three cost attributes that are ran-
domly generated using a uniform distribution: (1) packet-loss
probability with a Probability Density Function (PDF) of 1/3
U(0.0005, 0.1)+ 2/3 U(0, 0.0005)), (2) latency 1/3 U(5, 10) +
2/3 U(1, 5)) ms, and (3) jitter 1/3 U(3, 5) + 2/3 U(1, 3)). The
packet loss, latency, and jitter are taken from measurements
in a 5G Campus Networks [26]. Rischke et al. [26] indicate
that the packet loss probability of a single transmission in a
testbed of non-standalone 5G, with a packet size of 128 to 256
bytes, ranges between 0 and 0.15. The latency of the same type
of network varies between 1 ms and 10 ms [26]. For jitter,
the values are derived from [26] and [27], which show that it
varies from 1 ms to half of the maximum latency.

A. Performance Metrics

Since QR-MO is the first RL-based approach to compute
the Pareto set for MOSP problems in 5G-MEC systems, we
compare the approximated Pareto set computed by QR-MO
with the optimal Pareto set computed with MDA. To compare
the two Pareto sets and evaluate the effectiveness of QR-MO,
we have used two performance metrics.

An evaluation metric called Distance to Pareto Set (DPS) is
computed to determine the proximity of the QR-MO solution
to the Pareto set. The DPS consists of the Euclidean distance
between the QR-MO solutions and the Pareto set. The i-th
solution of the Pareto set is denoted as Ψi = {Ψij ∀j ∈
[1 .. J ]}, where Ψij is the value of the j-th cost attribute.
There is no predetermined number of solutions in the Pareto
set, i.e., the number of i-es is unknown. Instead, QR-MO
always returns K solutions, and the k-th solution is denoted
as Ωk = {Ωkj ∀j ∈ [1 .. J ]}. Therefore, in QR-MO, the
number of solutions is predetermined and is equal to the
number of cost attributes K = J = 3 because each of the QR-
MO solutions optimizes one of the attributes. As previously
mentioned, the cost attributes considered in this study are
packet loss probability, latency, and jitter.

The DPS can be calculated as follows. First, given the
different scales of the cost attributes, the value of each
attribute is normalized to the range [0, 1]. For each attribute
j ∈ [1 .. J ], the normalization factor fj is calculated as fj =
maxi,k{Ψij ,Ωkj}. The QR-MO solutions and each solution
of the Pareto set are normalized by using the corresponding
normalization factor fj . The normalized solutions are obtained
as Ωnorm

k = {Ωk1

f1
, · · · , Ωkj

fJ
} and Ψnorm

i = {Ψi1

f1
, · · · , Ψij

fJ
}.

The distance between two solutions dki is calculated as

dki =

√∑J
j=1

(
Ωnorm

kj −Ψnorm
ij

)2

. DPS is the minimum
distance between the two sets of solutions DPS = mink,i dki.
The lower DPS, the closer QR-MO solutions are to Pareto set.

The other performance metric is the correctness, which is
used to assess whether one of the QR-MO solutions is part
of the Pareto set; if it is true, then the correctness is equal to
1. The average correctness is the mean of the correctness of
QR-MO solutions throughout all simulation runs. Since QR-
MO returns K solutions, i.e., one for each cost attribute, it
is important to evaluate how many solutions of the Pareto set
QR-MO can find. The average number of correct solutions
shows the mean number of QR-MO solutions that are part of
the Pareto set.

B. Simulation Setting and Result Discussion

We aim to compare our QR-MO solution to its optimality.
Therefore, we use MDA as a baseline algorithm to evaluate our
proposed solution, since it returns optimal solutions. MDA is
a label-setting algorithm introduced in the paper [6] to address
the MOSP problem. MDA generates all solutions in the Pareto
set, identified through the list of non-dominated labels of
the nodes. The concept of non-domination is explained in
Section III. MDA operates under the assumption that the cost
attributes of each edge are summable. While this is true for
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Fig. 3. Comparison of (a) average correctness of QR-MO and (b) the average
number of correct solutions of QR-MO for different topologies

latency and jitter, it does not apply to packet loss probability.
To address this limitation, the packet loss probability must be
converted to logarithmic form to become summable.

The QR-MO uses an ϵ-greedy action selection with ϵ = 0.1
and the learning rate α = 0.7. The hyperparameters of QR-
MO are decided after the empirical studies, and the selected
values give the best overall performance. A QR-MO agent
starts exploring the network from the start node to the end
node. We set the maximum episode number N to 100, and one
episode refers to a period when a QR-MO agent has a single
exploration from a starting node and reaches an end node. We
generate 25 different instances: 5 pairs of start and end nodes,
and for each pair, we conduct 5 simulation runs. On each run,
we have a randomization of ϵ greedy action selection; thus,
we show the average and the 95% confidence interval. The
experiments are performed on a laptop equipped with 8 virtual
CPUs, a 2.8 GHz processor, 32 GB of RAM, and Python 3.9.
Fig. 2 illustrates the DPS across the various network topologies
over N = 100 episodes. The QR-MO performs exceptionally
well for both the MCC and 50N50E. The DPS decreased
to nearly 0, with around 30 episodes on the MCC network
and around 10 episodes on the 50N50E network. MCC and
50N50E are small networks with low node degrees of 2.3
and 2.0 edges per node, resembling a tree structure. In such
tree-like topologies, the QR-MO agent can quickly learn the
optimal path due to fewer choices at each node.

On the other hand, for 25N50E and 100N150E, the DPS
reaches 10−2 and near 0, respectively, after 100 episodes.
This means that QR-MO achieves a near-optimal solution.
These networks have high average node degrees of 4.0 and
3.0, resembling mesh topologies. The QR-MO agent requires

more episodes in such high-degree networks to identify the
paths. Nevertheless, the decrease in DPS from 10−1 to near
zero within 80 episodes for both networks highlights a good
potential of RL algorithms also for mesh networks. For
100N150E with a moderate average node degree, QR-MO can
return a near-optimal solution with DPS = 10−18.

Fig 3(a) illustrates the average correctness at episodes 10,
20, 50, and 100. Fig 3(b) depicts the average number of
QR-MO solutions within the Pareto set. The higher episode
improves the correctness and average number of correct solu-
tions. In 50N50E, QR-MO has the best performance, reaching
100% correctness in 20 episodes, followed by the MCC
network, which reaches 100% correctness in 50 episodes. QR-
MO performs better in the 50N50E network than in the slightly
denser MCC network, with the lowest average node degree of
2 edges per node. Nonetheless, after 50 episodes, all QR-MO
solutions from both networks are correct.

Regarding the correctness metric, QR-MO produces near-
optimal correctness for the 25N50E and 100N150E networks
in 100 episodes. Both networks show an increasing trend
in correctness with more episodes. In the 25N50E network,
QR-MO initially achieves an average correctness higher than
the one in the 100N150E network, around 60% instead of
20% correctness at episode 10. Anyway, when the number of
episodes increases, QR-MO performs better in the 100N150E
network (100% correctness and an average number of correct
solutions of around 2.8 at episode 100) than in the 25N50E
network (88% correctness at episode 100). The 40% gap
difference in correctness at 10 episodes between 25N50E and
100N150E is due to the total number of nodes difference,
with the 100N150E having four times more nodes. However,
at episode 100, the correctness of QR-MO in 100N150E
is 10% better than that in 25N50E. This indicates that the
number of nodes significantly affects the average correctness,
particularly with fewer episodes. With more episodes (50,100),
the performance difference is more impacted by the average
node degree, and the lower average node degree network can
outperform the higher one.

The results presented in Fig. 2 and Fig. 3 indicate that the
RL algorithm has promising potential for solving the MOSP
problem and achieving near-optimal solutions in both small
and large networks. By episode 100, the QR-MO algorithm
had found near-optimal solutions across different networks.
Anyway, QR-MO’s processing time is in the order of thou-
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sands of milliseconds, whereas MDA generates solutions in
hundreds of milliseconds. However, this refers to a static
network condition, i.e., the MOSP problem is solved for a
given combination of cost values, nodes, and edges.

VI. CONCLUSION AND FUTURE WORKS

This paper explores the performance of an RL-based ap-
proach to solve the MOSP problem in 5G-MEC systems.
QR-MO is the proposed RL-based approach, which modifies
Q-routing to accommodate multiple objectives and uses a
heuristic procedure for selecting the action and storing the
solutions. QR-MO solutions has been compared with the
optimal solutions provided by MDA. We have introduced
two performance metrics to evaluate QR-MO performance:
DPS and correctness. Four networks with different numbers
of nodes and different average node degrees have been con-
sidered. In the case of tree-like networks with a small average
node degree, QR-MO performs best in terms of DPS and
correctness: fewer episodes can return correct solutions. QR-
MO also performs well in the case of a mesh network but
can return correct solutions after a higher number of episodes.
However, our work still has some limitations and challenges.
Although QR-MO has promising results, the processing time
to reach the correct solution is hundreds to thousands of
milliseconds. Meanwhile, MDA can generate solutions in tens
to hundreds of milliseconds. Anyway, our evaluation is with
static network conditions, further works need to be done to
evaluate the profitability of QR-MO in dynamic networks.
In dynamic network conditions, MDA must recompute the
solutions from scratch at every network change. QR-MO can
instead exploit the previous training to compute the solutions
in the new network conditions. In this case, after convergence,
QR-MO computes solutions for each episode, even when
network conditions differ from those used during training and
previous episodes. The QR-MO can implement its learned
policy directly, generating solutions in about 5 ms on average.
This suggests that QR-MO has the potential to adapt to
dynamic changes in the network and adjust its policy in near
real-time. In contrast, the MDA, which depends on static
network assumptions, must generate solutions from scratch,
requiring approximately 50 ms.
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“A utility-based analysis of equilibria in multi-objective normal-form
games,” The Knowledge Engineering Review, vol. 35, 2020.

[21] I. Mehta, S. Taghipour, and S. Saeedi, “Pareto frontier approximation
network (pa-net) to solve bi-objective tsp,” in 2022 IEEE 18th Int.
Conference on Automation Science and Engineering (CASE). IEEE,
2022.

[22] J. Perera, S.-H. Liu, M. Mernik, M. Črepinšek, and M. Ravber, “A graph
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