2025 21st International Conference on Network and Service Management (CNSM)

Interactivity Assessment of Streamed Games over
Heterogeneous Access Networks using Bayesian
Networks

Henrique Souza Rossi*, Karan Mitra*, Christer Ahlund*, Niclas OgrenT, Per Johansson'
*Mobile and Pervasive Computing, Department of Computer Science, Electrical and Space Engineering,
Luled University of Technology, Skellefted, Sweden
TInfovista, Skelleftea, Sweden
Email: henrique.souza.rossi@ltu.se

Abstract—Interactivity is a metric that measures the level of
control or manipulation users may exert over a system, software,
or service. It is considered a key dimension in cloud-gaming
services, measuring how effectively users can control and respond
to game events in real-time. Although widely acknowledged by
standards such as ITU-T Rec. G.1051, G.1072, its relationship to
other quality dimensions such as video, audio, and overall Quality
of Experience (QoE), remains not thoroughly examined. In this
paper, we present a novel Bayesian Network-based framework to
model and analyze interactivity alongside other quality factors
under varied network conditions. Our method enables probabilis-
tic inference and sensitivity analysis across perceptual variables,
offering explainable insights into their mutual influence. Using
data from two (NI1=30, and N2=31 subjects) subjective studies
— one for Virtual Reality Cloud Gaming (VRCG) and another
for Mobile Cloud Gaming (MCG) — we show interactivity is
most sensitive to round trip time (RTT) but resilient to jitter
(R]) effect. Further, an assessment of the seven interactivity-only
variables shows that their distributions change uniformly under
varying network conditions, suggesting that interactivity may be
captured by a single metric. Finally, sensitivity analyses indicate
that QoE is a more representative metric than interactivity for
quality assessment in cloud gaming over heterogeneous access
networks.

Index Terms—Bayesian Network, Subjective tests, Interactiv-
ity, Quality of Experience, Quality of Service, Cloud Gaming,
Heterogeneous Access Networks, Virtual Reality, Mobile Cloud
Games

I. INTRODUCTION

Interactivity is a metric that measures the quality of real-
time manipulation of digital content between users and tech-
nology [1], [2]. Steuer, Biocca, and Levas define it as “the
extent to which users can participate in modifying the form
and content of a mediated environment” [3]. Currently, stake-
holders such as network operators, application developers, and
service providers are increasingly interested in understanding,
measuring, and predicting this metric for emerging services, as
these factors affect service adoption and revenue. Understand-
ing these factors enables operators to optimize resource allo-
cation and ensure efficient, user-centric network performance.
In particular, cloud gaming (CG) services have emerged as
a compelling platform for stakeholders to deliver gaming
experiences without relying on high-end local hardware. With
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the market projected to reach USD 121.77 billion by 2032, CG
will increase demand for low-latency, and immersive services
[4]. What is more, CG is a key enabler pervasive computing
for games: they can be played anywhere (e.g., location and
device agnostic) and anytime. However, cloud gaming services
are highly sensitive to quality of service (QoS) degradations
since games demand real-time and fast responses to control
and react to game events [5], [6].

For these services to achieve their full pervasiveness, the
stakeholders must find ways to optimize their infrastructure to
better support them, especially in QoS-sensitive heterogeneous
access networks (HANSs) such as 4G,5G, Wi-Fi, wired [7]. The
ITU-T Rec. G.1051 Recommendation [8], recent works from
[9], [10] and others [11]-[15], have attempted to measure how
QoS factors such as RTT, random jitter (RJ), and/or packet loss
(PL) affects interactivity metric, and also the standard quality
of experience (QoE) metric, both for cloud-gaming services.
These studies consider and report interactivity and QoE as
separate perceptual metrics. Their results indicate that each
metric is affected differently by QoS degradations, suggesting
that users perceive these impairments in different ways [10],
[11], [13], [15]. Furthermore, both QoE [6], [11], [16], [17]
and interactivity [8], [9], [11] have been the focus of academic
and industry efforts to develop predictive models based on
underlying QoS parameters - models that are increasingly
valuable to stakeholders seeking to optimize CG service per-
formance and user satisfaction.

Although the literature treats interactivity and QoE as dis-
tinct constructs or metrics, we note a research gap in study-
ing the relationship between them. Interactivity is typically
assessed through specific constructs related to responsiveness
[10], [11], [15], [18], [19], control [13], [20], and input—action
mapping [21], [22], in contrast to QoE, which represents a
broader, aggregated perception of overall service quality [10],
[14], [17]. Tt remains unclear from previous work whether
a relationship exists within interactivity constructs, between
interactivity and QoE metrics, the magnitude and direction
of these relationships, and their sensitivity towards QoS
degradations in CG services. This leads to several important
research questions: Should stakeholders prioritize interactivity,
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QoE, or both when provisioning cloud gaming services over
HANs? Among the various interactivity dimensions, which
should be prioritized in modeling and optimization efforts?
Are interactivity and QoFE influenced by QoS degradations in
similar or fundamentally different ways? Should the research
community invest in developing context-specific interactivity
models tailored to cloud gaming use cases such as VR, PC,
and mobile platforms?

This paper provides clarity on the aforementioned questions
by proposing, for the first time, Bayesian Network (BN) prob-
abilistic analyses that can model jointly the complex and hard-
to-assess dependencies between interactivity (responsiveness,
control, and feedback), audio, video, and QoE dimensions.
BNs offer an explainable and interpretable framework that
enables the inference of network conditions’ effects on sev-
eral quality dimensions [23]. Our BN models are evaluated
through large-scale subjective tests considering both mobile
and virtual reality (VR) cloud-gaming scenarios, revealing how
network impairments affect not just isolated variables but their
perceived interaction — an important step towards a holistic
understanding of the interactivity construct in cloud gaming.
In particular, our contributions are two-fold:

« We introduce a new Bayesian Network framework that
jointly models interactivity, video, audio, and QoE, learn-
ing their complex inter-dependencies under stochastic
network conditions such as RTT, jitter, and PL. Our ap-
proach considers two cloud-gaming datasets and provides
a holistic, probabilistic interpretation and explainable
structure to understand how impairments affect various
quality dimensions.

e« We provide a detailed investigation of interactivity by
modeling and analyzing seven perceptual factors (e.g.,
control precision, input feedback, responsiveness) using
Bayesian Networks that have never been considered be-
fore.

This paper is structured as follows: Section II reviews re-
lated work. Section III describes the datasets and experimental
setup. Section IV outlines the Bayesian network modeling
framework. Section V presents the main results and analysis.
Finally, Section VI discusses the findings, and Section VII
concludes with future work.

II. RELATED WORK

The review of Weber er al. [18], studied and identified
important game related interactivity dimensions: controller
responsiveness, game features, customization, artificial intelli-
gence, exploration, and perceptual persuasiveness. These were
validated through questionnaires for users playing a custom
first-person shooter game with various interactivity features.
In parallel, Mdéller et al. [24] and ITU-T P.809 [25] studied
and defined “interaction quality” as a central component of the
QoE metric in games, drawing conceptual similarities with
the notion of “playability” [26]. Interaction quality captures
both the input (user-to-system) and output (system-to-user)
experience, incorporating variables such as responsiveness,
control precision, visual feedback, and multi-modal feedback

TABLE I: Common influential factors on game interactivity.

Influencial
Factors

Influencial

Authors Authors

Factors

Network Jitter (81, [9]
Video Quality [17[]1’0[]1,9[]1’ 5[]24] Network Delay %g} Hg} Hg}
Responsiveness [10[]1, l[]f 5[]1, 8[]1 9] Packet loss [ l[fﬁi ﬁlﬁ]

Levelcgf1 tf(gntent (13]. [20] Bandwidth [17][,9 ][,1?},0][24]
Mapping [21], [22]

fidelity. Their view of interaction is broader in its dependency
on other quality factors such as video and audio.

Multiple studies have evaluated interactivity based on
network-layer QoS factors such as delay, jitter, and packet loss
(PL), which affect responsiveness and perceived control. Zinno
et al. [9] and ITU-T G.1051 [8] propose interactivity scoring
models based solely on QoS metrics (RTT, PL, RJ) for cloud
gaming. Ida et al. [12] show that delay impairs responsiveness
and synchronization in collaborative VR and FPS games.
In cloud gaming, Zadtootaghaj et al. [11] demonstrate that
frame rate and bitrate influence control and immersion—both
affecting perceived interactivity. Moller et al. [19] used a
multidimensional QoE questionnaire to show that bandwidth
impacts video and audio quality, while responsiveness drives
control satisfaction. Wahab et al. [14] demonstrated that under
delay and packet loss, responsiveness affects perceived QoE
more than video quality, indicating that control factors dom-
inate user perception during network issues. In VRCG con-
text, Lee et al. [10] showed that interaction quality degrades
differently from video and audio under network impairments,
with QoE sometimes remaining high despite poor interactivity.
Li et al. [15] found that minimizing interaction delay is
essential to user experience in VRCG. In summary, although
no studies directly explore the link between video, audio, and
interactivity, findings show that interactivity is highly sensitive
to network conditions.

Beyond network factors, controller action mapping plays a
key role in interactivity. Shafer er al. [22] and Seibert and
Shafer [27] show that “natural mapping” — where inputs
intuitively match in-game actions — enhances perceived in-
teractivity, spatial presence, and enjoyment. Juvrud et al. [20]
find that real-time control increases arousal and engagement
compared to passive viewing. Similarly, Schmidt er al. [13]
show that passive tests can overestimate QoE by ignoring
interactivity effects.

Game Interactivity Factors: Based on the state-of-the-art
review, we have consolidated the factors commonly explored
in interactivity game research and identified them as possible
key influential factors, presented in Table I. We refer to the
definitions of ‘action mapping’, ‘level of content control’, and
‘responsiveness’ as analogous to Steuer et al. [3] three fun-
damental interactivity requirements: ‘mapping’, ‘range’, and
‘speed’. These factors have been studied separately [11], [14],
[19]-[22], [27] and largely under QoS factors degradations
[11], [14], [19] but always with a focus on assessing their
influence independently. In addition, some studies suggest that
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perceived interactivity is influenced by control responsiveness
as well as audio and video quality, with all three dimensions
affecting the user’s overall experience [11], [24], [25].

Interactivity Knowledge Gaps: While there is growing
evidence that context factors from the network, device, and
application layers can dynamically affect user-perceived video,
audio, and interactivity quality, the interdependence among
these modalities remains insufficiently understood. Clarifying
these relationships is key to building a holistic view of
interactivity measurement, leading to more robust, network-
aware models that can guide future optimization and quality
provisioning for CG services. To the best of our knowledge:
(1) no prior research has systematically examined the internal
dependencies among core interactivity dimensions—such as
action mapping, content control, and responsiveness; (2) nor
has any study formally analyzed the mutual influence between
interactivity, QoE, video, and audio quality in a probabilistic
framework—particularly how changes in one dimension affect
inferences about others. Existing works typically evaluate
these factors in isolation [11], [14], [19]-[22], [27], limiting
our understanding of their combined effect on perceived inter-
activity and QoE. In this paper, we address these gaps by inves-
tigating which interactivity dimensions are most sensitive to
QoS degradations, whether interactivity and QoE are affected
in similar ways, and whether both should be prioritized by
stakeholders. To do so, we present the first probabilistic joint
assessment of seven interactivity components (responsiveness,
immediate feedback, controllability) and their dynamic in-
terdependence with QoE, video, and audio quality in both
mobile cloud gaming (MCG) and virtual reality cloud gaming
(VRCG) contexts.

III. METHODS

To address the aforementioned research gaps, we investi-
gate two of the most challenging contexts for cloud gaming
services: VRCG and MCG. VRCG involves the cloud-based
streaming of games to virtual reality devices, enabling highly
immersive user experiences. However, this very immersion
makes VRCG particularly susceptible to users’ perception of
quality degradation, as even minor streaming quality disrup-
tions can break the sense of presence [10]. MCG, on the
other hand, focuses on gaming using smartphones — the most
widely used gaming platform — often accessed over mobile
networks [7]. These networks are stochastic and can signifi-
cantly impact the user’s cloud gaming experience [5], making
MCG and VRCG critical and dynamic use cases to study. To
this end, we used two datasets from [28], [29], referred to as
VRCG and MCG, respectively. Although those works focused
solely on QoE — with setup and analyzes detailed therein — this
paper extends the analysis by incorporating unpublished data
on VideoQ, AudioQ, and Interactivity, not previously reported
in our studies.

A. Datasets:

The VRCG dataset examines the impact of mobile network
conditions— RTT, PL, RJ,and the combination (RTT, PL)—on

TABLE II: Emulated network conditions in both datasets,
using NetEm, bi-directionally applied. Baseline: RTT=4ms.

QoS Factor
(unit)
4, 27, 77, 177,
RTT (ms) o a0 e 102, 202, 302 11
PL (%) with
) it 6,24 12 45 4
37:0.2], 152021,
[RTT (ms); | [27: 21, [27: 41, [27; 61, [52; 61, [502,0 2]1 [[102'0]21 N
and PL (%)] | [52: 21, [52: 4] [77: 21, (77: 4] O
[27; 1], [27; 3],
[RTT (ms); _ _ [27: 61, [52: 1, _ _
iRy | BBALBzE ORELN | sae 12 11
[77; 6]
Total 2 16 i1 39

TABLE III: Questions used to assess interactivity and other
quality factors based on [31]. Both=VRCG,MCG

Code Question | Gane | Code Question | Game |
VideoQ Overall 'v1deo Both IF1 Immediate feedback MCG
quality on actions
AudioQ Overall 'audlo Both N2 : Control over MCG
quality interface/devices
QoE Overall gaming Both CN3 Contr(')l over game MCG
experience actions
CN1 Felt in control Both REL Input responsiveness |y~
of game met expectations
2 Imme@late action MCG RE2 Inputs applied MCG
notification smoothly

user-perceived QoE, video, audio, and interactivity. A total
of N=28 network conditions were tested, each rated individ-
ually by all participants (see Table II). N=30 participants,
recruited from their university across various programs (age
range: 18-35, gaming experience: 21%-no, 60%-intermediate,
19%-advance). The users played Serious Sam VR', using
Oculus Quest 2 and VR gamepads while standing in a lab
environment. The game required players to shoot waves of
incoming enemies from multiple directions, without physical
locomotion. For MCG, we used a similar set of network
conditions (RTT, PL, RJ), with additional levels (see Table II),
totaling N=23 conditions, tested one at a time by each user.
N=31 participants (age range: /8-35, gaming experience:
16%-no, 65%-intermediate, 19%-advance) they were recruited
from the same campus, but different user pool from VRCG.
They played CS:GO version I1*, using an Xbox controller
(supported by the game natively) and an Asus ROG Phone
5 Pro. This setup represents a typical CG on portable devices.
In addition, CS:GO gameplay involved eliminating enemies on
a fixed map. For both datasets, RJ (jitter) conditions follow
a normal distribution, and PL conditions have a constant
probability of loss. We selected CS:GO and Serious Sam VR
because shooter games demand fast, precise responses [30].
Hence, users would be able to perceive network degradations
and effect on quality clearly.

B. VRCG and MCG Experiment Design:

In both user experiment groups, a within-subject design was
followed, where each user experienced and rated all the net-
work conditions. The conditions were randomized following

Uhttps://store.steampowered.com/app/465240/ [Access date: June 2025]
Zhttps://store.steampowered.com/app/730 [Access date: June 2025]
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a balanced latin square design. For both experiments, before
the start of the test, users were requested to sign a consent
form, followed by a demographics and game warm up session
of 5 minutes. The duration of each test was set at 90 seconds
following ITU-T P.809 [25]. Regarding the quality question
measurement, for both experiments, they used a questionnaire
proposed in [31]. Both VRCG and MCG experiments included
questions on video quality (VideoQ), audio quality (AudioQ),
overall quality of experience (QoE), and controllability (CN1).

For the MCG experiment, seven interactivity-related ques-
tions were evaluated and mapped to three core constructs
from previous studies as shown in Table III and Table I. The
Responsiveness group (RE1, RE2), which captures input delay
and motion smoothness, corresponds to the “Responsiveness”
factor frequently cited in the literature [12], [19]. Immediate
Feedback (IF1, IF2), reflecting the system’s reactivity to user
input, aligns with the “Mapping” construct—how well user
actions are translated into outcomes [11]. The Controllability
items (CN1-CN3), which assess the user’s sense of control
during gameplay, correspond to the “Control” dimension [20],
[22]. In both VRCG and MCG the questions had a discrete
5-point scale (“very-poor”, “poor”, “Average”, “Good”, “Ex-
cellent”) consistent with ITU P.809., and detailed in Table III.

IV. PROBABILISTIC MODELLING OF QOE,
INTERACTIVITY, AND MEDIA QUALITY IN CG

A. Requirements:

Given the breadth of subjective responses collected across
both experiments, we aim to understand how these perceptual
variables relate to one another and how they are influenced
by varying mobile network conditions. To support this anal-
ysis, the modeling framework must(1) capture the inherent
probabilistic nature of user ratings, which typically appear
as score distributions over discrete scale options (e.g., 1-5)
[32], (2) handle both linear and nonlinear influences, since the
relationship between QoS parameters and perceived quality
may not be monotonic or threshold-dependent [6], [16]; (3)
capture complex dependencies between multiple QoS and
quality variables; (4) provide explainable results and; (5)
enable bidirectional reasoning, both from QoS effect on quality
factors and underlying QoS requirements given quality states.

We chose Bayesian Networks (BNs) for this study due to
their ability to model uncertain, complex, and interdependent
relationships among perceptual quality factors in a probabilis-
tic yet interpretable way [23]. The most widely used regression
methods offer prediction and interpretability but do not model
causal or probabilistic dependencies between several factors
[33]. Hidden Markov models are restricted to sequential data,
and while neural networks are powerful, they often behave
as black boxes with limited transparency. Mitra et al. [23]
and Tasaka et al. [34] demonstrated that BNs provide a better
combination of interpretability, cause-effect reasoning, and
structural explanatory modeling than regression and black-box
models in QoE contexts. In our case, BNs - being probabilistic
graphical models, model how interactivity, QoE, video, and
audio qualities are influenced by QoS factors (RTT, jitter, PL),

(a) QoS effect on Multi. Interac-
tivity dimensions. MCG-only.

Rudio® Qideo® Coni
@ CN1 @ :
D CQoE >

(b) Interdependence among four quality dimensions.

(c) QoS eftfect on four quality di-
mensions, including dataset type.

Fig. 1: BN models proposed to study QoS effect on quality
dimensions on VRCG and MCG datasets. Analyses in Sec. V

supporting both top-down (e.g., fixing QoE to “Excellent” to
infer required QoS) and bottom-up reasoning (e.g., assessing
the impact of RTT)— a capability which is not supported by
methods such as Belief Rule-Based systems, or fuzzy logic,
which are limited to one-way rule evaluation.

B. Bayesian Network Design:

A BN can be defined as follows: Definition 1. “A Bayesian
network (BN) is a directed acyclic graph (DAG) where random
variables form the nodes of a network. The directed links
between nodes form a conditional dependency relationship.
The direction of a link from X to Y means that X is the parent
of Y. Any entry in the Bayesian network can be calculated
using the joint probability distribution (JPD) denoted as:”

P(zy,...,xpm) = H P(x; | Parents(X;)) (1)
i=1

where, parents nodes X; is the parent of node z; [33]. To
apply BNs to our datasets, we follow the design of CaQoEM, a
context-aware method for BN-based QoE modeling, measure-
ment, and prediction [23]. In their work, the authors combined
BN and utility theory to model and infer QoE under uncertain
and dynamic mobile computing conditions. They structured
the BNs with nodes representing both contextual parameters
(e.g., network delay, jitter, packet loss) and QoE-related factors
such as user satisfaction and technology acceptance. Each
variable was defined as a discrete node, with context attributes
folded into categorical states, and quality factors mapped to
states s1, So,...,S, reflecting their scale values (e.g., Likert
scores from “Very-Poor” to “Excellent”). We extend their
design as follows:

o We incorporate four quality dimensions (VideoQ, Au-
dioQ, QoE, and CNI or “Interactivity” for both VRCG
and MCG datasets, and seven interactivity-specific factors
for MCG.

o We propose three BN models shown in Fig. 1 to study:
Fig.1a how QoS factors affect 7 interactivity dimensions
in MCG; Fig.1b the mutual relationship of the 4 quality
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TABLE IV: QoS state discretizations grouping tested network
conditions by effect and proximity. Tot.Count = number of
tested conditions per state. See conditions in Table II

State

Has Conditions Tot. Stat Has Conditions Tot.
Where Count ae ‘Where Count
5

RTT=d4 RTT=4ms PL=p0 PL=0% 22
RTT=d5_d27 RTT=27ms 3 PL=p02_p6 | PL=0.2; 2: 4; 6% 14
RTT=d28_d52 RTT=52ms 10 PL=p7_p25 PL=12,24% 2
RTT=d53_d102 | RTT=77:102ms 10 PL=p26_up PL=45% 1
RTT=d103_d202 | RTT=177:202ms 2 Ri=std0 RI=0 28
RTT=277;302; R=std]_std3 RI=13 7

KON 352;:402ms & RI=std4_up RI=6,9,12 1

dimensions; and Fig.lc how QoS affects the 4 quality
dimension across VRCG and MCG.

We constructed the Bayesian Network structures in Fig. 1
based on empirical dependencies observed in our datasets.
Each subfigure targets a specific aspect of interactivity and
quality. Arrow directions represent modeled and assumed
conditional dependencies, where parent nodes influence the
marginal probabilities of child nodes. In Fig. 1a, RTT, jitter
(RJ), and packet loss (PL) are parent nodes, with RJ and
PL conditioned on RTT. Each network condition connects to
all interactivity components to infer changes in their poste-
rior probabilities given network evidence. Fig. 1b captures
interdependencies among interactivity, video, audio, and QoE
using directional links. Fig. 1c combines network conditions
and perceptual metrics, with arrows from RTT, RJ, and PL
indicating direct effects. These models support the inference
analyses in Section V.

In all models, the quality factor set QF = {VideoQ,
AudioQ, QoE, IF1,IF2,CN1,CN2,CN3, RE1, RE2} is
represented as discrete nodes with five ordinal states (s; to s5),
corresponding to user ratings from “very-poor” to “excellent”.
Network conditions are also modeled as discrete nodes, where
each state groups lab-emulated conditions based on effect
magnitude and the presence other impairments. Details are
provided in Table IV. For example, the RTT variable is
discretized into six states. One such state, RTT=d4, includes
all conditions with RTT=4ms, resulting in five conditions: the
baseline (RTT=4ms) and four others where PL=6%, 12%,
24%, or 45% (each with RTT fixed at 4ms). Another state,
RTT=203_up, includes only high-latency conditions where
RTT > 203ms (i.e., RTT = 277, 302, 352, and 402ms). Since
these conditions do not involve jitter or PL and given their
conditional dependence, reflecting out NetEm setup, setting
evidence of RTT=203_up propagates this knowledge into all
connected nodes. Then, BN by construction enforce the RJ
and PL variables to their baseline states (std0 and p0) with
100% probability. This discretization strategy preserves the
fidelity to the experimental design while enabling meaningful
probabilistic reasoning.

V. RESULTS ANALYSIS

This section presents probabilistic analyses for the three pro-
posed models, fitted using VRCG (N=30) and MCG (N=31)
user datasets. Models were trained in GeNIe* and CPTs

3https://www.bayesfusion.com/genie/ [Access date: Jul. 2025]

estimated via the Expectation—-Maximization (EM) algorithm
[33]. While Bayesian networks support many evidence com-
binations, we focus on a representative subset. Specifically,
we select high/low degradation or quality states to 1) illustrate
how probability distributions propagate under extreme network
and quality conditions, and 2) highlight the general direction
of likely outcomes without exhaustively covering all combi-
nations. However, intermediate-state cases for each network
variable (RTT, PL, RJ) (not depicted) were also analyzed to
ensure the same conclusions of extreme cases would also apply
to them.

A. Effect of Network condition on Multiple Interactivity Fac-
tors for MCG:

p02_p6 0% las3_a102
p7_p25 0%
b26 up 0%

0 100%
tdl_std3 0%
td4 up 0%

b0 100...r¢;//,_—dzsdsz 0%

(a) RTT = 203_up

> CN1

CN3
1 2%)|
210%

CN2

REI
1 6%]|
221%
320% 0 k5109
439% [l
515%

5 427 0%

=
po  100..] é/,_,: 28 _d52 98%-|§ RJ
p02_p6 0%| 53_d102  0%] td0 0%)

p7_p25 0% 103_d202 1% tdl_std3 0%
P26 up 0% 203 up 1% tdd up 100%

(b) RJ = std4_up

CH CN2
182% -

ST 174% I8
213%

3 4%)| 5 )
4 4%| ?

179%|

laa 100%
PL bs 427 0%
b0 0% édzsﬁdsz 0%
02 p6 0% k53 d102 0%
7_p25 0% (d103_d202 0%
26_up 100...] 203 _uj 0%

5 7%|

P R

Al 4

3 ESIEEY
T=~ko  100%
tdl_std3 0%
tdd up 0%

(c) PL = p26_up

Fig. 2: BN inference results for the MCG dataset; interactivity
components responsiveness (RE), Controllability (CN) and im-
mediate feedback (IF) are conditioned on network factors. Fig-
ure labels use the state names: RTT=203_up € (277-402ms);
RJ=std4_up € (6-12std) (at RTT=52ms); PL=p26_up € (45%).
See details in Table III.

To address the question of which interactivity con-
struct should be prioritize by stakeholders, our first anal-
ysis examines network conditions’ impact on interactiv-
ity by focusing on interactivity-related factors set QF’ =
{IF1,1F2,CN1,CN2,CN3,RE1,RE2} where QF' C QF
reflects user perceptions of responsiveness, control, and input
feedback. In this analysis, we focus solely on the MCG
dataset. We model each interactivity-related factor as nodes
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in the BN model, conditioned on the tested lab-emulated
conditions RTT, RJ, and PL. The structure of the BN model
is represented Fig.2, created based on the dataset (reefer to
Table III for details on each interactivity question). Figure 2
presents BN inference results for interactivity-related factors
under various network conditions. Each subfigure shows the
inferred probability distributions for QF’ factors across five
ordinal levels (sl to s5), given different evidence settings: high
RTT (state=203_up corresponding on dataset to RTT= 277-
402ms; Fig. 2a), high RJ (state=std4_up, corresponding on
dataset to [RJ=4-6std, RTT=52ms]; Fig. 2b), and high packet
loss (state=p26_up, corresponding on dataset to PL=45%;
Fig. 2c). We note that high RTT leads to a probability
redistribution across all interactivity questions to lower states
(sl and s2), indicating low quality of interactivity. For high
RJ, it shows minimal impact, with distributions concentrated
in s4 or “good”, while high PL strongly skews interactivity
metrics toward s1, indicating severe degradation. Despite these
differences, the degradation pattern is consistent across all
interactivity factors, i.e., none appears uniquely sensitive. This
suggests that the effects of RTT, RJ, and PL on interactivity are
uniform across the construct states of responsiveness, control,
and feedback.

Fig. 3: Bayes Factor matrix to assess differences between
interactivity factors.

We further investigate this uniformity, conducting pairwise
Bayes factor tests [35] on all factors of QF’ to assess evidence
of differences in their corresponding marginal likelihoods
(derived from each quality node CPT). Results are shown in
Fig. 3, and we found B F};,=0.7 and B F;,,=1.6; this ranges
according to the literature [35] do not support a substantial
differences across CPTs of QF”.

Summary: Although the questions focused on different
interactivity constructs, our probabilistic analysis suggests
that network conditions alone did not produce distinguishable
effects across them. This supports the assumption of a shared
underlying interactivity dimension and highlights the potential
to reduce the number of interactivity questions in QoS-focused
subjective tests. Therefore, we proceed to analyze inter-domain
relationships using CN1 as the interactivity proxy for both
VRCG and MCG datasets.

B. Quantifying Quality Factor Dependencies Through Sensi-
tivity and Inference Analysis for MCG and VRCG:

A second research gap relevant to stakeholders with re-
source constraints —- and thus seeking to prioritize the

OE q
Q 5 ARdwO VideoQ

AudioQ

AudioQ
1 8%]
k152 7%
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Fig. 4: BN inference for QoE, VideoQ, AudioQ, and CNI1
showing belief propagation and quality interdependence.
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TABLE V: Conditional Sensitivity Measures for QoE, VideoQ,
CNI1, and AudioQ.

Conditional Variables Sensitivity

Model Target QoE VideoQ CN1 AudioQ

Avg=0.112; | Avg=0.142; | Avg=0.047;

Mi QoE - Max=0.297: | Max=0472; | Max=0.191;

. Avg=0.125; Avg=0.035; Avg=0.057;

M2 | VideoQ | a0 0308, — Max=0.09; | Max=0.154;

Avg=0.158; Avg=0.031; Avg=0.051;

M3 CNL | Max=0489; | Max=0.107; — Max=0.204;
most informative quality metrics for CG provision —- re-

lates to understanding how interactivity, QoE, and other
media-specific quality factors (audio and video) influence
each other, and whether they capture overlapping dimen-
sions of user experience. To address this, we evaluate
three Bayesian Network models (M1-M3) designed to cap-
ture potential interdependencies among interactivity (CN1),
QoE, and audio/video quality (AudioQ, VideoQ), defined
as: M1 : P(QoE | VideoQ,AudioQ,CN1), M2
P(VideoQ | QoE,AudioQ,CN1), M3 P(CN1 |
QoE, VideoQ, AudioQ)., and detailed in Fig. 4. This fig-
ure presents the posterior distributions for each BN model
(M1-M3), computed using belief propagation with target node
set to the lowest quality state (s1). In M1 (target: QoE), the
strongest posterior belief under QoFE = s is associated with
CN1 = s; and VideoQ = si,S2, while Audio() remains
more uniformly distributed across higher states. This confirms
that poor QoE is most likely when interactivity and video
quality are degraded, while audio quality exerts weaker influ-
ence. In M2 (target: VideoQ), conditioning on VideoQ = s;
shifts the posterior for QoFE to states s; and sg, but CN1
and AudioQ retain high quality states ss, s4 distributions —-
suggesting that poor video quality co-occurs with reduced
overall QoE but not necessarily with poor interactivity or
audio. In M3 (target: CN1), the posterior under CN1 = sy is
dominated by QoFE = s, while both Video® and AudioQ
retain distributions between high quality states ss, S4.
Additionally, to complement and support the inference find-
ings for M1, M2, and M3, we perform a sensitivity analysis
using BNs to examine how changes in one quality factor
influence the probabilities of others. We apply the Linear
Fractional Transformation (LFT) method in GeNle [36], which
quantifies how changes in the states of input (parent) nodes
affect the posterior distribution of a target node. Sensitivity is
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computed both for individual parent states and for all possible
combinations of parent states, allowing us to capture isolated
and joint effects, including non-linear dependencies. The re-
sults, shown in Table V, reveal that in M1 (target: QoE), CN1
(avg =0.142) and VideoQ (avg = 0.112) exhibit the highest avg
sensitivity, while AudioQ has limited influence (avg = 0.047).
In M2 (target: VideoQ), QoE is the most influential factor (avg
= 0.125), with CN1 and AudioQ showing lower sensitivity. In
M3 (target: CN1), QoE again exerts the strongest effect (avg
= 0.158), while VideoQ and AudioQ remain comparatively
marginal.

Summary: M1 which models QoE as dependent on CN1
(interactivity), VideoQ, and AudioQ; it presents the most bal-
anced structure, capturing meaningful influence across quality
dimensions. In contrast, M2 (video) and M3 (interactivity)
show QOE as the most influential conditional factor. These
findings support the view that interactivity alone may not
sufficiently represent perceived quality in VRCG and MCG
services under QoS degradation. Instead, QoE emerges as the
more comprehensive and reliable metric.
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Fig. 5: BN inference results for Interactivity (CN1), VideoQ,
AudioQ and QoE conditioned on network factors.

C. Effect of Network Conditions on Interactivity and Quality
Factors for MCG and VRCG:

Given that QoE emerged as the most influential factor
in prior models, we further examine how QOE, VideoQ,
AudioQ, and CNI individually respond to network im-
pairments. For each independent quality variable X €

{VideoQ, AudioQ, CN1, QoE}, we compute the expected
utility EU[X ] using a linear utility function, consistent with the
decision-theoretic formulation in CaQoEM [23] and classical
utility theory [37]. Each ordinal state s; (e.g., “poor” to
“excellent”) is first mapped to a numeric value V(s;) €
{1,2,3,4,5}, which is then normalized to the [0, 1] interval
using the formula from [23]. The resulting utility values are:
u(s1) = 0, u(s2) = 0.25, u(s3z) = 0.5, u(s4) = 0.75, and
u(s5) = 1. The expected ustility is then computed as:

EU[X] := > u(s;)- P(X = s;) 2)

i=1

This transformation ensures a consistent comparison and
supportive interpretation of quality factors under varying
network conditions. Next, we condition the model on each
network variable independently, fixing them to representative
high-impact states, to examine their marginal influence on the
distribution of each quality factor.

RJ Effect: In Fig. 5b, we analyze the impact on RJ =
std4_up and PL = p0, for the MCG dataset. The posterior
distributions indicate that VideoQ is most likely in state sl
(“very poor”). QoE distributions also tend to the states s2 and
53, corresponding to mid to low quality levels. In contrast,
AudioQ and CN1 remain largely unchanged, with the highest
probability in state s2, suggesting a limited effect on RJ
under these conditions. We conducted the same analysis on the
VRCG dataset (not shown for brevity) and observed compara-
ble patterns: VideoQ and QoE show increased probability mass
in lower-quality s2, while AudioQ and CN1 remain stable and
concentrated around state s4. Summary: The results suggest
that high levels of RJ negatively affect VideoQ and QoE, with
VideoQ showing the strongest quality drop. However, the effect
on AudioQ and CNI1 appears small in both gaming scenarios
and suggests weak dependence with RJ.

RTT Effect: In Fig. 5a, the Bayesian network is conditioned
on the VRCG dataset and network conditions RJ=std0 (no
jitter), PL=p0 (no packet loss), and RTT=d202_up (high
latency, 202 ms), focusing solely on the impact of high
RTT. CNI1 and QoE distributions are concentrated in states
s2 and sl (poor to very poor quality), with a low expected
value of EU[CN1lyrce] = 0.269, confirming substantial
degradation. VideoQ also performs poorly, leaning toward
state s2 (poor) with EU[VideoQvree] = 0.383. In con-
trast, AudioQ remains spread across state s5 — s3, indicating
uncertainty of the users of the RTT effect on AudioQ. For
MCG (not shown for brevity), the results show a similar
distributions for CN1, with slightly lower expected value
of EU[CN1ycc] = 0.169. VideoQ, however, favors state
s4 (good) with EU[VideoQpca] = 0.643, MCG is less
sensitive to RTT degradation on VideoQ. AudioQ also spread
mostly on sb, s4, aligned with the VRCG outcome. Summary:
These findings further confirm that RTT is the main cause of
degradation in CNI1, our reference interactivity variable, as
observed in Section V-B.

PL Effect: To evaluate the impact of packet loss (PL),
the BN inference is set to RJ=0std (no jitter), PL=p26_up
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or higher (high PL), and RTT=d4 (low RTT) to isolate PL
effects. For MCG (Fig. 5c), CN1 is highly concentrated in
state s1 (very-poor), with some probability in s2, resulting in
an expected value of EU[CN1y;c¢] = 0.07. VideoQ, AudioQ
and QoE distributions are skewed towards low quality states
s1,s2, with s1 as the most probable. For VRCG (not shown
due to brevity), CN1 is more concentrated in state s2 (poor),
with a lower expected value of EU[CN1lygrce] = 0.366.
Both VideoQ and AudioQ are more affected, skewed towards
low-quality states, particularly s1. Summary: These findings
highlight the strong negative impact of PL on CNI, QoE, and
VideoQ and AudioQ, in both VRCG and MCG contexts..

VI. DISCUSSION

Our findings offer important implications for understanding
how users perceive quality under varying network conditions
in cloud gaming (CG) services. Although some of the analyses
were conducted independently on VRCG and MCG datasets,
results were consistent across both, highlighting patterns that
are directly relevant for stakeholders and research community
looking to improve and optimize CG services over HANs with
quality.

A key question in this study is how specific network-level
impairments—RTT, jitter, and packet loss (PL)—affect inter-
activity in cloud gaming (CG). Our results show that higher
RTT and PL increase the probability of low interactivity-
quality states. By contrast, jitter has minimal influence on
interactivity quality but substantially lowers VideoQ. We in-
terpret this pattern as consistent with video-layer degrada-
tions, based on the observed decreases in VideoQ. This was
confirmed the QOoE score distribution also concentrated to
lower-quality states under jitter. These highlight the challenge
of modelling interactivity quality considering QoS-only fac-
tors [8], which may underestimate interactivity quality loss
in jitter-prone environments. In practice, mobile networks
frequently experience jitter [38], [39], including on modern
5G. A recent review by Loh et al. [7] highlights persistently
high jitter levels across European 4G and 5G networks. Since
users worldwide increasingly rely on mobile connectivity,
their access to MCG and VRCG services will require quality
estimation from models that account for diverse and dynamic
network impairments.

In addition, this paper results address how interactivity,
QoE, and other perceptual quality metrics (audio and video)
influence one another, and whether they capture overlapping
dimensions of user experience. Our probabilistic analyses
using Bayesian Network models (M1-M3) show that QoE
consistently exhibits the strongest influence across all con-
figurations. When QOoE is the target (M1), both interactivity
(CN1) and video quality contribute meaningfully, but when
interactivity or video are modeled as dependent variables (M2,
M3), QoE becomes the dominant factor. Audio quality has low
influence across all cases. Although our findings did not show
clear differentiation among the interactivity sub-components,
this may be partly due to the nature of the experimental
tasks, which focused on gameplay rather than configuration or

environment manipulation. Control-related constructs—such
as interface customization or object handling—may depend
more on content-specific features than on network conditions
alone, and thus remained less responsive to QoS variation in
our design. This distinction merits further investigation.
Taken together, these results provide valuable guidance for
both stakeholders and the research community in making in-
formed decisions about where to focus efforts when designing,
evaluating, or investigating CG services. Rather than treating
all quality dimensions equally, our findings suggest that QoE
offers more representative quality metric under network im-
pairments, while interactivity can often be inferred from it.
Further, the Bayesian Network approach used in this study
enables these insights by modeling conditional dependencies
and supporting probabilistic reasoning across perceptual and
network variables. Our BN modeling framework and design
may serve as a practical and inspirational tool for researchers
aiming to isolate and investigate other quality metrics, and
identify which matters most under specific conditions. Finally,
as interest in CG services continues to expand across hetero-
geneous network environments, this modeling framework and
the insights it reveals can support more efficient, user-centered
and targeted approaches to both research and deployment.

VII. CONCLUSION AND FUTURE WORK

This paper proposes Bayesian Network models to investi-
gate how network impairments affect perceived interactivity
in cloud-streamed gaming based on two distinct data sets re-
garding mobile cloud gaming and virtual reality cloud gaming.
Through Bayesian inference, sensitivity, and utility-based anal-
yses, we identified how quality factors such as interactivity,
video, audio, and overall QoE are interrelated and affect each
other. Our findings offer practical insights for refining QoE
and interactivity subjective tests. They will directly impact
future research and stakeholders to investigate the context of
cloud-gaming quality measurement and prediction and mobile
networks effect. In conclusion, we highlight:

o Results of seven interactivity-related variables show con-
sistent degradation patterns across critical network condi-
tions RTT, RJ, and PL; it suggests a single question can
measure interactivity; it creates research opportunities to
simplify and standardize interactivity assessment.

o Sensitivity and Bayesian inference analysis show that
QoE is the most influenced perceptual metric, with its
posterior probability strongly affected by interactivity,
audio, and video quality in the tested models.

o Jitter was found to strongly influence video quality,
while its influence on interactivity remained minimal. In
contrast, RTT skewed towards low quality states both
interactivity and QoE probability distribution in VRCG
and MCG. These findings suggest that existing interactiv-
ity estimation models may underestimate the perceptual

impact of jitter —- especially in CG services delivered
over HANs — where jitter is both common and highly
variable.
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In the future, we plan to explore interactivity in various cloud
gaming contexts (e.g., TV, PC) and study the control mapping
effects.
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