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Abstract—Gossip algorithms are pivotal in the dissemination
of information within decentralized systems. Consequently, nu-
merous gossip libraries have been developed and widely utilized
especially in blockchain protocols for the propagation of blocks
and transactions. A well-established library is libp2p, which
provides two gossip algorithms: floodsub and gossipsub. These
algorithms enable the delivery of published messages to a set
of peers. In this work we aim to enhance the performance
and reliability of libp2p by introducing OPTIMUMP2P, a novel
gossip algorithm that leverages the capabilities of Random Linear
Network Coding (RLNC) to expedite the dissemination of infor-
mation in a peer-to-peer (P2P) network. Preliminary research
from the Ethereum Foundation has demonstrated the use of
RLNC in the significant improvement in the block propagation
time [15]. Here we present extensive evaluation results both in
simulation and real-world environments that demonstrate the
performance gains of OPTIMUMP2P over the Gossipsub protocol.

I. INTRODUCTION

Gossip algorithms, also known as epidemic protocols [5],
[12], [24], are a class of decentralized communication strate-
gies used in distributed systems to disseminate information
efficiently and robustly across a network. In these algorithms,
nodes periodically exchange information with a randomly
selected subset of neighboring nodes, mimicking the spread
of gossip in social networks. In a sense, this is also strongly
related to epidemics, by which a disease is spread by infecting
members of a group, which in turn can infect others. This prob-
abilistic approach ensures that information propagates rapidly
and reliably, even in large-scale or dynamically changing
networks, without requiring centralized coordination or global
knowledge of the system topology. These characteristics make
gossip algorithms inherently fault-tolerant, scalable, and adapt-
able, making them ideal for applications such as distributed
databases, consensus protocols, and peer-to-peer networks.

Consequently, gossip protocols attracted the attention and
were widely adopted in implementations of blockchain sys-
tems. They serve an efficient and reliable solution for var-
ious tasks, including transaction and block propagation as
seen in Bitcoin [34] and Ethereum [8], peer discovery
(e.g.,Ethereum [8]), reaching consensus (e.g., Tendermint [7]),
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and state synchronization (e.g., Hyperledger Fabric [4]) among
others.

However, blockchain implementations often operate on top
of a permissionless, asynchronous, message-passing network,
susceptible to unpredictable delays and node failures. There-
fore, improper use of gossiping approaches may lead to high
network overhead and congestion, high propagation latencies,
and erroneous information propagation due to message alter-
ation by malicious actors. libp2p [27], is one of the latest net-
work communication frameworks and gossip algorithms used
in modern blockchain solutions like Ethereum 2.0 [14]. libp2p
adopts two different push gossiping algorithms: Floodsub and
Gossipsub.

Floodsub, uses a flooding strategy where every node for-
wards messages to all of its neighbors. Although very efficient
in discovering the shortest path and very robust in delivering
a message to all the peers in the network, Floodsub suffered
from bandwidth saturation and unbounded degree flooding.

Gossipsub is the successor of Floodsub, which addressed
the shortcomings of the initial algorithm by organizing peers
into topic-based mesh, network overlay, with a target mesh
degree D and utilizing control messages for reducing message
duplication. Briefly, the Gossipsub protocol works as follows.
A publisher selects D peers among its peers and broadcasts
its message to them. Each peer receiving a message performs
preliminary validation and rebroadcasts the message to another
D peers. Peers exchange control messages such as IWANT,
THAVE or IDONTWANT to inform their peers about their status
regarding the propagation of a particular message. These
enhancements enabled Gossipsub to reduce bandwidth usage,
but the introduction of the bounded degree D increased the
number of hops a message required to reach distant peers,
resulting in higher delivery latencies. Furthermore, similar to
the Floodsub protocol, each peer forwards the full message
to its peers even when other peers may already have received
the full message, also suffering from (reduced compared to
Floodsub) message duplication.

So can we introduce a gossip protocol that is light in
network usage and yet fast in information diffusion?

An idea to leverage coding in network gossip was proposed
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in [38]. Luby Transform (LT) [31] codes were used that stream
algebraically coded elements from a single source to multiple
destinations. Although efficient in direct multicast and shallow
network topologies, the performance of LT degrades when
used in highly decentralized and multi-hop topologies where
the central code generator may need to retransmit critical
coded elements that may be lost during multi-hop relays.

In this work we propose the use of Random Linear
Network Coding (RLNC) [21] for message broadcast. RLNC
is a technique used in communication networks to enhance
data transmission efficiency and robustness. In RLNC, data
packets are encoded as random linear combinations of original
packets over a finite field, typically Fom. This approach
allows intermediate nodes in the network to mix packets
without decoding (aka recode), and the receiver can recover
the original data by solving a system of linear equations
once enough linearly independent combinations are received.
RLNC leverages the algebraic properties of finite fields, that
are deeply rooted in Galois theory [29], to ensure that the
encoding and decoding processes are both efficient and prob-
abilistically reliable. Using RLNC for gossip was introduced
in [10], [11], which showed that optimum O(n) dissemination
of k& messages is possible for both pull and push. The analysis
was refined by [6], which considered pull, push and exchange,
using Jackson networks with network coding [22] in a manner
akin to [32]. Other settings, such as nodes with mobility
[20], [36], [39], broadcast edges (equivalent to hyperedges)
[13], [17] or correlated data [9], have been considered. Some
initial results with large transfer of files were reported in [30].
Probably the most significant results are those that have shown,
by using projection analysis [18] to consider the stopping time
of gossip with RLNC, that, beyond order optimality in n,
RLNC gossip achieves “perfect pipelining” [19]. The stopping
time converges with high probability in optimal time, namely
in time of O(k +T'), where k is the number of messages and
T the dissemination time of a single message. Note that the
general problem of network coding dissemination is hard to
analyze when we do not use a large field size [16].

While the above results point to the potential benefit for
using RLNC in gossip, in order for RLNC to be deployed in
current decentralized systems, it requires the design of a full
protocol. OPTIMUMP2P is a novel gossip mechanism based
on RLNC, hence the term Galois Gossip, which significantly
enhances the spread of information across the network. More
precisely, as any network coding algorithm, RLNC allows the
publisher to split a message into coded fragments (shards) and
send a subset (or a linear combination) of shards — instead of
the full message — to each of its peers. In turn, peers can
forward linear combinations of shards they receive to their
own peers. This approach has dual benefit:

1) Faster Network Coverage: it allows each peer to reach
more peers for the same amount of data sent in full
message counterparts (e.g., Gossipsub), and

2) Message Duplication Reduction: as peers receive dif-
ferent shards in parallel from different peers which
combine to decode the original message.

Essentially, OPTIMUMP2P allows peers to spread informa-
tion piece by piece, as oppose to traditional gossip approaches
that broadcast full information between any pair of peers.
Overall OPTIMUMP2P is a new protocol implemented within
libp2p aiming to decrease latency, enhance fault tolerance, and
optimize bandwidth usage. In the rest of the document we
present the OPTIMUMP2P protocol and extensive experiments
we conducted to compare the protocol’s performance with
Gossipsub, both in a simulation and real-world environments.

II. SYSTEM MODEL

OPTIMUMP2P aims to built a gossip service on top of a
set of asynchronous, message-passing, network processes, we
refer to as peers, a subset of which may fail arbitrarily. Each
peer has a unique identifier from a set Z and has access to a
local clock which is not synchronized across peers.

Gossip Service: We assume a gossip service where peers may
perform two primitive operations: (i) publish(m), operation
where a peer p € Z requests the dissemination of a message
m among the peers in Z, and (ii) a deliver(m), operation that
delivers a message m to a peer p € Z. From a user point of
view a Gossip Service is defined by the following properties.

o Validity: if a peer publishes a message m, then m is
eventually delivered at every correct peer.

o Integrity: a message m is delivered by a peer, if and only
if m was previously published by some peer.

Communication Graph: Peers communicate through asyn-
chronous channels. We assume two primary types of channels:
reliable and unreliable. We represent our communication net-
work by a directed graph G = (V, E), where V C 7 is the
set of vertices, representing the set of peers that participate
in the service, and F the set of edges, or a set of links such
that information can be reliably communicated from peer
to v for each (u,v) € E. Each link e, e € E is associated
with a non-negative number w, representing the transmission
capacity of the link in bit per unit time. The nodes u and v
are referred to as origin and destination, respectively, of the
link (u,v) € E.

Messages: Each published message gets a unique identifier
from a set M, and contains a stream of bytes we refer to as the
content of the message with a value v € V.! We consider the
use of collision-resistant cryptographic hash function which
we denote by H : {0,1}* — {0,1}" [23] for the generation
of message identifiers in M. A publish operation aims to
propagate the contents of a message m € M, while a deliver
operation aims to retrieve the contents of m and return them
to the receiving peer.

Encoding/Decoding with RLNC: We use Random Linear
Network Codes (RLNC) over a finite field Faq, to encode
the contents of a message m € M. In particular, for a
given parameter k, a peer encodes the contents v € V, using
RLNGC, to k * p coded elements (or shards), for some p > 1.

Note that the contents of a message can also be made unique by adding
a random number from a large prime field, e.g., Faq
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Subsequently, the encoder or any other peer in the network
may linearly combine any subset of shards to derive new
linear combinations (i.e., new shards). Any k of the generated
shards is sufficient to decode the value v. We assume that k
does not vary from message to message. For encoding, we
do the following: (i) divide v into a vector of k elements
(v1,v2,...,0k); (i) select a matrix A of coefficients at
random from the finite field Foq such that A may be composed
of k * p rows and k columns; and (4i4) multiply A with
(v1,v2,...,v;) to generate a vector of ¢ = (c1,¢2,- - , Crap)
of k * p elements. The multiplication is formally illustrated
below:

@11 a2 aik (%1 C1
a2,1 a2 a2 k V2 C2 0
Gn,1  Qan,2 Akxp,k Uk Clkxp

A node v communicates the coded shards ¢y, cg, - - - Cr«p 1O its
neighbors. The matrix A, being randomly generated, can be
shown to be invertible with sufficiently high probability. In the
event that a random matrix is generated that is not invertible,
one can discard it and wait to receive more shards until an
invertible matrix is generated.

III. L1BP2P GOSSIP PROTOCOL: GOSSIPSUB

In practice, OPTIMUMP2P aims to replace the gossip proto-
col in libp2p, a well established and documented peer network
stack [27]. Thus, before proceeding with the description of
the OPTIMUMP2P algorithm, in this section we examine
the details of Gossipsub, the current gossip algorithm that
is currently used within libp2p. libp2p provides two main
gossiping protocols: Floodsub and Gossipsub [2], [3].

o Floodsub is a simple approach where each node forwards
every message it receives to all its peers, ensuring broad
dissemination with some degree of message redundancy.

o Gossipsub provides an improvement on Floodsub in the
following ways: (i) by organizing messages into topics,
with nodes only forwarding messages to peers subscribed
to those topics, (ii) by defining a network degree D to
limit the number of peers each node exchanges full mes-
sages with, and (iii) by utilizing small control messages
to optimize the network traffic.

full-message <——>
coded data

metadata <--=->

Fig. 1. The figure illustrates two distinct types of peers in the libp2p network:
full-message (or mesh) peers and metadata peers

Gossipsub Network Overlay. In Gossipsub, peers estab-
lish connections through two types of peerings: full-message
peerings and metadata-only peerings. These two types of
connections define the network graph (see Fig. 1). Full-
message (or mesh) peers operate within a sparsely connected
network with each peer connected to a degree D other peers,
to transmit entire messages across the network. Metadata (or
connected) peers form a densely connected network primarily
for exchanging control messages.

The rationale for limiting full-message peerings is to re-
duce network traffic and increase the available bandwidth. In
libp2p’s default Gossipsub implementation, D = 6 with an
acceptable range of 4 to 12. The network degree strikes a bal-
ance between several key factors: speed, reliability, resilience,
and efficiency. Higher D improves network coverage, and thus
message delivery speed, reliability by ensuring messages reach
all subscribers, and fault-tolerance by reducing the impact of
any peer disconnections. However, increasing the degree raises
bandwidth demands and network congestion, as redundant
copies of each message are generated.

Control Messages. By controlling the number of full-message
peerings, the network can optimize for both performance and
resource efficiency. The gossipsub protocol leverages several
control messages in order to manage the topology of the gossip
network and its peer-to-peer connections (see [28]).

IV. OPTIMUMP2P: THE GALOIS GOSSIP PROTOCOL

In this section we present the OPTIMUMP2P protocol that
extends ideas in Gossipsub and is designed to improve the
latency achieved by current gossip applications (e.g., a few
hundred milliseconds to few seconds). OPTIMUMP2P builds
on top of the libp2p communication stack, thus any message
published in OPTIMUMP2P, adheres the rules specified by
libp2p.

Parameter | Description

N(v) Set of connected neighbors of v in G = (V, E)
Noesn(v) | Set of full-message (mesh) neighbors of v in G
theartbeat | The heartbeat time for relaying IHAVE messages
k Rank of coded-stripes of a message

T The forwarding threshold

p Published shard multiplier

TABLE T
Parameters encoded in the protocol for each node v

The OPTIMUMP2P protocol primarily relies on a push-
based system, in which the publisher of a message pushes
shards to its peers, who then forward combination of received
shards to their own peers. The protocol has a fallback for
when this system doesn’t work; nodes that don’t get enough
shards to decode a message can request more shards from their
peers as necessary. OPTIMUMP2P uses a peering degree D as
defined in Gossipsub for defining an overlay network.

At a high level, OPTIMUMP2P works in four stages:
Publisher Propagation: Once a peer v receives a publish(v),
it first divides the message to be published into k fragments,
and encodes those fragments using RLNC into p % k shards.
It then sends these shards to its full-message neighbors.
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Algorithm 1 OpTIMUMP2P Gossip: Data Types, Parameters,

State and Signature at node v

Data Types:
2:  V: set of allowed message values
M C H: set message identifiers

&

Parameters:
N (v) C V: set of neighbors of v € V in G = (V, E)
6: Nyyii(v) € N(v): set of full-message neighbors of v
theartbeat: time interval for garbage collection
8: k € N: fragmentation parameter
r € N: forwarding threshold

10: State Variables:
msgBuffer C M x V, published message buffer initially 0
12:  sendBuffer[m] C N(v)? x ZL x (F,8)", send buffer initially @
shardSet[m] C N (v) X Z;U x (Fys)" shards for m € M init 0
14:  msgDecoded[m] € V x 2shardSetm]

< decoded value and shards for m € M initially L
isDone[m] C N (v), set of peers decoded m € M init §)

16:  doneSent[m] C N(v),
< peers we have sent IDONTWANT for m € M init ()

iWant[m] € N(v), peer to send INANT for m € M init L

18: Signature:
Input:

20: publish(v), v € V
receive-shard(m, s), m € M, s € N(v) x ZJ;O X (Fzs)k
22: receive-done(m, IDONTWANT), m € M B
receive-ihave(m, IHAVE), m € M
24: receive-iwant(m, IWANT), m € M
Output:
26: deliver(v), v eV
send-shard(m, s), m € M, s € N(v) x ZJ;O X (Fzg)k
28: send-done(m, IDONTWANT), m € M B
send-ihave(m, IHAVE), m € M
30: send-iwant(m, IWANT), m € M
Internal:
32: generate-shards()

decode-message(m), m € M

Shard Processing: When a node v’ receives a shard, it adds
it to its set of shards for the message. If it has enough shards
to decode the message, it does so.

Shard Forwarding: After having processed an incoming
shard, a node conditionally forwards it to its own peers. The
conditions depend on: (i) whom the shard came from, (ii) how
many shards the node has locally, and (iii) the status of the
node’s peers.

Requesting Additional Shards: Periodically, a peer that does
not have enough shards to decode requests more shards from
its peers. Peers receiving such request reply with more shards.

A. Optimizations

To further improve performance, OPTIMUMP2P adopts
four minor optimizations (color coded in Algorithm 2): (i)
publisher flooding (magenta), (ii) forwarding threshold (cyan),
(iii) control messages (blue).

Publisher Flooding: The algorithm is designed to aggres-
sively forward shards created by the publisher, since these
shards are created early in the message’s lifecycle, and always
carry new degrees of freedom. Thus, the publisher sends shards
to all of its neighbors, i.e. N(v) and not only to mesh peers,
i.e. Npesn(v), aiming to expedite the dissemination of the
degrees of freedom.

Forwarding Threshold: Each non-publisher node for a mes-
sage m, maintains a forwarding threshold r and creates and
forwards a new shard whenever it collects more than + shards
in its local set for m. This shard is then sent to the node’s
peers in Nyesp(v). This in contrast to the publisher’s policy,
as we aim to reduce unnecessary propagation of shards that
are unlikely to carry new degrees of freedom to a node’s peers.

Control Messages: We use control message similar to the
Gossipsub protocol to suppress unnecessary message transmis-
sions and facilitate dissemination of shards to isolated nodes
in case of network partitions. The control messages used are:
IDONTWANT, IHAVE, IWANT.

B. RLNC External Library

We assume an external library that handles the RLNC
encoding, recoding, and decoding process and offers the
following interface:

RLNCencode(v,n): The RLNCencode operation accepts a
data value v and uses the RLNC encoding (see Section II)
to generate n shards.

RLNCrecode(S): The RLNCencode operation accepts a set of
shards S and randomly combines the shards in S to generate
a new shard s’. Note that the shards in S may be the result
of an RLNCencode or another RLNCrecode operation.

RLNCdecode(S): Last, the RLNCdecode operation given a set
S of shards, s.t. |[S| > k, it attempts to use those shards to
decode the original value v.

We use those operations in the specification of OPTI-
MUMP2P without providing their detailed description as this
is out of the scope of this work. This library however, is
implemented together with OPTIMUMP2P for the needs of
the evaluation presented in Section V.

C. I0A Specification

The algorithm is formally specified using the IOA notation
[33] through group-defined transitions, each characterized by
a specific precondition and its effect. We assume that each
node operates in a single-threaded mode, executing transitions
atomically once their preconditions are met. The execution of
these transitions occurs asynchronously. We adopt a fairness
assumption in the protocol’s execution, which suggests that
if preconditions are continually met, each node will have
infinite opportunities to execute its transitions that satisfy
these preconditions. Algorithm 1 presents the data types, the
static parameters, and the state variables used, along with
the signature of OPTIMUMP2P. Algorithm 2 presents the
transitions of all the actions in OPTIMUMP2P.

State Variables. Every node v maintains the following state
variables:
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Algorithm 2 OPTIMUMP2P Gossip: Transitions at any node v € V of graph G = (V, E).

Transitions:
2: /I message publishing
Input publish(v),
4: Effect:
msgBuffer <— msgBuffer U {(H (v),v)}
6: /I message delivery
Output deliver((m, v)),
8: Precondition:
msgDecoded[m] # L
10: Effect:

(Vdee, *) < msgDecoded[m)]

12: (m, v) < (m, vaee)
/I Generate and encode data
14:  Internal generate-shards(),
Precondition:
16: (m, v) € msgBuffer
Effect:
18: S < RLNCencode(v, k * | Npesn(v)])
shardSet[m] < {(v, s, cs) : (s,cs) € S}
20: sendBuffer[m] < {(v,s’) : v/ € N(v) A s" € shardSet[m]}
/' If v’ is not done yet send encoded data to v’
22:  Output send-shard((m’, (p’, 5", c)))y o
Precondition:
24: (v', (p, s,cs)) € sendBuffer[m]
v’ ¢ isDone[m] /I do not send to peer decoded m
26: v #p /I do not send to the publisher
Effect:
28: (m/, (55", cL)) < (m, (b, 5, ¢4))
sendBuffer[m] <« sendBuffer[m] \ {{v’, (p, s, cs))}
30: /I Receive coded shards from v’
Input receive-shard((m, (p, s, ¢cs))) /o
32: Effect:
if msgDecoded[m] = L then
34: shardSet[m] < shardSet[m] U {(p, s, cs)}
if [shardSet[m]| > r/k then
36: (s’, ¢yr) + RLNCrecode(shardSet[m])
B+ {(’Ul, <p7 S,,CS/>> v’ € anesh,(v) \ {p}}
38: sendBuffer[m] < sendBufferjm] U B
/I check whether a message is decodable
40:  Internal decode-msg(m),
Precondition:
42: 3S C shardSet[m] s.t. |S| =k
Vdec < RLNCdecode(S)
44: m = H(Vgec)
Effect:
46: msgDecoded[m] + (Vgee, S)

/I when we decode, send done to mesh neighbors

48:  Output send-done((m, IDONTWANT))

v,v’
Precondition:
50: msgDecoded[m] # L
v € Nyesn(v)
52: v’ ¢ doneSent[m]
Effect:
54: doneSent[m] < doneSent[m] U {v'}
/I Receive done message from v’
56:  Input receive-done({m, IDONTWANT)),/ ,,
Effect:
58: isDone[m] < isDone[m] U {v'}
Il when we decode, send ihave to mesh neighbors
60:  Output send-ihave((m, IHAVE)),,
Precondition:
62: time.Now() — heartbeat > theartbeat
msgDecoded[m] # L
64: v € N(v)
v’ ¢ isDone[m]
66: Effect:
heartbeat < time.Now()
68: /I Receive ihave message from v’
Input receive-ihave((m, IHAVE)) s
70: Effect: :
isDone[m] < isDone[m] U {v'}
72: /I iwant message if we have not decoded m
if msgDecoded[m] = L then
74: iwant[m] « v’
/I send iwant to v’
76:  Output send-iwant((m/, IWANT)),,
Precondition:
78: iwant[m] = v’
Effect:
80: m’ —m
iwant[m] < L
82: /I Receive iwant message from v’
Input receive-iwant((m, IWANT) ),/
84: Effect:
/I if we have already decoded m
86: if msgDecoded[m] # L then
(*, S) < msgDecoded[m)]
38: (s’,cyr) < RLNCrecode(S)

sendBuffer[m] < sendBuffer[m] U {{v’, (p, s", c./))}

msgBuffer: a temporary buffer that keeps pairs of message ids
and message values that have been requested for publishing.
The message id is the hash of the value.

shardSet: a key-value map where the keys are message ids
and the values are sets of shards for the same message.
msgDecoded: a key-value map where the keys are message
ids and the values are pairs of decoded values with a set of
shards that were used during the decoding.

doneSent: is a key-value map where the keys are message
ids and the value is a set of peers to which we have sent the
IDONTWANT message.

isDone: is a key-value map where the keys are message ids
and the value is a set of peers from which we have received
the IAMDONE message.

iWant: is a key-value map where the keys are message ids
and the value is the id of a peer to send the IWANT message.

Transitions. We now describe the actions of the protocol. Note
that input actions are always enabled and are triggered by the
environment. Both output and internal actions are executed
only if their preconditions are satisfied.

publish: a node invokes a publish operation when it executes
this action. The publish action accepts a value v to be
published and generates the message identifier m by hashing
the given value. It then inserts (m,v) into a message buffer
(msgBuffer) for further processing.

deliver: once a message is decoded the deliver action returns
the value of a message to the caller.

generate-shards: this action encodes pending messages to
be published in msgBuffer into p x k coded shrards using
RLNCencode. These shards are then stored in the shardSet,
and a tuple (v/,s’) is added in the sendBuffer for every peer
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v’ of the publisher and every shard s’ generated.

send-shard: is executed to send a shard for a message m to a
peer v’ when an entry (v’, %) € sendBuffer[m], v’ has not yet
informed v that has decoded the message m, and v’ is not the
publisher of m. Once the message is sent is removed from the
sendBuffer.

receive-shard: when peer v receives a shard from v’ for a
message m, it adds the shard in shardSet if m is not yet
decoded; otherwise it discards the shard. Whenever it adds
the new shard in its shardSet and that contains more than
fracrk shards (see optimization (ii), v generates a new shard
by recoding the shards received using the RLNCrecode action.
It then prepares to send the shard generated to all its full peers
by adding the appropriate entries in the sendBuffer. Note that
this action is a key to the performance boost of OPTIMUMP2P.

decode-msg: if a node v collects more than k shards in
shardSet for a message m, then this action is trigger to decode
the message m and store the outcome along with the shards
used for the decoding in the msgDecoded|m] variable.

send-done: if a message m is decoded and the receiver v’ €
Npesn(v) was not yet informed, i.e. v’ does not appear in
doneSent[m], v sends the IDONTWANT control message to v'.

receive-done: upon receiving of a (m, IDONTWANT) message
from v’, node v adds v’ in its isDone[m].

send-ihave: when a heartbeat timer expires at v for a decoded
message m then v sends to N(v) peers that are not in
isDone[m] set, an IHAVE message for m.

receive-ihave: upon receiving of a (m, IHAVE) message from
a peer v’, node v adds v’ in its iWant[m] variable if it have
not yet decode m to request shards from v’.

send-iwant: request shards for m from v’.

receive-iwant: upon receiving of a (m, INANT) message from
v’, generate a new shard by recoding the shards used to decode
message m. Then queue the new shard to be sent to v’.

V. EXPERIMENTAL EVALUATION

In this section we present the experimental evaluation of
OPTIMUMP2P, and its performance comparison to that of
Gossipsub. Our experiments include both simulation results
and real-world deployments. As a general observation, encod-
ing and decoding of messages up to 10MB was accomplished
in less than 6ms, adding a negligible overhead in the latency
of operations compared to the communication in the network.
Consequently, in the sections that follow, we primarily focus
on network metrics, with the times presented being inclusive
of both network and computation overheads.

A. OPTIMUMP2P Simulation Results

We used the Ethereum tool Ethshadow? to simulate gos-
sip in an Ethereum-like network. We built off the work of
prior Ethereum research [15], running the same simulations
as them with 1,000 nodes, 20% of which have incom-
ing/outgoing bandwidth of 1Gbps/1Gbps and 80% of which

Zhttps://ethereum.github.io/ethshadow/

have 50Mbps/50Mbps. The publisher always has 1Gbps/1Gbps
in order to get consistent simulation results. The latencies
between pairs of nodes are based on real-world geographic
locations. We first ran a simple experiment, in which a single
publisher publishes a single message. We varied message sizes
from 128KB to 4096 KB?, and observed significantly faster
arrival times for all message sizes, as shown below. We remark
that our observed performance of Gossipsub matches the
results in [15], which give us confidence in our reproducibility.

We also ran simulations in which a single publisher pub-
lished multiple messages (up to 64), with each message having
a size of 128 KB. The results appear in Figure 3. Once again,
we observed notably faster arrival times in all cases.

B. OPTIMUMP2P Real-World Experiments

We performed side-by-side A/B testing of Gossipsub and
OPTIMUMP2P, each deployed across 36 geographically dis-
tributed identical nodes in Google Cloud Platform (GCP)
data centers (Figure 4), roughly mirroring the distribution of
Ethereum validator nodes. In each test, nodes propagated large
data blobs, simulating transaction blocks. A randomly selected
node initiated each gossip round, and propagation was deemed
successful once at least 95% of nodes received the message.
We varied two main parameters: (i) the message size (from
4MB up to 10MB blobs), and (ii) the publish rate (ranging
from isolated single-block sends to rapid bursts up to several
messages per second). Both protocols were pushed to carry
100 messages per run in some high-load scenarios to observe
behavior under message bursts.

The performance metrics recorded include the propagation
latency, i.e, the time for 95% of the nodes to receive and
reconstruct the message, and the delivery ratio, i.e. fraction of
nodes that obtained the message within a fixed time-bound. We
also tracked the average per-message delay and its variance to
gauge stability.

Propagation Latency and Scalability: Figure 5 presents the
average end-to-end propagation delay for 10MB messages
under increasing publish rates, comparing RLNC-based OPTI-
MUMP2P and Gossipsub. Lower bars indicate faster delivery.

At 1 msg/s, both protocols achieve sub-second latencies;
however, Gossipsub exhibits a slightly higher delay ( 1.0s)
than OPTIMUMP2P ( 0.8s) due to the inefficiencies inherent
in gossip-based redundancy and bandwidth usage.

At 10 msg/s, Gossipsub’s delay increases to 2.5s, while
OPTIMUMP2P remains consistently lower at 1.5s. Under the
highest rate of 20 msg/s, Gossipsub’s latency sharply degrades
to 4.0s, signaling network saturation and queuing delays. In
contrast, OPTIMUMP2P maintains delivery within 1.8-2.0s.

These results demonstrate that RLNC enables superior
scalability in terms of propagation latency. The coded ap-
proach makes more efficient use of network capacity, avoiding
redundant transmissions, whereas Gossipsub’s performance
significantly declines in situations with bursty, high-throughput
demands.

3These block sizes match the ones found in popular blockchain implemen-
tations like Ethereum [1], and Solana [37].
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Fig. 2. Comparison of latency between OptimumP2P and Gossipsub by message size.
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Fig. 3. Comparison of latency between OptimumP2P and Gossipsub by publish rate.

We further evaluated scalability under increasing mes-
sage sizes at a fixed publish rate of 1 msg/s testing both
5MB and 10MB payloads. For SMB blocks, OPTIMUMP2P
achieved 100% delivery with an average latency of 1116ms
(std = 262ms). Gossipsub delivered 99/100, with a delay
of 2293ms and higher variance (std = 712ms). For 10MB
blocks, Gossipsub’s performance deteriorated sharply—only
84/100 messages were delivered, with an average delay of
15.6s and significant variability (std = 7.3s). OPTIMUMP2P
again delivered 100%, with latency held to 1302ms and low
deviation (std = 270ms).

These results demonstrate that OPTIMUMP2P remains
strong and efficient as message sizes grow, consistently achiev-
ing latencies. In contrast, Gossipsub becomes unreliable under
larger payloads, succumbing to congestion and protocol over-
head.

Throughput and Delivery Success Rate: Figure 6 presents
the delivery success rate defined as the percentage of messages
delivered network wide under increasing publish rates. The
results show a consistent advantage for RLNC-based Opti-
mumP2P over Gossipsub, especially under high-throughput
conditions.

At 1 msg/s, Gossipsub and OPTIMUMP2P both deliver
nearly 100% of messages, and no significant reliability issues
are observed at this baseline rate. At 10 msg/s, Gossipsub
drops to approx. 95% delivery, likely due to packet loss or
transient overload in the gossip mesh, while OPTIMUMP2P
maintains a 100% delivery rate, benefiting from RLNC’s
redundancy elimination and network coding. At 20 msg/s,
Gossipsub falls to approx. 80% delivery, with approximately
1 in 5 messages lost, likely due to congestion, buffer
overflows, or gossip suppression. OPTIMUMP2P continues
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Fig. 4. Geographic distribution of the 36 nodes used in each protocol.
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Fig. 6. Delivery Success Rate vs Publishing Rates and Message Sizes

to deliver 99-100% of messages across the network, with
minimal loss despite the high throughput.

These findings underscore the throughput advantage of
RLNC-based dissemination. OPTIMUMP2P’s ability to deliver
coded fragments and recover full messages from partial data
ensures robust delivery even under stress. In contrast, Gossip-
sub’s reliance on full-message relays makes it vulnerable to
packet drops and network saturation during bursts.

Propagation Timeline: RLNC vs. Gossipsub
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Fig. 7. Propagation Stability of the protocols

Propagation Stability and Delay Variance: Figure 7 illus-
trates the mean propagation delay and standard deviation
across nodes for different publish rates. These error bars reveal
stable or erratic delivery times under varying network loads.

Across all rates, OPTIMUMP2P exhibits consistently low
variance, with standard deviation tightly bounded around
+0.2-0.3 seconds. This suggests a highly predictable prop-
agation process, where most nodes receive messages within a
limited time window.

Gossipsub, in contrast, shows significantly higher delay
variability, especially at higher publish rates. At 20 msg/s,
the standard deviation grows to nearly +0.9 seconds, indicating
that some nodes receive messages much later than others.
This inconsistency stems from Gossipsub’s multi-hop gossip
structure, which can lead to inconsistent dissemination and
redundant retransmissions.

The lower variance in OPTIMUMP2P designs is due to
its pipeline-friendly, parallel dissemination using RLNC.
Coded fragments are spread uniformly and decoded incremen-
tally, reducing reliance on any single route or node.

These results demonstrate that OPTIMUMP2P provides
faster and more predictable delivery, critical for latency-
sensitive applications like block propagation in Blockchain
systems like Ethereum. In contrast, Gossipsub’s performance
becomes erratic under load, undermining its suitability for
time-critical scenarios.

VI. CONCLUSIONS

We presented OPTIMUMP2P, a gossip protocol that utilizes
Random Linear Network Coding (RLNC) to enhance the speed
of information propagation in peer-to-peer (p2p) networks. By
leveraging the properties of recoding in RLNC, OPTIMUMP2P
outperforms current solutions by achieving faster network
coverage and reducing message duplication. This enables
OPTIMUMP2P to reach peers in the network faster while pre-
serving network bandwidth. In turn, OPTIMUMP2P provides
clear benefits to distributed solutions that require information
propagation among a set of network nodes, such as block
propagation in modern blockchain solutions. The performance
gains are evident from our experimental evaluation where we
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compare OPTIMUMP2P with the state-of-the-art Gossipsub
implementation, both in simulation and real-world setups.

In our experiments we varied both the rate with which
messages as published, as well as the size of the messages
being gossiped. In all scenarios, OPTIMUMP2P exhibited bet-
ter performance compared to Gossipsub in terms of scalability,
guaranteed message delivery, and delivery latency. In certain
cases (as seen in Fig. 5), OPTIMUMP2P was up to 15-
fold times faster than Gossipsub. Furthermore, OPTIMUMP2P
guarantees delivery of all the published messages even in cases
of large block sizes.

In this work we only consider that peers may crash-fail.
There is a rich literature for managing Byzantine pollution
with RLNC some of which are [25], [26]. A recent extension
of this work [35] proposed a new approach that integrates
particularly well with OPTIMUMP2P.
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