2025 21st International Conference on Network and Service Management (CNSM)

Sandboxing Building OS: Enabling Isolated
Development Environment for Smart Buildings

Yoshiki Kitatani
Graduate School of Informatics
Osaka Metropolitan University

Osaka, Japan

Abstract—In Building Operating Systems (BOS), developing
new applications often poses a risk of unintentionally affecting
live environments, making safe and efficient development dif-
ficult. This challenge hinders the realization of a development
approach that integrates development, testing, and operations
within the BOS environment. To address this issue, it is essential
to establish an access control mechanism that allows application
behavior to be defined and validated under production-equivalent
conditions, without impacting the live system. This paper pro-
poses an authorization gateway architecture that meets this
requirement by integrating OAuth 2.0 with a sandbox mechanism
implemented as an overlay structure. The proposed Overlay
based sandbox enables temporary and revocable permission
assignment directly on the production infrastructure without
modifying permanent rules. The architecture is implemented
using a container-based deployment model and evaluated through
performance profiling and comparative analysis. Experimental
results confirm that the proposed method achieves flexible and
secure access control with minimal overhead, providing a practi-
cal foundation for safe application development and continuous
deployment on BOS platforms.

Index Terms—access control, smart buildings, OAuth 2.0,
Reverse Polish Notation, Sandbox, dynamic authorization

I. INTRODUCTION

In recent years, the importance of smart buildings, aimed
at enhancing the operational efficiency and value of buildings,
has been increasing. Traditionally, there has been a demand
for centralized management of in-building facilities such as
HVAC, lighting, and security. In response, integrated building
management systems have been developed. However, these
systems are often tied to specific vendors’ products, resulting
in limited scalability and high initial setup costs.

To overcome these limitations, the concept of a Building
Operating System (Building OS) has gained attention [1]. A
Building OS integrates various devices and equipment within
a building to optimize operations and enable the development
of new services by leveraging accumulated data. In practice,
its adoption has improved management efficiency and created
new value for both building managers and occupants.

Nevertheless, current Building OS implementations mainly
serve building managers and/or maintainers, and face signif-
icant issues related to interoperability across platforms and

This work was partially supported by JSPS KAKENHI Grant Number
24K02934, and is also based on results obtained from a project, JPNP22006,
subsidized by the New Energy and Industrial Technology Development
Organization (NEDO).

978-3-903176-75-1 ©2025 IFIP

Manato Fujimoto
Graduate School of Informatics
Osaka Metropolitan University

Osaka, Japan

Shingo Ata
Graduate School of Informatics
Osaka Metropolitan University

Osaka, Japan

limited application development by other stakeholders. Many
systems are tailored to their own services and lack sufficient
compatibility with others. Furthermore, non-administrative
users face considerable restrictions in freely developing and
utilizing applications.

Given this, there is an increasing need for an architecture
that not only enhances individual building operations and
management but also supports coordination across buildings
and integration with smart city infrastructure. The key lies in
establishing a collaboration domain to enable secure, efficient
data sharing among different Building OS platforms. This
makes it possible to share device information and func-
tionality as needed, and empowers a broad range of stake-
holders—including tenants, service providers, and general
users—to create new services.

Furthermore, in this context, a major obstacle to the ad-
vancement of Building OS platforms is the risk of developing
and testing applications directly on production environments.
Such activities may unintentionally interfere with active equip-
ment or other critical applications, making it difficult to
establish a development process that ensures both safety and
efficiency. This hinders the realization of integrated develop-
ment, testing, and operation, thereby limiting new application
creation.

Additionally, to ensure privacy and security for users access-
ing various zones and facilities, a centralized access control
mechanism via the API Gateway is essential. For instance, in
shared spaces like meeting rooms, different users require dif-
ferent permissions depending on time and context. Centralized
management of such conditional and flexible access enables a
balance between security and usability.

To meet these requirements, a secure, isolated development
and testing environment that replicates production conditions
without affecting live operations is necessary.

This paper proposes a sandbox framework composed of
three core components: (1) an overlay layer for temporary and
revocable environments, (2) a rule-based authorization table
using Reverse Polish Notation (RPN), and (3) OAuth 2.0 for
authentication and scope-based control.

By integrating these components, stakeholders can safely
define, test, and apply policies on production infrastructure
without compromising integrity. This framework supports
secure, flexible application development in BOS, promotes

2025 21st International Conference on Network and Service Management (CNSM)

DevOps practices, and serves as a foundation for future smart
city integration.

II. RELATED WORK

Various access control mechanisms have been proposed to
date [2], [3], and centralized access control for IoT devices in
smart homes and smart buildings has been actively studied [4]-
[13]. Below we categorize prior studies, review their strengths
and limitations, and position our sandbox-based contribution.

A. General Access Control Models

Access control models can be broadly classified into four
categories. Mandatory Access Control (MAC) enforces strict
confidentiality but is inflexible in dynamic environments.
Discretionary Access Control (DAC) provides fine-grained
permissions but becomes unmanageable at scale. Role-Based
Access Control (RBAC) simplifies administration via roles,
but lacks flexibility in frequently changing contexts [14]-[16].
Attribute-Based Access Control (ABAC) enables context-
aware control by evaluating user, resource, and environmental
attributes, but suffers from policy complexity and scalability
challenges [17]. Hybrid approaches have attempted to combine
RBAC’s manageability with ABAC’s expressiveness [18]-
[21], yet face difficulties in managing temporary, revocable,
and conflict-free rules.

B. BOS-Oriented Architectures

With the rise of smart buildings, BOS platforms have
attracted research attention [4]-[8]. A framework such as
XBOS [22] address platform unification, data modeling, and
standardized device integration, but they assume trusted appli-
cations and do not provide mechanisms for temporary, revoca-
ble permissions or safe iterative development. PlayGround [5]
advances safety by introducing semantic authorization and
containerized isolation for untrusted applications. However, it
does not offer an isolated DevOps oriented sandbox in which
such updates can be tested while leaving other environments
unaffected.

By contrast, our approach integrates directly with existing
BOS deployments. Through an overlay sandbox, developers
can test applications in production-equivalent environments
while applying temporary and revocable permissions that do
not alter baseline policies. This unique design addresses the
unmet need for policy-preserving, safe DevOps in BOS.

C. Related Concepts in Other Domains

Several related models from other domains are also relevant.
Temporal RBAC / GTRBAC [23], [24]introduces time-
bound constraints on roles. capability-based access such as
CapBAC allows issuance of constrained, revocable tokens.
These methods demonstrate important ways to handle tem-
porary or conditional access. However, they typically operate
by creating or attaching new roles/capabilities on demand. In
contrast, BOS environments require systematically managing
a wide variety of dynamically changing conditions (e.g., time,
context, tenant, device hierarchy) in a unified database rep-
resentation. Our Reverse Polish Notation (RPN)-based rule

engine provides this capability by storing conditional expres-
sions in a structured and evaluable form, ensuring efficient
runtime evaluation without fragmenting the policy space.

D. Remaining Challenges and Contributions

In summary, existing work either emphasizes integration
(XBOS, BOSS), isolation through new runtimes (PlayGround),
or conditional extensions (Temporal RBAC, CapBAC). None
provide a generalized, BOS-specific mechanism to:

1) Safely manage temporary, revocable permissions with-
out altering permanent rules,

2) Support policy-preserving DevOps
production-equivalent environments, and

3) Unify dynamic conditional policies in a scalable,
database-driven representation.

directly in

This study addresses these gaps by proposing a compre-
hensive access control architecture that combines (i) an RPN-
based rule engine, (ii) an overlay sandbox for temporary and
revocable policies, and (iii) OAuth2.0 [25]for scope-based
application-level control. Together, these components enable
both fine-grained authorization and secure experimentation,
laying a foundation for interoperable and adaptive Building
Operating Systems.

III. PROPOSED METHOD

This section presents the access control mechanism imple-
mented in the BOS, clarifies design requirements, and outlines
the proposed method.

As smart building technologies advance, facilities and sen-
sors are increasingly managed through BOS, requiring more
flexible access control for collaborative environments. A key
challenge is enabling safe application development and testing
without affecting live systems, since existing BOS tightly
couple building resources with production environments. This
hinders development agility and risks unintended operations.

To address this, BOS must allow developers to construct
production-equivalent environments where temporary policies
can be defined, evaluated, and revoked independently of per-
manent environment. Such mechanisms should also support
testing directly on the production environment with a tempo-
rary and revocable environment.

Furthermore, the access control system must satisfy two
core requirements: authorize users to access only the necessary
equipment functions based on least privilege, and support
efficient evaluation of complex, dynamic conditions (e.g., time,
day, user attributes) without compromising performance.

To realize these requirements, the proposed design inte-
grates three complementary mechanisms: a virtual authoriza-
tion layer that grants and revokes temporary or conditional
rights without affecting permanent policies, permanent role-
and organization-based permissions maintained in a central
authorization table, and OAuth2.0-based application-level as-
signment that restricts external applications to the minimum
necessary resources.

2025 21st International Conference on Network and Service Management (CNSM)

A

Sandbox User

‘ rules J ‘ ruleé [rule3 ’
J
[rules ’ ‘ ruleé

X
J
X

upper layer
(Sandbox)
lower layer rulel H rule2 } %
‘ targetl H target2 H target3 H target4
Fig. 1. Example of Overlay based Sandbox

A. Details of the Proposed Method

The proposed method consists of the following components:
the introduction of an Overlay based Sandbox [26] as an
isolated environment layer, the construction of an authorization
table using Reverse Polish Notation (RPN), and scope-based
access control for external applications using OAuth 2.0 access
tokens.

1. Isolated Environment Using Overlay based Sandbox

A key challenge in BOS is enabling safe application de-
velopment and testing without affecting live systems, since
existing implementations often couple access policies directly
with the production environment. This makes it difficult to
isolate experimental effects and introduces risks of unintended
operations on real devices.

To address this, we propose the Overlay based Sandbox,
which creates an isolated environment layered on top of
the production structure. From the perspective of users or
applications operating inside the sandbox, the environment
behaves as if it were part of the production system, allowing
realistic testing without requiring a separate testbed. However,
the sandbox remains logically independent, so administrators
can collectively remove all temporary rules and settings at
once, restoring the system to its original state.

By introducing this overlay mechanism, BOS can replicate
production-equivalent conditions for testing while maintaining
strict separation from permanent policies. This isolation not
only ensures safety but also enables additional capabilities
such as temporary or time-limited permission assignment,
controlled evaluation of new rules, and discarding of experi-
mental policies. Moreover, the sandbox can also isolate device
information and building resources, allowing developers to test
updates or operations without affecting the live environment.
Access conditions within the sandbox are described using
the same structure as permanent rules, ensuring consistent
evaluation and efficient implementation (Figure 1).

2. Authorization Table using Reverse Polish Notation
(RPN)

To handle logical conditions such as date and time without
dynamic parsing, we propose storing authorization rules in
Reverse Polish Notation (RPN) within the database. RPN
enables evaluation through simple stack operations without

handling parentheses or operator precedence, allowing efficient
processing of complex conditions.

With RPN-based settings, the evaluation order is explicitly
managed and access decisions are made efficiently. Centraliz-
ing rules in the database also allows immediate updates and
additions, enhancing both security and manageability in the
Building OS.

Administrators define conditional expressions (e.g., by role,
equipment type, day, or time), convert them into RPN, and
store them in the authorization table. When an API request is
made, the gateway references request details and context (e.g.,
current time or day), evaluates the RPN expression using a
stack, and grants access only if the condition is satisfied.

This approach enables efficient runtime evaluation of com-
plex conditions while ensuring flexibility through easy rule
updates directly in the authorization table.

3. Authentication and Scope Management Using OAuth2.0

In this study, OAuth2.0 is adopted as the authorization
mechanism for assigning permissions on a per-application
basis. Widely used in the web domain, OAuth2.0 enables
secure access by limiting each user’s authorized scope.

An access token is issued following the OAuth2.0 flow.
This token includes a scope that specifies the resources and
functions the user is permitted to access. By utilizing scopes,
access can be restricted to only the necessary areas. In the
Building OS, scopes define control levels over facilities or
access to specific data, preventing unnecessary access and
ensuring that only required operations are allowed.

This mechanism enhances both security and operational
efficiency in collaborative building management, making it
well-suited to the objectives of this research. In practice,
when accessing the Building OS API, user authentication
is performed via the OAuth2.0 authorization code flow, and
an access token is issued with permissions limited to the
authorized functions.

Careful scope design is essential. Unlike typical service
APIs with limited scopes, the Building OS handles a wide
range of resources, potentially resulting in many scope en-
tries. To manage this, scopes are expressed in path-based
formats reflecting the building’s hierarchical structure (e.g.,
building/floor/room/device). Regular expressions are also used
to efficiently specify groups of equipment.

For example, allowing access to all devices on a given floor
would be cumbersome if each device were listed individually.
Instead, a path such as /buildingl/2F/.x compactly
represents all devices on the second floor of Building 1. As
shown in Figure 2, this method supports flexible and clear
scope definitions, from individual devices to entire rooms,
floors, or buildings.

By leveraging scope management in this way, the Building
OS achieves flexible and efficient access control, balancing
system-wide security with usability.

Furthermore, by combining OAuth2.0 with Reverse Pol-
ish Notation (RPN), the system supports not only user and
function-specific permission assignment but also access con-

2025 21st International Conference on Network and Service Management (CNSM)

1F—

lightl
buildingl —— 2F <
lighto

building5

scope = /building1/2F/.*

Fig. 2. Example of hierarchical structure for devices in a building

trol based on complex conditions. This enables both enhanced
security and greater flexibility in building management.

IV. IMPLEMENTATION

This chapter describes the implementation method for con-
structing the proposed API gateway. In this implementation,
we adopt an architecture where the API gateway, which
centrally manages requests to the building OS, and a server
that provides authentication and authorization based on OAuth
2.0 are combined and deployed as containerized services using
Docker.

A. Table Design for Isolation and Access Control

Access control is implemented through several database
tables that manage authentication, authorization rules, and
protected API endpoints. Among them, three tables are central
to our proposed method:

o Authorization Rule Definition Table
(auth_rule_definitions)

Stores logical access control conditions in Reverse
Polish Notation (RPN). This enables efficient evaluation
of complex conditions without parsing overhead.

CREATE TABLE auth_rule_definitions (

rule_id INTEGER,
step_order INTEGER,
attribute TEXT,
op TEXT,
value TEXT,

PRIMARY KEY (rule_id, step_order)
)i

o Authorization Rule
(auth_rule_assignments)
Maps rules to roles and API endpoints. The column
layer distinguishes between permanent (“lower”) and
temporary (“upper”) rules, and sandbox_id allows
targeted temporary assignments. The is_whiteout

flag supports overriding lower-layer rules.

Assignment Table

TABLE I
EXAMPLE OF RULE DEFINITION (RULE_1D=1001)

rule_id | step_order [attribute [op [value
1001 1 Day_of_Week | == Mon
1001 2 Day_of_Week | == | Wed
1001 3 logical_op = or
1001 4 Time > 12:00
1001 5 Time < | 17:00
1001 6 logical_op = and
1001 7 logical_op = and

CREATE TABLE auth_rule_assignments (

id SERIAL PRIMARY KEY,
role_id INTEGER NOT NULL,
target_id INTEGER NOT NULL,
rule_id INTEGER NOT NULL,
sandbox_id TEXT DEFAULT NULL,
layer TEXT CHECK

(layer IN (’lower’, ’'upper’))

DEFAULT ’lower’,

is_whiteout
expired_at

BOOLEAN DEFAULT FALSE,

TIMESTAMP DEFAULT NULL
)

o Endpoints Table (targets)
Defines metadata for API endpoints, including HTTP
method and path, with regular expression support for
flexible scope definitions.

Other supporting tables such as user management (users,
roles, user_role) and OAuth 2.0 token storage follow conven-
tional designs and are omitted here for brevity, since they do
not directly affect the novelty of our proposal.

This streamlined schema focuses on the essential structures
that enable fine-grained, temporary, and revocable access con-
trol while integrating seamlessly with OAuth 2.0.

B. Configuration and Operation of Permanent Authorization
Rules

Permanent access permissions are configured
through the auth_rule_definitions and
auth_rule_assignments tables.

Access conditions are defined in Reverse Polish Notation
(RPN) and registered in auth_rule_definitions. Each
step specifies an attribute (e.g., day, time, user), operator,
and value. These rules are linked to roles and API endpoints
(targets) in auth_rule_assignments, with permanent
rules marked as layer = ’lower’ and no sandbox_id.

When a user accesses the BOS, the gateway retrieves
the user’s role and endpoint, identifies matching rules, and
evaluates the RPN expression using a stack-based algorithm
with runtime context values (e.g., current time). Access is
granted only if the condition evaluates to true.

This table-driven design ensures rules are consistently
enforced and easily updated. Table I shows an example
permitting access only on Monday or Wednesday between
12:00-17:00. Figure 3 illustrates stack transitions during eval-
uation.

2025 21st International Conference on Network and Service Management (CNSM)

Day_of Week== Day_of Week== Trueor Time >
Mon Wed False 12:00

True True

[False } { False J True True
True and True and Time <

True True 17:00

True

True <‘,:| <::| <]‘:.
True True
True True True

Fig. 3. Stack state transition diagram (with Overlay support)

TABLE II
EXAMPLE OF TEMPORARY RULE ASSIGNMENTS

id | role_id [target_id | rule_id [sandbox_id | layer | is_whiteout
1 1 1 1001 NULL lower false
2 1 2 1002 sandbox01 upper false
3 1 1 null sandbox02 upper true

C. Temporary Authorization with Overlay based Sandbox

Temporary access is often needed in testing or for short-term
visitors. To support this, the Overlay based Sandbox adds a
supplementary layer independent of permanent rules.

Temporary rules are also written in RPN, regis-
tered in auth_rule_definitions, and linked in
auth_rule_assignments with layer = ’upper’
and a sandbox_id. Optional fields (expired_at,
is_whiteout) allow timed expiration or suppression of
permanent rules.

Evaluation proceeds in a layered manner: for users operating
within a sandbox, only the upper-layer rules associated with
their sandbox_1id are evaluated, effectively overriding the
corresponding permanent rules. If is_whiteout = TRUE,
the linked permanent rules are explicitly suppressed. In this
way, sandbox participants are governed exclusively by tem-
porary rules, ensuring that experimental access policies are
applied without altering or combining with the baseline poli-
cies. This design allows safe testing and temporary overrides
while guaranteeing that permanent policies remain intact for
all other users. (Table II).

D. Token Issuance and Scope Assignment Using OAuth2.0

Access control for external applications is implemented
using OAuth 2.0, which grants limited permissions (scopes)
based on user consent, ensuring secure and least-privilege
access.

Before issuing tokens, applications are registered as
clients in the oauth2_clients table with client
ID, secret, and redirect URI. When a user accesses

the BOS through such a client, the authorization
server presents a consent screen for scope selection.
Scopes are expressed as hierarchical paths (e.g.,

/buildingl/3F/meetingrooml/light_control),
and regular expressions allow broader definitions such as
/building2/. *.

After approval, an access token is issued and stored in the
oauth2_tokens table, containing user ID, expiration, and
permitted scopes. Applications attach this token to subsequent
API requests.

Upon receiving a request, the API gateway verifies the
token, then matches its scopes against the requested end-
point using the targets table. If matched, corresponding
auth_rule_assignments are retrieved and evaluated.
Thus, scopes first filter candidate endpoints, and final permis-
sion is determined by rule evaluation.

In summary, the proposed system integrates OAuth 2.0 au-
thentication and scope filtering with permanent authorization
and temporary overlays (via Overlay based Sandbox). The
use of Reverse Polish Notation enables efficient processing
of complex conditions, supporting secure and minimally priv-
ileged access across the Building OS’s diverse functionality.

V. EVALUATION

This chapter evaluates the proposed access control system in
a containerized virtual environment, focusing on effectiveness,
flexibility, and operational feasibility. We examined authoriza-
tion behavior based on the rule table and OAuth 2.0 scopes,
as well as the temporary control enabled by the Overlay based
Sandbox. Results are summarized below.

A. Verification of Effectiveness

By storing authorization conditions in Reverse Polish No-
tation (RPN) within structured tables, the system combines
multiple contextual factors (e.g., day, time, user attributes)
while ensuring efficient evaluation without runtime parsing.
Conditions can be easily updated at the SQL level, and scope-
based pre-filtering effectively restricts access and eliminates
unnecessary requests.

B. Verification of Flexibility with Overlay based Sandbox

The Overlay based Sandbox enables temporary access con-
trol independent of permanent rules. Permissions are defined
with a sandbox_id and revoked as needed without altering
baseline policies. For example, visitor access to a meeting
room light can be granted for a limited time. Both permanent
and temporary rules share the same RPN evaluation logic,
ensuring consistency and negligible performance impact.

C. Performance Evaluation and Bottlenecks

To confirm practical response times, we measured process-
ing latency during API calls and identified potential bottle-
necks. In the experiment, 1000 pseudo authorization rules
(RPN format) were registered in both permanent and sandbox
tables. JWT tokens were issued, and requests were sent
ten times to an authorization-enabled endpoint. The average
response time was 985.3 us per request.

2025 21st International Conference on Network and Service Management (CNSM)

¢ Retrieving Authorization Conditions from the
Database Based on the user’s role and the target
API endpoint, this process retrieves authorization
conditions from the auth_rule_assignments and
auth_rule_definitions tables. It simultaneously
references both the upper and lower layers, including
the sandbox, and selects applicable conditions based on
the presence or absence of sandbox_id. This process
took an average of 905.2 us.

o Evaluating Authorization Conditions Using a Stack
This process evaluates the retrieved rules written in
Reverse Polish Notation sequentially. For each step, it
compares against the runtime context (such as time, day
of the week, or user attributes), and uses stack operations
to derive a boolean result. This process took an average
of 1.8 us.

Profiling results showed that database access accounted
for approximately 92% of the total processing time. On the
other hand, the condition evaluation based on Reverse Polish
Notation was efficiently processed through stack operations
and had only a minor impact on overall latency.

Therefore, the primary bottleneck is attributed to database
queries, which may cause performance degradation under high
access loads.

D. Performance Improvement through Caching and Evalua-
tion of Overlay based Sandbox Impact

To reduce database access overhead, this study introduces a
caching mechanism using a Key-Value Store (KVS), in which
all or part of the authorization rules are stored in memory.

With this mechanism, the set of authorization rules corre-
sponding to a specific combination of user role, target_id,
and sandbox_id is stored in the cache at the time of
first access. Subsequent accesses retrieve the rules directly
from memory for a fixed period, thereby avoiding repetitive
database queries.

According to profiling results, the average response time
per request when using KVS caching was reduced to 19.2 us,
representing an approximately 98% improvement over the
previous implementation.

To determine whether the introduction of the Overlay based
Sandbox mechanism introduces any new performance bot-
tlenecks, a comparative evaluation was conducted against a
baseline configuration without the Overlay based Sandbox.

Specifically, the baseline configuration employed a simpli-
fied design in which authorization rules were directly assigned
to target_id and role_id without any sandbox layer.
The schema is as follows:

CREATE TABLE auth (
id SERIAL PRIMARY KEY,

role_id INTEGER NOT NULL,
target_id INTEGER NOT NULL,
attribute TEXT,
op TEXT,
value TEXT,

TABLE 111
COMPARISON OF AUTHORIZATION PROCESSING TIME WITH AND
WITHOUT OVERLAY BASED SANDBOX

Configuration | With Cache (us) | Without Cache (us)

No Overlay 24.0 963.2
Overlay Upper 19.2 985.3
Overlay Lower 26.1 1140.2
rule_order INTEGER

)i

Using both the baseline and the proposed configurations,
authorization processing times were measured under two con-
ditions:

o Cache Hit: Authorization rules are found in the KVS.

o Cache Miss: Rules are retrieved from the database on

each request.

Additionally, within the Overlay-enabled configuration, the
performance difference between the upper layer (temporary
authorization) and the lower layer (permanent authorization)
was also analyzed to assess the processing impact of temporary
rules.

Table III summarizes the average authorization response
times under each configuration and condition.

As shown in Table III, caching had a significant effect
on processing time, while the impact of the Overlay based
Sandbox, or the difference between upper and lower layers,
was minimal.

With caching enabled, all configurations achieved response
times of 20-26 us, maintaining high-speed processing regard-
less of the Overlay. Even without caching, latency stayed
within about 1 ms, showing no major degradation from the
added sandbox layer.

To verify that caching overhead is negligible in practice,
we compared three endpoints: with authorization and caching,
with authorization only, and without authorization. Concurrent
requests were gradually increased, with each request including
a 400 ms sleep interval to emulate realistic API use. Results are
shown in Figure 4. The uncached endpoint saturated at about
400 concurrent requests due to database connection limits,
while the cached endpoint sustained throughput comparable to
the non-authorized endpoint and showed less saturation under
high concurrency.

These results confirm that caching effectively reduces 1/O
and connection bottlenecks, maintaining stable performance
even under heavy load. Overall, the Overlay based Sandbox
provides flexible temporary access control with only minimal
overhead.

VI. CONCLUSION

In this paper, we designed and implemented a sandbox
environment for Building Operating Systems (BOS) that en-
ables secure, flexible, and efficient application development
and deployment. Specifically, we developed an access control
mechanism integrated into an API Gateway, which facilitates

2025 21st International Conference on Network and Service Management (CNSM)

1400
1200
1000
800
600

requests/sec

400
200

1 50 100 150 200 250 300 350 400 450 500
threads

——Authorization with cache ——Authorization withouth cache ~—s—No Authorization

Fig. 4. Request throughput under increasing concurrent accesses: with and
without authorization.

unified communication between heterogeneous BOS platforms
and external applications.

The proposed system combines OAuth 2.0 for scope-based
application authorization, a rule-based authorization table us-
ing Reverse Polish Notation (RPN) for efficient policy evalu-
ation, and a layered overlay mechanism that allows temporary
and revocable permissions to be applied independently of
permanent rules. These components together form a sandbox
framework that supports safe, condition-based access control
without compromising system integrity.

To validate the system, we evaluated performance through
profiling and comparative analysis. The RPN-based rule eval-
uation was shown to be highly efficient, completing in mi-
croseconds, while the main bottleneck was found in database
access. By introducing a key-value store (KVS) cache, we
significantly reduced average response times from nearly 1
ms to under 20 us.

Further testing confirmed that the overlay layer adds neg-
ligible overhead, and caching maintains high throughput even
under increased load.

REFERENCES

[1] S. Dawson-Haggerty, A. Krioukov, J. Taneja, S. Karandikar, G. Fierro,
N. Kitaev, and D. Culler, “BOSS: Building operating system services,”
in 10th USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI 13), Lombard, IL, Apr. 2013, pp. 443-457.

J. D. Bokefode, S. A. Ubale, D. G. Modani, and S. S. Apte, “Analysis

of dac mac rbac access control based models for security,” International

Journal of Computer Applications, vol. 104, no. 5, pp. 6-13, Oct. 2014.

[3] R. Ausanka-Crues and H. Mudd, “Methods for access control: Advances
and limitations,” Harvey Mudd College, vol. 301, p. 20, * Month Missing
*2006.

[4] L. Bindra, K. Eng, O. Ardakanian, and E. Stroulia, “Flexible, decen-
tralised access control for smart buildings with smart contracts,” Cyber-
Physical Systems, vol. 8, no. 2018, pp. 1-35, Jul. 2021.

[5] X. Fu, Y. Liu, J. Koh, D. Hong, R. Gupta, and G. Fierro, “Play-
ground: A safe building operating system,” in in Proceedings of the
15th ACM/IEEE International Conference on Cyber-Physical Systems
(ICCPS), Hong Kong, China, May 2024, pp. 111-122.

[6] N. Xue, L. Liang, J. Zhang, and X. Huang, “An access control system
for intelligent buildings,” in in Proceedings of the 9th EAI International
Conference on Mobile Multimedia Communications (MobiMedia), Bei-
jing, China, Jun. 2016, pp. 11-17.

[7]1 J. Koh, D. Hong, S. Nagare, S. Boovaraghavan, Y. Agarwal, and
R. Gupta, “Who can access what, and when?: Understanding minimal

[2

—

access requirements of building applications,” in in Proceedings of

the 6th ACM International Conference on Systems for Energy-Efficient
Buildings, Cities, and Transportation (BuildSys), Nov. 2019, pp. 121—
124.

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

A. K. Sikder, L. Babun, Z. B. Celik, H. Aksu, P. McDaniel, E. Kirda, and
A. S. Uluagac, “Who’s controlling my device? multi-user multi-device-
aware access control system for shared smart home environment,” ACM
Transactions on Internet of Things, vol. 3, no. 4, pp. 1-39, Sep. 2022.
B. A. Mozzaquatro, C. Agostinho, D. Goncalves, J. Martins, and
R. Jardim-Goncalves, “An ontology-based cybersecurity framework for
the internet of things,” Sensors, vol. 18, no. 9, Sep. 2018.

R. Godha, S. Prateek, and N. Kataria, “Home automation: Access
control for IoT devices,” International Journal of Scientific and Research
Publications, vol. 4, no. 10, p. 1, Oct. 2014.

A. K. Malik, N. Emmanuel, S. Zafar, H. A. Khattak, B. Raza, S.
Khan, A. H. Al-Bayatti, M. O. Alassafi, A. S. Alfakeeh, and M.
A. Algarni, “From conventional to state-of-the-art IoT access control
models,” Electronics, vol. 9, no. 10, Oct. 2020.

M. Alramadhan and K. Sha, “An overview of access control mechanisms
for internet of things,” in Proc. 26th Int. Conf. Comput. Commun. Netw.
(ICCCN), Vancouver, BC, Canada, Jul. 2017, pp. 1-6.

W. He, M. Golla, R. Padhi, J. Ofek, M. Diirmuth, E. Fernandes, and
B. Ur, “Rethinking access control and authentication for the home
internet of things (iot),” in Proc. 27th USENIX Security Symposium
(SEC), Baltimore, MD, USA, Aug. 2018, pp. 255-272.

N. Xue, C. Jiang, X. Huang, and D. Liu, “A role-based access control
system for intelligent buildings,” in in Proceedings of the 11th Inter-
national Conference on Network and System Security (NSS 2017), ser.
Lecture Notes in Computer Science, J. Lopez, J. Zhou, and M. Soriano,
Eds., Jul. 2017, vol. 10394, pp. 710-720.

N. Li and M. V. Tripunitara, “Security analysis in role-based access
control,” ACM Transactions on Information and System Security, vol. 9,
no. 4, pp. 391-420, Nov. 2006.

D. F. Ferraiolo and D. R. Kuhn, “Role-based access controls,” in
in Proceedings of the 15th National Computer Security Conference,
Baltimore, MD, USA, Oct. 1992, pp. 554-563.

L. Karimi, M. Abdelhakim, and J. B. D. Joshi, “Adaptive abac
policy learning: A reinforcement learning approach,” arXiv preprint
arXiv:2105.08587, May 2021.

S. Ameer, J. Benson, and R. Sandhu, “Hybrid approaches (abac and rbac)
toward secure access control in smart home iot,” IEEE Transactions on
Dependable and Secure Computing, vol. 20, no. 5, pp. 4032-4051, Sep.
2023.

D. R. Kuhn, E. J. Coyne, and T. R. Weil, “Adding attributes to role-based
access control,” Computer, vol. 43, no. 6, pp. 79-81, Jun. 2010.

B. Bezawada, K. Haefner, and 1. Ray, “Securing home iot environ-
ments with attribute-based access control,” in Proc. 3rd ACM Workshop
Attribute-Based Access Control (ABAC), Tempe, AZ, USA, Mar. 2018,
pp. 43-53.

S. Ameer, J. Benson, and R. Sandhu, “An attribute-based approach
toward a secured smart-home iot access control and a comparison with
a role-based approach,” Information, vol. 13, no. 2, Jan. 2022.

G. Fierro and D. E. Culler, “Xbos: An extensible building operating
system,” in Proc. 2nd ACM Int. Conf. Embedded Systems for Energy-
Efficient Built Environments (BuildSys), Seoul, Republic of Korea, Nov.
2015, pp. 119-120.

J. B. D. Joshi, E. Bertino, U. Latif, and A. Ghafoor, “A general-
ized temporal role-based access control model,” IEEE Transactions on
Knowledge and Data Engineering, vol. 17, no. 1, pp. 4-23, Jan. 2005.
E. Uzun, V. Atluri, S. Sural, J. Vaidya, G. Parlato, A. L. Ferrara, and M.
Parthasarathy, “Analyzing temporal role based access control models,” in
in Proceedings of the 17th ACM Symposium on Access Control Models
and Technologies (SACMAT 2012), Jun. 2012, pp. 177-186.

B. Gao, F. Liu, S. Du, and F. Meng, “An oauth2.0-based unified authen-
tication system for secure services in the smart campus environment,” in
in Proceedings of the 18th International Conference on Computational
Science — ICCS 2018, ser. Lecture Notes in Computer Science, Y. Shi,
H. Fu, Y. Tian, V. V. Krzhizhanovskaya, M. H. Lees, and D. Sloot, Eds.,
Jun. 2018, vol. 10862, pp. 752-764.

Y. Sun, J. Lei, S. Shin, and H. Lu, “Baoverlay: A block-accessible
overlay file system for fast and efficient container storage,” in Proc.
11th ACM Symp. Cloud Comput. (SoCC), Virtual Event, Oct. 2020, pp.
90-104.

