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Abstract—Time-Sensitive Networking (TSN) is a toolbox of
technologies that enable deterministic communication over Eth-
ernet. A key area has been TSN’s time-aware traffic shaping
(TAS), which supports stringent end-to-end latency and reliability
requirements. Configuration of TAS requires the computation of
a network-wide traffic schedule, which is particularly challenging
with integrated wireless networks (e.g., 5G, Wi-Fi) due to the
stochastic nature of wireless links. This paper introduces a novel
method for configuring TAS, focusing on cyclic traffic patterns
and jitter of wireless links. We formulate a linear program
that computes a network-wide time-aware schedule, robust to
wireless performance uncertainties. The given method enables
robust scheduling of multiple TSN frames per transmission
window using a tunable robustness parameter (I'). To reduce
computational complexity, we also propose a sequential batch-
scheduling heuristic that runs in polynomial time. Our approach
is evaluated by using different network topologies and wireless
link characteristics, demonstrating that the heuristic can schedule
90% of 6500 requested TSN streams in a large topology.

Index Terms—Time-Sensitive Networking, wireless networks
and cellular networks, configuration management, time-aware
traffic shaping, mathematical optimization, robust scheduling

I. INTRODUCTION

Time-Sensitive Networking (TSN) initially started as a set
of mechanisms and protocol extensions for Ethernet networks,
developed by the IEEE 802.1 TSN Task Group [1]. The
applicability of TSN toolbox is being extended to 5G and
Wi-Fi, but with a common goal: realizing deterministic com-
munication over integrated wired—wireless networks. TSN sup-
ports critical applications in manufacturing, aviation, and the
automotive industry, which demand communication timeliness
and reliability. Data is typically sent via TSN bridges/switches
in streams of layer-2 frames, from talker to listener end-
stations. Cyclic data, such as industrial control traffic, is sent
at fixed intervals (periods). For that purpose, IEEE 802.1AS
time synchronization may be used to establish a common
notion of time among all communicating TSN entities. A time-
aware shaper (TAS), also known as IEEE 802.1Qbv, may then
be employed to schedule network traffic in TSN talkers and
bridges to meet the performance requirements of the respective
streams.

This work was partly funded by the Bavarian State Government through
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A main use case for TSN is to facilitate the adoption
of Industry 4.0 principles by enabling a flexible network
infrastructure—one capable of accommodating the diverse
requirements of industrial applications as well as advances in
robotics, machine learning, and edge computing. Integrating
wireless access into wired TSN networks is critical for future
smart factories, which increasingly rely on mobile industrial
devices. Figure 1 illustrates a motivational scenario involving
cooperative task execution by autonomous mobile robots and
an unmanned aerial vehicle equipped with a video camera. A
TSN-based infrastructure is employed to ensure timely data
delivery for closed-loop control of the cooperating robots.
To achieve high communication reliability, ground robots can
establish connections to the TSN backbone via 5G and Wi-Fi.
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Fig. 1: TSN over 5G and Wi-Fi for cooperative industrial automation

Wireless links are inherently more susceptible to resource
contention and interference than wired links, posing greater
challenges for communication determinism. Interference can
cause frame or acknowledgment losses, triggering layer-2
retransmissions and increasing delay variability. These variable
delays can cascade through the network, potentially leading
to missed delivery deadlines and impacting other streams
traversing shared TSN bridges [2]. Standardization efforts have
introduced features such as 5G Ultra-Reliable Low-Latency
Communications (URLLC) to support deterministic and time-
sensitive applications over wireless links [3]. Even with these
advances, wireless segments still introduce uncertainty that
complicates TAS configuration. Since a precise scheduling of
gate opening and closing times, per egress port and queue, is
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required, a missed transmission window forces TSN frames to
wait for the next cycle, amplifying jitter. While accounting for
worst-case wireless (re)transmission delays can mitigate such
an effect, it may be overly conservative, reducing efficiency
or rendering schedules infeasible. Robust optimization offers
a principled way to handle variability by calculating solutions
feasible under data uncertainty, in turn enabling a reliable
operation despite deviations from nominal values.

Addressing the aforementioned challenges of integrating

wireless access into wired TSN networks, this paper focuses
on scheduling cyclic traffic, as it is a dominant type in many
industries. Our approach treats the wireless network as a black
box, without configuring its internal working parameters (e.g.,
signal modulation or radio resource allocation). Instead, we
assume that the wireless network designer provides a priori
known lower and upper latency bounds for each wireless
link, which are then used for deriving the network-wide TAS
schedule. The paper contains the following contributions:

« a novel, robust integer linear problem (ILP) formulation
is proposed, for configuring TAS parameters in the pres-
ence of wireless performance uncertainties (based on our
previous, initial work [4]). A tunable parameter aims to
balance robustness and scheduling capacity;

« a new, sequential batch-scheduling ILP heuristic is pro-
posed, to reduce the problem complexity to polynomial
time and enhance scalability to solve large problem
instances fast; and

« our approach is evaluated using different network topol-
ogy sizes and wireless link characteristics. We show that
the exact model can only solve small problem sizes, while
the given heuristic successfully schedules 90% of 6500
requested TSN streams in a large topology.

The remainder of the paper is structured as follows. Section II
summarizes the state-of-the-art. The system model is described
in Section III. A detailed problem formulation and the heuristic
design are presented in Section IV. Section V presents eval-
uation results and main findings, while Section VI concludes
the paper and sketches future work.

II. RELATED WORK

The problem of scheduling cyclic traffic for TSN has been
extensively studied, particularly for wired networks. Early
approaches often cast the cyclic scheduling problem as a
satisfiability problem [S5] or an ILP [6]. Diirr et al. [6] propose
a no-wait scheduling approach where packets are transmitted
from switches immediately upon arrival at egress ports. Craci-
unas et al. [5] explore several scheduling strategies, including
stream (flow) isolation, where frames of different streams
are temporally isolated, and frames of the same stream are
transmitted back-to-back. These foundational works typically
assume deterministic link characteristics.

The integration of wireless links into TSN is an emerging
research area driven by industrial needs. Zanbouri et al. [2]
provide a comprehensive overview of the challenges and
considerations when dealing with wireless uncertainties in
TSN. Recent works by Egger et al. [7] consider a design where

two wired networks are connected through a 5G logical bridge,
focusing on schedulability and providing formal guarantees.
Ginthor et al. [8] proposed a constraint programming model to
configure wired schedules along with 5G resources jointly, and
they extended their work by focusing on wireless signal fading
[9]. Sharma ef al. [10] model a two-stage (first routing, then
scheduling) mixed ILP, considering an end-to-end wired and
wireless no-wait scheduling approach. Li et al. [11] proposed
a joint scheduling of TSN with Wi-Fi.

Robust Optimization offers a framework for handling data
uncertainty in scheduling problems. Bertsimas and Sim in-
troduced the I'-robustness model [12] that allows users to
configure system robustness via an adjustable parameter that
controls the so-called “’price of robustness”, namely, the re-
duction in value that an optimal solution to the problem must
face to be protected against data uncertainty. The tunability
of I'-robustness is valuable for real-world applications where
uncertainties, like variable wireless delays, are prevalent. Be-
sides the easiness of tunability, which is highly desirable from
a computational point of view, we adopt Robust Optimization
due to two other major advantages that it offers compared to
other methods for optimization under data uncertainty, such
as Stochastic Optimization: 1) embedding data uncertainty in
the optimization model by defining a robust counterpart that
preserves the nature of the original problem (e.g., a linear
model admits a linear robust counterpart); 2) allowing to
preserve the complexity of the original problem (see [12]).

Compared to previous works, our paper presents a robust
ILP-based scheduling approach for integrated wired and wire-
less TSN that explicitly accounts for wireless delay uncer-
tainty using a tunable robustness parameter. Additionally, we
propose a scalable sequential batch-scheduling ILP heuristic
that enables practical scheduling for large industrial TSNs.

III. SYSTEM MODELING AND ASSUMPTIONS

We consider a TSN integrating wired and wireless segments
(e.g., 5G, Wi-Fi). Wireless systems are treated as black boxes:
their internal configuration is not modeled, but lower and
upper delay bounds for each wireless link are assumed to
be known (see Sec. IV-D). These bounds are used to derive
TAS schedules and talker offsets for the wired TSN switches.
Our approach absorbs wireless uncertainties by dimensioning
buffers at the wireless bridges, controlled by a parameter.

A. Network Model

The network is modeled as a directed graph G = (N, L),
where nodes n € N are wired/wireless end stations or bridges,
and links [ € L (wired or wireless) map to egress ports
p € P. Scheduling focuses on Gate Control Lists (GCLs)
configured by the TAS at each egress port, which control
when queues can transmit. The scheduling problem determines
GCLs and stream transmission offsets to meet all latency
and jitter constraints [13]. Streams traverse the network via
links mapped to ports; wireless stations connect through
dedicated wireless bridges. All nodes are time-synchronized.
For wireless bridges, per-station buffers hold frames until their
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scheduled transmission time, providing functionality similar to
TAS (e.g., de-jitter at a 5G node [14]).

B. Data Stream Model

A set of TSN streams s € S is requested, each following
a cyclic schedule from a talker to a listener (wired or wire-
less). Each stream has a fixed period Cs, maximum latency
maz_latencys, and maximum jitter maz_jitter,. Streams tra-
verse a subset of nodes and links, corresponding to a subset
of ordered ports Ps, C P for a path u. The cyclic schedule
allocates distinct time windows for each stream at each port
along its path. We model a single egress port queue class per

port; queue classes can be configured freely in post-processing.

IV. PROBLEM MODEL AND SOLUTION DESIGN

TABLE I: Modelling Notations

Sets and Indices | Description
S | Set of all data streams s.
P | Set of all egress ports p.
w | Index for a specific path of a s.
r | Index for a repetition instance of a s.
Us | Set of candidate paths for s.
R Set of repetition instances for s within the
| LCMsg.
Ps . | Sequence of egress ports for s along u.
le7 Set of (s, w) pairs that traverse p.
Input | Description
Cs | Cycle period of a data stream s.
Least common multiple of all Cs, a greater
LCMg | configuration cycle time that will repeat in all

max_latencys
max_jitters
T

fts (k‘,p)

fds (k‘,p)
t(s,p)

d(s,p)

next_ports u,p

next(T, s, u,p, p’)

fized_set(s, p)

fized_starty
fized_endy

M

devices.

Maximum end-to-end latency for stream s.
Maximum jitter for a stream s, talker offset
variation.

Robustness level parameter, configures uncer-
tainty delay budget, a value in [0, 1].

Minimum time for the k*" frame of s at p.
Maximum delay deviation for the k*" frame of
s at p.

Lower bound time to schedule for stream s at
port p.

Delay deviation for stream s at port p.

Gives the next port p’ for stream s on path u
after current port p.

Required time offset for stream s between port
p and the next port p’.

Function  returning a set of fixed
(fized_starty, fived_endy) time blocks
on a p.

Start time of a pre-scheduled, fixed block f.
End time of a pre-scheduled, fixed block f.

A sufficiently large number for big-M con-
straints.

Decision Variables

Description

U
Ts,p

as
Zs,u

!’ ’ !’
st ,r’u
Ys,r,u,p

A. Objective

Given a set of requested streams s € S, each with period Cs,
the goal is to find a schedule for all ports p € P. The schedule

Start time of the transmission window for the
rt" instance of s on w at p.

Binary variable: 1 if s is scheduled, O otherwise.
Binary variable: 1 if s is scheduled on u, O
otherwise.

Binary helper variable for ordering streams in
temporal isolation constraints.

defines the path for each stream (as a sequence of ports), the
talker offsets, and the GCL time windows for bridges.

B. Model Inputs and Scheduling Design

Times are represented as integers corresponding to TSN
clock ticks. For each stream s, we compute up to k candidate
paths using Yen’s k-shortest path algorithm [15]. Each path is a
sequence of ports Ps ., to be scheduled. The GCL configuration
cycle is set to the least common multiple (LC' M) of all stream
periods Cs, with |Rs| = LCMs/C, stream instances per cycle.

Let m be the number of frames a talker transmits for a
stream within one cycle. For each frame k at port p, the
minimum transmission time is:

fts(k,p) = transyp + propy,p + proc.p )

For wireless links, fts(k,p) is equal to the best-case sce-
nario (minimum delay). Wireless links introduce delay uncer-
tainty, modeled by fds(k,p) (delay deviation); for wired links,
fds(k,p) = 0. The cumulative minimum transmission time
t(s,p) and cumulative delay deviation d(s,p) for all frames
of a stream at a port are given by (2):

t(s;p) =Y fts(k,p)  d(s,p) =Y fds(k,p) (2)
k=1 k=1

The robustness parameter I' € [0,1] controls how much of
the delay deviation is protected in the schedule: I' = 0 is
optimistic, I' = 1 is fully robust. The forwarding is sequential:
for each stream, the transmission of frame ¢ at the next port
(next_ports,.,, = p’) starts only after frame 4 has been fully
received and processed at the previous port (p), and after frame
i — 1 has finished transmission at p’. This ensures frames are
forwarded in order and never overlap. The offset time required
next(T, s, u,p,p’) between consecutive ports is calculated (5):

Ai(s,p) = Y fts(k,p) + min{T'-d(s,p), Y _ fds(k,p)} (3)

k=1 k=1
B(s,p) = max {Ai(s,p) — Ai1(s,p)} “)
next(T, s, u,p,p') = max{Ai(s,p), B(s,p)} Q)

Frames are buffered at wireless bridges until their scheduled
transmission window, creating deterministic departure times
for subsequent scheduling. The robustness parameter I" directly
scales the uncertainty budget d(s, p), determining the required
scheduling offset next(T, s, u,p,p’) between ports. Increasing
T allocates larger time windows for wireless transmissions,
improving reliability but reducing network capacity for other
streams. This tunable approach balances protection against
wireless delay variation and overall schedulability.

C. Integer Linear Program (ILP)

With decision variables (stream: s, path: u, port: p, repetition
instance within LCMs: r), xg, is the transmission window

starting times at ports for streams, (zs,., as) are for (path,
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stream) selection (activation) and yif;ﬂl’,}i' is a variable to help
building temporal isolation constraint (8):

{ EURRT

fE:’,Z € {0,Z+}, Ys,r,u,p 7ZS,u7aS} € {07 1}

The objective (left of (6)) is to maximize the number of
scheduled streams, subject to the path selection constraint
(right of (6)), which ensures that exactly one path is activated
for each scheduled stream. Constraints, such as temporal
isolation, latency, and jitter bounds, are detailed in constraints

(7=(11).
maXZaS S.t.

seS

Z Zsu =as VSES (6)

ueUs

Constraint (7) enforces, given port p and next port is p’ of a
path v of stream s, p’ time window is scheduled exactly after
next(T, s,u,p,p’) (5) amount of time:

z0y + next(D, s,u,p,p) - Zs,u = z
s € S,u€Us,m € R,p € P, (7
p’ = next_ports..p,p # last(Ps.)
Constraint (8) isolates streams temporally at ports, considering
robustness I and wireless delay deviations d(s, p).

(@ iy + (ts,p) +d(s,p) - T) - zs,u
—an < My

(b) @l 4 (t(s'.p) +d(s',p)  T) - 2er
—alh < M (1 =yl

s€ S,u€cUs,r € Rs,p € Psy,

(s ,u") e Py,r’' € Ry s < s’

®)

Constraint (9), if a path of a stream is scheduled (z;,., = 1), a
time window allocated for each stream instance at the talker
port p = first(Ps ,,) every Cs, ensuring cyclic instance creation.

gy > (r—1)-Cs-zsu

9
SGS,UEUS7T€Rsyp:ﬁrSt(PS,u) ( )

Constraint (10), end-to-end latency of stream from time=0 of
cycle period C; is within the allotted maz_latencys.

max_latencys + (r — 1) - Cs (10)

s€ S,u€Us,r € Rs,p = last(Ps,.)

Constraint (11), the jitter of a stream occurring from different
instances r of the same stream is bounded by maxz_jitters.

@ (zop—(r—=1)-Cs) = (z5;" — (" = 1)-C)
+ M- (1= z54) > —max_jitters

) (zop—(r—1)-Cs) — (25, — (' = 1)- Cs)
— M - (1 = zs,u) < maz_jitters

s € 8,u € Us,p=first(Ps.),r € Rs,r’ € Rs,r <1’

(1)

D. How to obtain link latency bounds in practice?

Accurate wireless link delay bounds are essential but chal-
lenging, as radio frequency conditions and interference vary
dynamically. Bounds can be obtained via empirical mea-
surements (e.g., synchronized timestamps [16], [17]), ven-
dor service level agreements (e.g., private 5G), or analytical
methods like network calculus, though the latter may be
overly conservative. Simulation-based profiling is useful in
the design phase. In practice, combining offline profiling and
online monitoring enables adaptive bounds, which is crucial
in dynamic environments.

E. Sequential Batch Scheduling Heuristic

To address scalability, we propose a sequential batch
scheduling ILP heuristic. Streams are partitioned into disjoint
batches, and the ILP is solved iteratively for each batch. After
each batch, scheduled streams are fixed and excluded from
further optimization, reducing problem size but limiting global
optimality. Batch size controls the trade-off between solution
quality and computational time: smaller batches are faster
but more myopic, while larger batches approach the exact
ILP but are slower. Streams are sorted by scheduling priority,
which reflects network preferences for which streams should
be scheduled first. Thus, higher-priority streams are scheduled
when resources are most available. Within each batch, the ILP
schedules all streams without further prioritization.

In each iteration, fixed streams (from previous batches) have
immutable paths and time windows, creating unavailable time
blocks on ports. Variable streams (current batch) must avoid
these blocks. To reduce constraints, consecutive fixed blocks
too small for a variable stream are merged (see Figure 2).

fized_starty fized_endy

T i
|Fixed s'| | Fixed s”| | Variable s | ,
S > Time

Available gap  Small gap Available gap

Fig. 2: fived_starty and fixzed_endy times for a variable stream

Let fized_set(s,p) be a function that returns the set of
merged fixed time blocks (fized_starty, fixed_endy) for a
variable stream s at port p, representing unavailable temporal
windows due to previously scheduled streams (see Figure 2).
Constraint (12) ensures that the transmission window of a new
variable stream does not overlap with any fixed block on the
port; it must be scheduled entirely before or after each fixed
block. Algorithm 1 outlines the sequential scheduling process.

(a) 1’2’,; + (t(S,p) + d(S,p) : F) T Zsyu S
fized_starty + M - yf,r,u,p

(b) fized_endy < axgy+ M- (1— ys’:r,u’p)
s€S,ueUs,” € Rs,p € Ps .y

(fized_starty, fized_endy) € fized_set(s,p)

(12)
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Algorithm 1: Sequential Batch Scheduling Heuristic

Input: Set of streams S, number of batches B
Output: Fixed variables, z; ., as, 55

1 Sort streams in S by priority into Ssorted;

2 Partition Ssorteq into B disjoint batches: B, ...

3 fori+ 1to B do

4 Set streams in B; as variables, all previously
scheduled streams as fixed;

Reset variables 5 ;7% ) yf 00

Reset and re-add constraints (8) and (12) for B; ;

Solve the ILP for the current batch;

Fix variables as, zs,u, %'y for scheduled streams;

,BB;

e 9 N »n

The computational complexity grows with the number of
streams sharing a port, especially for variable streams. Fixed
streams add smaller complexity, and merging fixed blocks
reduces constraints as scheduling progresses. The heuristic
scales polynomially by iterating over fixed streams to build
sequential ILP models, with batch size limiting the complexity
of ILPs. This enables efficient scheduling for large TSNs.

V. EVALUATION

Our evaluation aims to answer the following questions:

1) How does the heuristic compare against the optimal?
What is the impact of different link characteristics, net-
work topologies, streams, and batch sizes? (cf. V-B)

2) What is the trade-off between robustness, wireless link
latency deviations, and the number of scheduled streams?
(cf. V-C)

A. Experimental Setup

1) Evaluation Platform: Experiments ran on a server with
an Intel Xeon Gold 6326 CPU (32 cores) and 250 GB RAM.
We used Gurobi Optimizer 12.0.1 with a 2-hour time limit
for medium and small, and 4-hour for large per experiment to
solve ILPs. For the exact ILP, this limit applies to the single
run; for the batch heuristic, it is distributed equally across all
batches. If the time limit is reached, the best feasible solution is
used. The code and experiments we share for reproducibility.'

2) Network and Link Characteristics: Wired links use 100
Mbps, with propagation_delay and processing_delay set to
10us (see (1)). For wireless, we use two datasets: URLLC [17]
(latencies for 32B and 1420B packets, extrapolated for others;
see Figure 3) and Det6G [16] (5G, long-tail delay, see Fig-
ure 4). Histograms determine fts(k,p) (minimum observed
latency) and fds(k,p) (delay deviation, i.e., the difference
between the upper and lower bounds of the link latency).

3) Traffic Scenarios: TSN streams are generated by ran-
domly selecting properties from Table II. Each stream has
max_latencys and max_jitters that are proportional random
multiples of C,. Streams have priority levels 1-3 (equal
distribution); priority 3 is highest. Det6G scenarios designed
with longer C, due to higher latencies.
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Fig. 3: Wireless link delay histograms for different packet sizes
(URLLC scenario, left: 32B, right: 1420B) [17]
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Fig. 4: Wireless link delay histograms for 100B packets (Det6G data,
left: downlink, right: uplink) [16]
TABLE 1II: Traffic and Stream Parameters

Cs (URLLC) {500, 1000, 2000, 4000, 8000} yis
packet_size (URLLC) | {32, 64, 128,256,512, 1024, 1420} Bytes
Cs (Det6G) {20000, 40000} ss

packet_size (Det6G)
maz_latencys
max_jitters
priority

{100} Bytes

{0.5, 0.6, 0.7, 0.8, 1.0} times C’

{0.1, 0.2, 03, 0.4, 0.5} times Cs

{1, 2, 3}, highest is 3, distributed equally

4) Experimental Design: We test three topologies: small (5
wired, 5 wireless bridges, ring), medium (50, 50), and large
(220, 220), with random sub-topologies. For computational
experiments, we use URLLC, varying batch size and stream
count, fixing I'=1. For the robustness evaluation, we used the
small topology with both the URLLC and Det6G scenarios,
employing only the exact ILP to ensure a fair comparison.

For each stream, up to k£ = 3 shortest paths are precalcu-
lated using Yen’s algorithm [15]. Experimental stream sets
are generated using the heuristic with small batches, then
shuffled (except for priority, which is uniform). This biases
the experimental sets toward less stringent requirements, but
some tight-deadline streams remain. In theory, the exact model
can schedule all streams given unlimited resources.

5) Key Performance Indicators: Streams scheduled (%)
is the ratio of scheduled to requested streams; priority 3
scheduled (%) is the ratio for priority 3 streams. Port utiliza-
tion (%) is the average fraction of time ports are scheduled
to transmit in LCMg. Utilization rises with more streams
and longer paths. Success probability (%) is the cumulative
delay distribution up to the chosen robustness level T" and
upper bound d(s, p), representing the likelihood that wireless
transmissions finish within the allocated window; for multiple
wireless links, probabilities are multiplied.

B. Computational Experiments

We evaluate the heuristic and the exact ILP across small,
medium, and large topologies (see Figure 5-7). The exact ILP
is used as a baseline since it provides the optimal solution
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Streams scheduled (%) Priority 3 scheduled (%) Port utilization (%) Run-time (h)
T T T T T T T T T
100 1100 e 2| .
90 \ .
80 99 \/ .
98 - | 1p .
97 + .
30 L | | 96 L | | ol | | 0 Le- ettt |
10 160 280 10 160 280 10 160 280 10 160 280
Number of data streams requested
—— Batch 1 Batch 10 Batch 20 Batch 30 - ~ - Batch 40 —— Batch 50
------- Batch 60 ----- Batch 70 - - - Batch 80 —— Batch 90 —— Exact
Fig. 5: Small topology computational experiments
Streams scheduled (%) Priority 3 scheduled (%) Port utilization (%) Run-time (h)
T T T T T T T
100 |- 100 i 12t .
98 |-
99
96 |-
94 |- 98 |- B 11 .
92 |-
97 +
90 |-
88 | | | 96 | | 0 | % 0 e—— -
260 530 890 260 530 890 260 530 890 260 530 890
Number of data streams requested
—— Batch 1 Batch 20 Batch 40 Batch 60 - -- Batch 80 ——  Batch 100
------ Batch 120 --=-- Batch 140 - - - Batch 160 —— Batch 180 —— Exact x Out of memory
Fig. 6: Medium topology computational experiments
Streams scheduled (%) Priority 3 scheduled (%) Port utilization (%) Run-time (h)
T T T T T T T T T T T T
100 |- i 20 4l |
100 + =
98 |- =
96 |- N . Vi
10 e
il W | o] . ys 20 |
92 |- = /’
90 [ v
88 | | | 98 | | | 0 | | | 0 | |
500 3,500 6,500 500 3,500 6,500 500 3,500 6,500 500 3,500 6,500
Number of data streams requested
Batch 100 Batch 200 —— Batch 300 —— Batch 400 Batch 500 ‘
Fig. 7: Large topology computational experiments
when tractable, allowing us to directly assess the quality and In the small topology experiments (Figure 5), the exact ILP

scalability of the heuristic. However, the ILP quickly becomes schedules all streams at low loads but struggles to find an
intractable as problem size grows, making it suitable only for optimal solution beyond 160 streams due to the time limit.
small and moderate scenarios. The batch heuristic maintains efficiency as load increases.
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For the medium topology (Figure 6), the ILP can schedule
up to 260 streams before running out of memory or time, while
the heuristic continues to scale, scheduling more streams as
load increases. Larger batch sizes improve overall schedulabil-
ity, but require more resources. Smaller batches yield higher
port utilization by favoring longer, less-contended paths, while
larger batches maximize total schedulability with shorter paths.

In the large topology (Figure 7), we schedule up to 6500
streams. Only the heuristic is evaluated due to the intractability
of the exact ILP. The heuristic consistently schedules over
88% of requested streams, with nearly all high-priority streams
admitted, and maintains a reasonable runtime of 2 hours for
offline scheduling as the network scales.

Overall, the sequential batch ILP heuristic is predictable
and scalable, reliably scheduling high-priority traffic, while
the exact ILP is only practical for small instances.

C. Robustness Experiments

To evaluate robustness against wireless link latency devia-
tions, we use two real-world 5G-like datasets: URLLC (low,
deterministic latencies) and Det6G (long-tail delays). For each,
we test 173 (URLLC) and 139 (Det6G) streams, with each
stream traversing one or two wireless links. For Det6G, we
consider upper bounds (UB) at 100th, 99.99th, and 99.9th
percentiles. The robustness parameter I' is varied from O to
1, and scheduling is performed using the exact ILP.

Figure 8 shows the percentage of streams scheduled (left)
and the success probability (right) as I' increases. As robust-
ness increases, fewer streams can be scheduled due to larger,
more conservative time windows for wireless transmissions,
which reduces network capacity. However, the success prob-
ability—i.e., the likelihood that all deadlines are met despite
wireless delay variations—increases accordingly. This illus-
trates the fundamental trade-off: higher I" prioritizes reliability,
while lower I' maximizes network utilization. For Det6G,
only the 100th percentile UB with I'=1 achieves true 100%
reliability, reflecting the impact of long-tail delay distributions.
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Fig. 8: Robustness: URLLC (173 streams), Det6G (139 streams)

VI. CONCLUSION AND FUTURE WORK

This paper proposes a robust scheduling approach for TSN
networks with wireless links, addressing latency uncertainties

through a linear programming model and a scalable batch-
scheduling ILP heuristic. The heuristic performs well for a
moderate network load, with tunable batch size and robustness
parameters that balance schedulability and reliability. In future
work, we plan to explore clustering-based batch strategies,
inclusion of best-effort traffic, cyclic stream dependencies, and
stream-specific robustness based on traffic criticality.
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