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Abstract—Efficient resource allocation is fundamental to en-
abling 5G network slicing with guaranteed Quality of Service
(QoS). Achieving this requires accurate forecasting of cell uti-
lization, which remains challenging due to dynamic factors such
as user mobility, radio channel variability, and fluctuating traffic
loads. Existing approaches predominantly rely on simulated data
and static radio models, limiting their applicability in live deploy-
ments. In this work, we propose a hybrid forecasting framework
that combines machine learning-based time series prediction with
radio channel modeling grounded in live network measurements.
The method estimates service-specific radio resource demand at
fine-grained spatial and temporal granularity and supports slice
admission control through proactive feasibility assessment. This
is realized by jointly forecasting required radio resources and
the expected utilization of physical resource blocks (PRBs) in
each cell. In our evaluation, we use data from a European Tier-
1 operator and demonstrate a Mean Absolute Error (MAE) of
±0.74 for uplink interference prediction and a MAE of ±1.72 for
cell load estimation when using an LSTM predictor.

Index Terms—5G Network Slicing, Quality of Service (QoS),
Spectral Efficiency, Radio Access Network (RAN), Machine
Learning (ML), Time Series Forecasting, Predictive Analytics

I. INTRODUCTION

The introduction of Network slicing in 5G has enabled
operators to dynamically allocate resources across shared
infrastructure and provision customized virtual networks tai-
lored to specific services and user requirements. [1]. Efficient
slice design and deployment require (i) accurate estimation
of the resources needed to meet service demands and (ii)
awareness of available network capacity. As network condi-
tions evolve over time, forecasting key performance indica-
tors (KPIs)—such as required and utilized Physical Resource
Block (PRB)s—is essential to maintain service assurance
and comply with Service Level Agreements (SLAs). This
is particularly challenging in the RAN domain, where PRB
demand is tightly coupled to spectral efficiency and radio
channel quality, both of which are strongly influenced by
environmental conditions that vary across time and location.

Conventional 5G RAN resource estimation for Network
Slicing design relies on static planning and theoretical mod-
els, which fail to account for real-world dynamics. As a
result, operators often adopt conservative, overprovisioning
strategies, leading to inefficient resource use and limited
scalability. Addressing these limitations requires advanced

estimation techniques that incorporate live network conditions
with spatial and temporal granularity. Such methods must
enable forecasting of future network states within the relevant
service time windows to support accurate assessment of both
resource demand and available RAN capacity.

Estimating spectral efficiency is central to determining the
radio resources required for a given service. Existing research
explores diverse machine learning (ML) techniques, leveraging
network metrics that might influence radio channel quality.
However, most studies rely on simulated data [2], and the
limited work using live measurements often neglects the
temporal variability of radio conditions [3], [4]. As a result,
current approaches struggle to fully capture the dynamics of
operational networks. While other studies focus on temporal
prediction of network KPIs to support 5G slice resource allo-
cation [5], [6], these efforts primarily forecast traffic volume,
which cannot be directly translated into required PRBs.

In response to the challenges identified in prior work, this
paper addresses the problem of modeling and forecasting
RAN spectral efficiency to estimate the number of PRBs
required to meet specific QoS targets at a given time and
location. We integrate these predictions with forecasts of
available radio resources to support efficient and scalable
5G network slice deployment. Our approach leverages live
network measurements, applying machine learning time-series
forecasting in conjunction with channel quality estimation
based on Shannon’s law [7]. Our key contributions are:

• We develop a forecasting framework that couples inter-
ference ML predictions with radio modeling to derive
spectral efficiency at a given location and time, enabling
precise PRB demand estimation for specific QoS require-
ments.

• We propose a novel unified forecasting and admission-
control pipeline tailored for 5G Network Slicing. The
pipeline combines predicted resource demand and cell
load forecasting to achieve proactive and efficient radio
resource allocation.

• We conduct an empirical evaluation of different ML
forecasting models using Tier-1 operator data from a live
commercial 5G network, demonstrating a Mean Absolute
Error (MAE) of ±0.74 for uplink interference prediction
and a MAE of ±1.72 for cell load estimation using LSTM.
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II. RELATED WORK

Several studies have explored spectral efficiency prediction
using ML techniques, each with distinct objectives and data
sources. [2] employs ML models with simulated data to predict
spectral efficiency in Multiple-Input Multiple-Output (MIMO)
systems, achieving a Mean Absolute Percentage Error (MAPE)
below 10% with gradient boosting and neural networks across
different precoding schemes. [3] targets spectral efficiency
prediction in real-world 5G deployments using drive test
data, focusing primarily on RSRP as input. Their approach
integrates domain knowledge into model selection and eval-
uation. [4] proposes a cell-level forecasting framework for
capacity planning, evaluating models such as linear regression,
feedforward neural networks, and XGBoost. In the context of
temporal forecasting for RAN resource demand, particularly
for network slicing, recent work has focused on traffic-based
predictions. [5] introduces an Intelligent Resource Scheduling
Strategy (iRSS) that combines LSTM for long-term traffic
forecasting with A3C-based reinforcement learning for short-
term decisions. [6] proposes an X-LSTM model to predict the
REVA metric for estimating resource needs of highly active
bearers.

While these approaches offer valuable insights, they pri-
marily emphasize traffic volume or coarse-grained metrics. In
contrast, our work focuses on fine-grained, location- and time-
specific forecasting of spectral efficiency and PRB utilization
using live network data to support accurate and dynamic slice
feasibility assessment. There is extensive literature explor-
ing the integration of time series forecasting into self-aware
systems [8] and decision-making processes [9], showing that
accurate predictions of future states in complex systems enable
more efficient and proactive control-loop decisions. Building
on these insights, this work demonstrates a practical imple-
mentation of a forecasting and admission-control pipeline for
Network Slicing.

III. METHODOLOGY

This research focuses on a QoS and capacity prediction
system designed for a Live Video Production (LVP) service
delivered via a 5G Network Slice. In this use case, the
service requires a sustained uplink (UL) throughput of 8 Mbps
to support professional-grade live video streaming without
degradation. While the LVP scenario is used to demonstrate
the system’s capabilities, the approach is generalizable to
other services with different QoS requirements. The LVP slice
is provisioned through Radio Resource Partitioning (RRP),
which reserves the necessary number of PRBs in the serv-
ing cell. Customers request bookings by specifying a target
location and time. The system is then designed to estimate
the number of PRBs required for the service, and to predict
the serving cell load to verify whether the resources can be
allocated without impacting existing users.

Figure 1 presents the flow diagram executed upon a cus-
tomer booking request. In Step 1, the provided location is
used to identify the serving cell and to retrieve its configuration
data, the past seven days of Uplink (UL) interference and PRB

utilization, and Downlink (DL) Reference Signal Received
Power (RSRP) at the specified location.

In Step 2, UL interference is forecasted over the requested
time window. Combined with cell configuration parameters
and estimated UL RSRP measurements, this forecast is used
to compute spectral efficiency, and subsequently, the required
number of PRBs. In Step 3, PRB utilization is forecasted
for the requested time interval. The system then compares
the predicted PRB demand with the forecasted utilization and
existing reservations to decide whether the booking can be
accepted.

Fig. 1. QoS and capacity prediction system

The following subsections provide a detailed description
of the data collected and used in this research; the process
for estimating spectral efficiency and required PRBs; and the
implementation of ML models for forecasting UL interference
and PRB utilization.

A. Data collection and pre-processing
As depicted in Figure 1, two ML models predict average

UL PRB utilization and UL interference (interference plus
noise) at the cell level. The data corresponding to these target
variables was retrieved as PM counters from each gNB in the
network. For training, we collected one month of data at the
highest available granularity (15-minute intervals), added daily
and weekly sinusoidal encodings, and normalized the features
using z-score. The spectral efficiency and required PRB esti-
mation process takes as input DL RSRP measurements and cell
configuration information. DL RSRP measurements were re-
trieved from the Measurement Reports (MR) generated by the
different UEs connected to the live network and averaged daily
(approximately 8000 to 10000 measurements for the selected
locations). Configuration information was retrieved from the
network inventory data base and includes the frequency band,
subcarrier spacing, and channel bandwidth. All data described
above were collected from a Tier-1 operator’s live network.

B. Spectral efficiency and PRB estimation
The spectral efficiency of the uplink channel is calculated

based on Shannon’s law [7] outlined in Equation 1
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TABLE I
MODEL TRAINING CONFIGURATION PER TARGET VARIABLE.

Variable PRB Utilization Interference
Model LSTM TCN Hybrid LSTM TCN Hybrid

N° of Epochs 50 50 80 50
Batch size 8 8 16 8
Optimizer Adam Adam

Starting learning
rate

0.001 0.001 0.001 0.005

Loss function MSE MSE

η =
C
B
= log2 (1+UL SINR) (1)

where η is Spectral efficiency, C is the Maximum achievable
channel capacity, B is the Channel bandwidth, and UL SINR
is the Uplink Signal to Interference Noise Ratio (SINR)
calculated using Equation 2.

SINR[dBm] =UL RSRP[dBm]−UL I(t)[dBm] (2)

The UL RSRP values are estimated from the DL RSRP
measurements collected from the network MR reports, and
the interference value at a given time (UL I(t)), corresponds to
the prediction generated by the interference forecasting model
described in section III-C.

The number of PRBs required to transmit data at a spe-
cific throughput is then calculated using equation 3. The
throughput is given by the service requirement (8Mbps), and
the bandwidth per PRB is given by the cell configuration.

PRBsrequired =
T hroughput

η×PRBBandwidth
(3)

C. UL Interference and PRB utilization forecasting

Both forecasting models —PRB utilization and UL interfer-
ence— were designed to predict three days (288 time steps)
of future values using the previous 7 days (672 samples) of
data as input, aligning with typical booking lead times. TWe
implemented and evaluated three ML forecasting architectures:
a standard LSTM, a Temporal Convolutional Network (TCN),
and a hybrid model combining LSTM, TCN, and attention
mechanisms. LSTM and TCN were chosen for their effec-
tiveness in capturing long-term dependencies and temporal
patterns in sequential data [10], [11]. The hybrid model
integrates both architectures and adds an attention mechanism
to dynamically focus on the most relevant time steps [12].
To improve generalization and reduce overfitting, , we used
a random shifting-window approach [13], dynamic learning
rate scheduling, and dynamic dropout. Table I summarizes the
selected hyperparameters for the architectures implemented for
each target variable.

IV. EVALUATION AND RESULTS

In our evaluation we answer the following questions:
• What is the accuracy of the different models when

forecasting interference and PRB utilization (c.f. IV-A)?

• How accurate can we predict spectral efficiency and
required PRBs to meet service demands (c.f. IV-B)?

• How can our framework be used to estimate service-level
scalability, i.e. the number of simultaneous users without
experiencing service quality degradation (c.f. IV-B)?

To address these questions, we conducted field measure-
ments at four distinct locations in the city center of Bonn,
Germany, which we compared with the predictions generated
by our system. Measurements were taken at different times
and at locations served by the same cell but situated at varying
distances from it (see Figure 2), allowing us to capture both
temporal and spatial variability.

Fig. 2. Measurement locations in Bonn city center. Location A: public square.
Location B: coffee shop. Location C: bakery. Location D: restaurant/bus stop

A. Forecasting Model Evaluation

We evaluated the three model architectures described in sec-
tion III-C against the following baselines: (i) last observation,
(ii) moving average over 10 slots, and (iii) simple exponential
smoothing (SES) with α = 0.5. Performance was measured
using Mean Squared Error (MSE) and Mean Absolute Error
(MAE) and the corresponding results are outlined in Table II.

We observe that the Long Short-Term Memory (LSTM) ar-
chitecture provides the best results in terms of MSE and MAE
for both target variables. Furthermore, this model requires
significantly less training effort and computational resources
compared to the other two architectures, which makes it
the more efficient and accurate choice for this use case. In
addition, Figure 3 illustrates the performance of the built
models and baselines across different forecasting horizons for
the PRB utilization, using MAE as performance metric. These
results show that the LSTM architecture has the best accuracy
across the whole forecast horizon, maintaining lower errors
even for the longest windows. The outperforming behavior
of the LSTM model can be explained by the nature of the
dependencies in the data and the feature engineering process.
Usually, TCN models excel at capturing hierarchical and
multi-scale dependencies; however, as the input dataset was
enriched with weekly and daily sinusoidal encodings (see
section III-A), the LSTM gating mechanism is sufficient to
provide good performance when capturing these seasonalities.
In this case, the hierarchical receptive fields of a TCN or the
attention mechanism in the hybrid architecture do not bring
significant extra benefit, while they still add computational
complexity.
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TABLE II
MODEL ACCURACY COMPARISON AVERAGED OVER 288 STEPS AHEAD

Model PRB Cell Load Interference
MAE MSE MAE MSE

LSTM 1.72 9.85 0.74 0.87
TCN 2.24 13.33 0.75 0.87
Hybrid 2.15 12.74 0.79 0.97
Last observation 9.3 139.26 109.99 12107.15
Moving average 8.75 129.29 110.46 12211.26
SES 9.11 135.76 110.188 12149.36

Fig. 3. PRB forecasting model comparison based on MAE over different
Time Horizon

Figure 4 and Figure 5 show the corresponding predicted vs.
measured values for UL Interference and PRB utilization of
the serving cell in the selected locations. The predictions were
generated using the best performing architecture i.e LSTM.
The data patterns and seasonalities can be clearly observed for
both target variables throughout the six days of data depicted
in the plots, and the predicted values for the last three days
show that these seasonalities are well captured by both models.
In Figure 5, PRB utilization exhibits distinct outliers that
can not be captured by the model based solely on historical
data, leading to higher MAE and MSE values for this target
variable. As depicted in Figure 2, the selected testing locations
are placed in Bonn city center. Accordingly, the seasonality
observed in the data reflects typical urban usage patterns, thus,
the models should generalize to similar urban environments
across cities and operators. Rural areas or event venues (e.g.,
stadiums, concert locations) may require additional features
and/or training on different data.

Fig. 4. LSTM Model: Predicted vs Measured UL Interference

B. Spectral efficiency and PRB demand estimation evaluation

To address the question of how accurately we can predict
spectral efficiency and the number of PRBs required to meet
service demands, we conducted experiments in which one
User Equipment (UE) actively transmitted uplink (UL) data

Fig. 5. LSTM Model: Predicted vs. Measured PRB Utilization

at 8 Mbps at each selected location. A debugging tool on
the UE was used to record the number of PRBs allocated for
UL transmission. Each experiment was conducted over a 30-
minute period at each location, with measurements taken every
5 minutes. On each test the UE was served by a 5G New Radio
(NR) base station operating in the n78 band (3.6Ghz) with
a 90Mhz channel bandwidth and 30KHz Subcarrier Spacing
(SCS). This configuration yields 245 available PRBs and a per-
PRB bandwidth of 360 kHz [14] [15]. With the collected data
we performed the evaluation using the following procedure:

• Step 1: we forecast the PRB resource demand for the
LVP service for each given location.

• Step 2: we forecast the base PRB cell load generated by
regular traffic using the built LSTM model.

• Step 3: we compare the total predicted PRB load (Pre-
dicted resource demand from Step 1 + Predicted PRB
load from regular traffic from Step 2) with the measured
PRB utilization (during an LVP service) using the Mean
Error (ME) as statistical measure (equation 4).

ME =
1
n

n

∑
i=1

(Pi −Mi) (4)

where Pi is the predicted number of PRBs for the i-th time
instance, Mi is the measured number of PRBs at the given
time, and n is the total number of test samples.

The predicted PRB resource demand for the target through-
put was calculated with Equation 2, using the forecasted
interference levels of the serving cell generated by the built
LSTM model, the location based UL RSRP estimations, and
the previously mentioned cell configurations.

Figure 6 shows the results of the evaluation procedure
with the plots of the base PRB load forecast, the total PRB
utilization prediction (base forecast + required PRBs) and
the measured PRB load during the LVP service. The ME
values for the predictions at each location are the following:
Location A = -0.73, Location B = +3.96, Location C = +1.70,
location D = +1.80. It is worth to mention that PRB demand
prediction accuracy depends strongly on the accuracy of DL
RSRP measurements. In our test locations, abundant UE MR
reports made RSRP estimates robust; however, during the
data collection and analysis for this research, several locations
with very scarce or no recent MR reports were found. For
predictions on such scenarios, additional ML algorithms or
radio channel modeling estimations might be necessary.
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Fig. 6. Predicted vs Measured PRB utilization during LVP service.

Fig. 7. Predicted impact of additional LVP users.

Finally, Figure 7 shows forecasted PRB utilization with ad-
ditional predicted demand from three LVP users. As observed,
the overall utilization is below saturation, demonstrating that
one cell can support up to three concurrent LVP users, and that
the designed forecasting and control pipeline enables reliable
service scalability. The predicted PRB demand for the different
LVP users is generated using Equations 3, 1, and 2 with
the estimated UL RSRP values depicted in the figure, and
forecasted interference for the serving cell.

V. CONCLUSION AND FUTURE WORK

This paper presented a QoS- and capacity-aware predic-
tion framework for 5G Network Slicing, integrating time
series forecasting with radio channel modeling to estimate
the number of PRBs required to meet specific service-level
demands and to forecast cell level PRB utilization. Validation
results demonstrate the system’s effectiveness in accurately
forecasting uplink interference and PRB utilization, enabling

the admission of services — such as Live Video Production —
without degrading existing traffic. By combining predicted de-
mand with forecasted resource availability, the system supports
proactive and efficient radio resource allocation in dynamic
network environments.

Future work will extend evaluation scenarios to assess
the impact of radio channel modeling in more diverse en-
vironments and enhance forecasting capabilities by adding
contextual features (e.g., weather, scheduled public events).
These enhancements aim to improve prediction accuracy dur-
ing atypical traffic conditions, further increasing the robustness
and applicability of the system across broader use cases.
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