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Abstract—In many cases, federated learning (FL) has to take
place in communication constrained scenarios, where we must
select a small number of learning nodes to reduce bandwidth
consumption. Furthermore, such nodes may also have com-
putational constraints, i.e., they can store small datasets and
process and perform as little data processing as possible. In this
context, it is of paramount importance to make node selection
decisions before the learning process begins, and without labeling
information. We tackle this daunting task through a two-pronged
approach, where we (i) introduce a new metric called loneliness,
defined on unlabeled datasets, and (ii) propose a novel algorithm
called Goldilocks to make node selection decisions and identify
the data to be labeled. Through both a theoretical and an
experimental analysis, we show that loneliness is strongly linked
with learning performance (i.e., test accuracy). Furthermore, our
performance evaluation, including three state-of-the-art datasets
and a comparison against centralized learning, demonstrates
that Goldilocks outperforms approaches based upon a balanced
label distribution by providing over 70% accuracy improvement,
in spite of being efficient to compute and not using labeling
information.

I. INTRODUCTION

In many relevant and critical scenarios, including health-
care [1] and mobile autonomous systems, it is necessary to
perform distributed (often, federated) learning in conditions
that are doubly constrained. First, due to high communication
costs, limited bandwidth, and/or harsh propagation conditions,
we have to choose a small number of learning nodes. Second,
due to computational (memory and processing) capabilities
of mobile devices, there may be limited data availability,
i.e., local datasets at such devices will be small, and a
limited amount of data can be processed. Third, labeling such
datasets, while necessary for learning, might be a long, slow,
and/or costly process—due to, e.g., the need to involve human
experts. It follows that, for constrained FL to succeed, it is
of paramount importance to make high-quality node selection
decisions using as little information as possible and, crucially,
no labeling information at all.

The latter requirement rules out traditional approaches to
node and dataset selection, which are predicated upon evalu-
ating the balance between classes in local datasets [2], [3],
[4] and/or assessing how well different labels correspond
to different classes [5], [6]. Furthermore, we cannot rely
on approaches evaluating how different nodes influence the
training process (e.g., by looking at their gradients [2], [7],
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[4]), because we need to choose the nodes before the learning
process starts—intuitively, we cannot afford to label samples
we end up not using.

In this work, we propose a way out of this conundrum,
predicated on two pillars. The first one is a new metric,
called loneliness and satisfying our main requirements, i.e.,
it is extremely lightweight to compute and does not require
labeling information. Through a set of experiments, we show
that (i) loneliness exhibits a stronger correlation than label
balance with the testing performance of a learning task, and
that (ii) the best performance is associated with intermediate
loneliness values. As a theoretical explanation of this second
finding, we provide a probably-approximately correct (PAC)
Bayes bound, based on adaptive subspace compression [8].
Through this bound, we illustrate that while the training error
increases monotonically with the loneliness, the number of
compressed bits to represent the weights of the deep neural
network (DNN) (which we use as complexity term in the PAC-
Bayes bound) decreases with the loneliness.

The second pillar is represented by an efficient, iterative
algorithm called Goldilocks and able to iteratively add new
nodes to the training process so as to reach a target loneli-
ness value. A pictorial sketch of how our approach and the
Goldilocks procedure improve over the state of the art is
provided in Fig. 1. The traditional approach, represented on
the left, is geared towards scenarios where we must select tens
or hundreds of learning nodes and makes decisions based on
how balanced labels are. While it is true that better-balanced
datasets yield better performance, there is still a significant
variability within the accuracy yielded by similarly-balanced
datasets. Our approach, represented on the right, leverages
the loneliness metric, resulting in a much more accurate
knowledge of which datasets yield the best test accuracy,
especially when datasets are small and only a small number
thereof can be selected.

We evaluate the performance of Goldilocks in both cen-
tralized and federated scenarios, using state-of-the-art DNN
models and datasets, and find it to consistently outperform
approaches only considering label information. Importantly,
the performance metrics we consider go beyond mere classifi-
cation accuracy, and include the number of learning nodes to
involve in the learning process.

In summary, our main contributions can be summarized as
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A qualitative depiction of how using loneliness improves testing accuracy. The figure compares the information accounted for by state-of-the-art

approaches based on label balance (left) and Goldilocks (right); each plot illustrates pictorially the empirical distribution of test accuracy achievable by training
sets with a given level of loneliness and label balance. Accounting for label distribution only provides partial information on the learning outcome. On the
contrary, loneliness has a much stronger correlation with accuracy; therefore, by leveraging on it, Goldilocks is able to make better decisions, hence, achieving

higher accuracy.

follows:

« We propose a new metric, called loneliness, estimating
the suitability of an unlabeled dataset (and, hence, of the
learning node owning the data) for a given learning task;

e We perform a set of experiments, demonstrating that
a strong link exists between loneliness and learning
performance;

« We provide a theoretical explanation for the effectiveness
of loneliness, based on model compression and a PAC-
Bayes bound;

e We leverage loneliness and the insights provided by
the theoretical analysis to design a procedure, called
Goldilocks, that makes high-quality node selection de-
cisions;

e« We evaluate the performance of Goldilocks under both
centralized and FL tasks using multiple datasets and neu-
ral networks, demonstrating that it consistently finds the
best trade-offs between the resources needed for training
and the resulting test accuracy. Notably, Goldilocks yields
over 70% better accuracy improvement, while requiring
to disclose no data about labels or label distribution.

II. THE LONELINESS METRIC

We consider a typical distributed ML task where a set of
learning nodes {n*} € N, equipped with local datasets X*
and labels y*, have to optimize the average value of loss
function L by choosing the weights W of a parameterized
learning model, i.e.,

> LXF R w).
nkeN

Weights themselves can be set through any distributed learning
algorithm, e.g., the classic FedAvg.

To characterize the quality of each local dataset, we start
by introducing a sample-specific quantity. Specifically, we
define the loneliness ((i, k) of sample x¥ in dataset X* as
the distance between 2% and the closest other sample in X*:

(i, k)= min ||aF —2¥|. (1)

It follows from (1) that the further away a sample is from the
others, the higher its loneliness is. On the contrary, samples
with low loneliness are very similar to other samples.

We further extend the notion of loneliness to the dataset X*
owned by node n* € N, by considering the mean sample-wise
loneliness in X*:

0(X*) = min £(i, k). 2)

zhe Xk

Note that the loneliness metric does not depend on the label
of the points in the datasets. The relationship between sample-
and dataset-wise loneliness is exemplified in Fig. 2.

Complexity: Importantly, loneliness can be computed as
a byproduct of the x-nearest neighbors algorithm, with &
denoting the number of neighbors to consider, e.g., kK = 5.
Recall that computing x-NN values has a complexity (which
is independent from x) of O(nd), with n being the number of
points and d denoting the dimension of data. It follows that
obtaining the loneliness value of a dataset is (i) free, if x-NN
information is already available and/or is computed for other
purposes, and (ii) very efficient even if xk-NN must be ran ad
hoc.
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Fig. 2. The relationship between distance between samples (e.g., x% and x%)
in a dataset, represented as a yellow box, and loneliness values. The distance
from each sample to the closest sample to it corresponds to the sample-wise
loneliness defined in (1); the smallest sample-wise loneliness corresponds to
the dataset-wise loneliness as defined in (2).

Alternatives and discussion: Metrics with a similar pur-
pose to loneliness include those used for outlier detection [9]
and quality assurance [5], [6]; however, loneliness has a more
specific purpose and is much simpler to compute. Indeed,
outlier detection entails first clustering the data, and then
marking as outliers the nodes that are too far away from any
cluster. Similarly, quality assurance methodologies like [5],
[6] first identify neighborhoods in both the input and output
spaces, and then quantify the complexity of the relationship
between them. In all cases, the first step of the algorithm
is clustering, which (taking the simplest viable algorithm,
i.e., k-means) has a complexity of O(kni), with i being
the number of iterations to run. Comparing that with the
O(knd) complexity of loneliness, and recalling that i > d
in most cases, we can conclude that computing loneliness is
more efficient that even performing the preliminary step, with
the simplest algorithm, of alternative approaches.

To illustrate the usefulness of the loneliness metric, we
conduct in the next section an experiment illustrating its
impact on the performance of learning algorithms operating
on small training sets.

III. EXPERIMENTAL ANALYSIS

The micro-datasets: To ascertain the effect of loneliness
on the learning performance and to compare it with the tradi-
tionally used label balance, we start from the popular MNIST
dataset and create a total of 90 micro-datasets, according to
the following rules:

« all micro-datasets have 500 samples, extracted from the
60 000 samples of the MNIST training set; every micro-
dataset has a different combination of label balance and
loneliness level as specified below;

e in each micro-dataset, one of the 10 classes is over-
represented, and « € [1,5] is the unbalance factor, i.e.,
the ratio between the number of samples of the most and
least represented classes;

« each micro-dataset k has a loneliness level A\(X*) ranging
between 1 and 10 and defined as
U(XF) — mingnepn £(XM)
maX,hec N E(Xh) - minnheN é(Xh)
3)
The micro-datasets so obtained reproduce those cases where
there is a large number of potential learning nodes, all
equipped with datasets that are (i) small and (ii) defective
in different ways. In such scenarios, it is often impractical or
impossible to query a large number of learning nodes. Hence,
choosing them wisely is crucial, especially considering the
need for dependable learning involving heterogeneous nodes.

In view of the relative simplicity of the MNIST dataset,
we use the LeNet5 DNN for our tests; such DNN includes
three convolutional layers and two fully-connected ones. Ad-
ditional details on the data and DNN models used for all tests
conducted in the paper can be found in the Appendix.

Loneliness and test accuracy: Fig. 3 summarizes the
main results of our MNIST tests. We start from the rela-
tionship between label distribution and learning performance:
in Fig. 3(a) and Fig. 3(b), each line corresponds to one
value of the unbalance factor « (in Fig. 3(a)) and loneliness
level A (in Fig. 3(b)), and depicts the empirical cumulative
density function (ECDF) of the test accuracy yielded by
the corresponding micro-datasets. The value of a or A tells
us on which of the ECDFs the actual accuracy is; as an
example, for a loneliness level equal to 2, the accuracy is
between 76% and 78% with 90% probability, and its expected
value is 77.4%.

The difference between the two plots is striking: ECDFs
corresponding to different values of the unbalance factor «
in Fig. 3(a) almost always overlap and cover virtually all
accuracy values on the z-axis. Furthermore, the mean values
(i.e., the dots) are very concentrated. All values of a result
in accuracy levels between 77% and 88% with a mean
around 83%. We note that knowing the exact value of «
does not help make that information more specific. On the
other hand, the ECDFs corresponding to different values of
loneliness level A are much more far apart, and overlap to
a very limited extent. Similarly, the mean values are also
far from each other (also note that we depict ten levels
of loneliness, but only five values of «). It is thus evident
that loneliness offers more detailed information on where
the resulting accuracy will be. Hence, it is not only a less
expensive metric to compute, since it does not require labeling.
It is also more useful.

Fig. 3(c) and Fig. 3(d) provide a more detailed view of
this effect. Each marker in the plots corresponds to a dataset,
and its position along the x- and y-axis corresponds to
the value of the metric (unbalance factor « in the former
plot, loneliness level A in the latter) and resulting accuracy,
respectively. We note that the shaded area is almost rectangular
for the unbalance factor, which confirms how different values
of « correspond to similar values of accuracy; for loneliness,
instead, we observe a much more narrow, arch-like shape.

MXF) = 14|10




2025 21st International Conference on Network and Service Management (CNSM)

unbalance factor loneliness level
—_— 10
0.8 e 2.0
— 3.0
— 40
—— 50

%0 725 750 775 800 825 850 875 900

test accuracy [%] test accuracy [%]

(a) (b)

Fig. 3.

%0 725 750 775 800 825 850 875 90

%90 15 20 25 30 35 40 45 50 . 2 4 6 8 10

unbalance factor a loneliness level A

(©) (d)

MNIST experiments with the LeNet DNN: loneliness is more useful than label balance as a metric to predict accuracy. Distribution of the test

accuracy for different values of the unbalance factor o (a) and loneliness level A (b), with dots representing mean values; test accuracy levels achieved by

micro-datasets with different unbalance factors (c¢) and loneliness (d).

The narrowness of the shaded area in Fig. 3(d) further
indicates that A\ serves as an excellent proxy for the resulting
accuracy. Interestingly, the arch-like shape of the area shows
that the best accuracy is achieved for intermediate levels of
loneliness (between 5 and 7). The behavior in Fig. 3(d) makes
intuitive sense if we consider that high levels of loneliness
might be associated with the presence of outliers. A whole
dataset composed of outliers is in fact harder to generalize
from than one with a more balanced composition.

In summary, we can conclude that loneliness has a much
stronger correlation with test accuracy. Hence, it is much
more useful than class balance when predicting it. Fur-
thermore, the best accuracy is reached for intermediate
levels of loneliness.

IV. LONELINESS THROUGH THE LENSES OF A
COMPRESSION-BASED PAC-BAYES BOUND

In this section, we use a PAC-Bayes generalization bound
to explain why the test accuracy of micro-datasets peaks at
intermediate loneliness /. Let Z be the instance space and
Pz be the unknown distribution on Z that generates the
training data Z=(Z1,...,Z;,) € 2™ independently. Let W
be the hypothesis space and Py |z be a probabilistic learning
algorithm that takes Z and outputs a hypothesis WeW.
Finally, let ¢ : W x Z — R, be the loss function. Then the
population loss of w is defined as Lp, (w)=Ep, [c(w, Z)] and
the training loss is defined as Lz=-1>""", ¢(w, Z;). Given a
prior distribution Qs and a posterior distribution Py |z over
W, [10] states that with probability at least 1—9 under Pz,

EPW\Z [LPZ (W)] < EPW\Z [LZ(W)]+

KL(Pw z[Qw) + log(m/d) + 2
2m — 1 '

“4)

In words, the population loss can be upper-bounded by the
sum of a training loss and a complexity term that quantifies,
via the Kullback-Leibler (KL) distance, the penalty incurred in
assuming W~ Py z when W~Qyy . Bounds on the population
error similar to (4) are usually referred to as PAC-Bayes
bounds.

To shed lights on the impact of the loneliness on the PAC-
Bayes bound (4), we experimentally evaluate Ep,, , [Lz(W)]

and KL(Py z||Qw) for datasets with different loneliness.
Specifically, following [8], we select the universal prior
Qw (W)=2"%W)/7 where K is the prefix Kolmogorov com-
plexity of W [11] and v < 1. The learning algorithm Py|z
is chosen to be the point mass distribution on W*, which
is the hypothesis obtained by training on Z. Training is
performed in two steps, according to the adaptive subspace
compression algorithm introduced in [8]: (i) first, we learn
a low-dimensional linear embedding of the model weights;
then (ii) we quantize the embedded weights to a fixed number
of levels. The training loss is computed using the 0-1 loss
function. The KL term for the selected posterior and prior is
upper-bounded by an expression containing the length of the
shortest program needed to reproduce W*. This is computed
as the number of bits required to represent the quantized model
weights extracted from step (ii) of the training procedure, using
an arithmetic code.

We construct 50 micro-datasets from MNIST with varying
loneliness values ¢ and fixed unbalance factor a=1 (.e.,
balanced datasets). The experimental details are provided in
the Appendix. In Fig. 4, we plot the training loss and the
KL term for three different values of dataset size. Each dot
represents the training loss and the KL term for one dataset,
respectively. We also report the linear regression line for each
plot, the corresponding Pearson correlation coefficient r-value,
and the two-sided p-value.

We see that for all dataset sizes m considered in the figure,
the training loss appears to increase as a function of the
loneliness value. Intuitively, as the samples in the dataset be-
come more dissimilar, the training process becomes slower. On
the contrary, the KL term appears to decrease monotonically
with the loneliness. This suggests that the model complexity
decreases. Intuitively, a dataset with a higher loneliness can
be classified using a more compressible neural network.

As a result of these two opposite trends, intermediate
loneliness values are preferable. Unfortunately, this cannot
be demonstrated by evaluating the PAC-Bayes bound in (4)
directly, since the training procedure suggested in [8] yields
vacuous results whenever the dataset size m is below 2000.
For m > 2000, the variation in loneliness across the generated
datasets is not significant and no trends can be inferred. Indeed,
this is the reason why the slope of the linear regression curve
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in Fig. 4 decreases when m increases.

V. NODE AND DATASET SELECTION: GOLDILOCKS

In this section, we describe our Goldilocks node- and data-
selection procedure.

Node selection: The node selection problem can be stated
as follows: given a set N“"CN of currently-selected learning
nodes, we want to identify a new node n* N \NT to add to
the training process, so as to optimize the learning outcome,
e.g., maximize the test accuracy. Such outcome is estimated
through a proxy metric [i(Q), taking as input a set Q of
selected datasets, i.e., Q=] q X9; we are also given a target
value 7 for the metric . The metric f itself can correspond
to any metric taking as an input a set of datasets, including
the loneliness ¢ defined in (2) and the unbalance factor .
In all cases, the value of the metric of a set of datasets Q
corresponds to the value of that metric computed over the
union of all datasets therein.

Given all the above, the selected node according to the
Goldilocks procedure is simply the one that results in the
metric [t being closest to the target 7, i.e.,

AN U {n}) — 7. 3

n* < arg min
neN \Neur

It is worth emphasizing that the Goldilocks procedure just
outlined can be performed for arbitrary metrics, including
the unbalance factor « introduced in Sec. III, the loneliness
level A\(X*) defined in (3), as well as other metrics defined
in the literature, e.g., the normalized entropy used in [12].
Furthermore, Goldilocks supports arbitrary target values, i.e., it
can be applied to metrics that do not need to be maximized or
minimized: this is fundamental in situations like those depicted
in Fig. 3(right), where the best performance is associated with
intermediate loneliness values. In these cases, Goldilocks is
able to select the nodes that are just right (hence the name of
the procedure) for the task at hand.

As mentioned earlier, the steps above can be applied only
if the metric to use is defined for individual samples, i.e.,
if (i, k) does exist. This is the case of loneliness (as per (1)),
but not, as an example, for the label balance. We can thus
remark again that, by combining the loneliness metric and the
Goldilocks procedure, we are able to make fine-grained node
selection decisions.

Scope and goals of Goldilocks: As per (5), Goldilocks
selects nodes solely based on the metric ji, ignoring such
factors as node connectivity, resources, and costs. All these
factors need to be weighted against sheer learning perfor-
mance (e.g., training accuracy) in real-world situations, as also
discussed in Sec. VII. It is worth stressing that Goldilocks
is not meant to give a complete, self-contained solution to
the node selection problem in FL. Rather, it helps comparing
how different metrics affect node selection decisions and
the resulting performance. Such an approach can then be
integrated within any of the alternative approaches discussed
in Sec. VII, leaving the remaining parts thereof (dealing, for
example, with connectivity) in place.

VI. PERFORMANCE EVALUATION

We now verify the usefulness of the Goldilocks procedure
in the context of node selection, especially when loneliness
is chosen as metric. To this end, we perform a set of experi-
ments using the CIFARI10 dataset [13] and the MobileNetV2
DNN [14]. Specifically, (i) We generate from the CIFARI10
training set 100 micro-datasets with 500 samples each, follow-
ing the same procedure as in Sec. III; every micro-dataset has
different loneliness and label unbalance factor. (ii) For each
micro-dataset, we use the Goldilocks procedure described in
Sec. V, in combination with either the label unbalance factor o
or the loneliness level A, to select one or two additional
datasets. (iii) We train the model using each combination of
datasets, in a centralized manner, for 50 epochs, tracking the
resulting test accuracy.

Fig. 5(a) shows the distribution of accuracy for one (dashed
line), two (solid lines), and three (dotted lines) micro-datasets.
The color of the lines reflects the metric employed to select
the additional data: red for the label unbalance « (for which a
target of 7=1 is set), and blue for the loneliness level \ (for
which we set, based upon Fig. 3, 7=8). As expected, adding
more data results in better accuracy. More interestingly, using
loneliness in lieu of label unbalance results in a significantly
better accuracy, for the same quantity of data.

Fig. 5(b), which summarizes the accuracy improvement,
offers a more detailed view. We can observe that adding one
micro-dataset to the training yields an average accuracy im-
provement of 4% when the micro-dataset is chosen considering
the label unbalance factor «, and over 7% when loneliness
level X is accounted for. In a situation where the datasets are
not labeled and labeling is expensive, a Goldilocks procedure
based on loneliness has the additional advantage that only the
selected datasets will need to be labeled. On the contrary, a
procedure based on the class imbalance factor would require
one to label all datasets. This is especially advantageous in
training scenarios where only few datasets can be used due to
complexity constraints.

Next, in Fig. 5(c) and Fig. 5(d), we look in more detail at
when extra data result in the largest accuracy improvement.
Each marker in the plots corresponds to a micro-dataset,
and its position along the x- and y-axes corresponds to the
accuracy obtained using that micro-dataset alone and combin-
ing that dataset with additional one(s) using the Goldilocks
procedure, respectively; the color of the marker corresponds
to the metric employed. We can observe that datasets with
lower accuracy tend to benefit the most from extra data. It
is also interesting to observe how the improvement yielded
by loneliness over label unbalance factor is larger when we
have to select two micro-datasets than three. This confirms
that loneliness is especially useful when the number of nodes
that can be selected is small.

A. FL and additional datasets

To better assess how general our results are, we extend our
performance evaluation to: (i) a FL scenario still using CIFAR,
where each micro-dataset belongs to a different learning
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Fig. 4. Training loss and KL terms in (4) for different micro-datasets generated from MNIST. The parameter m indicates the size of the micro-dataset.

node and learning nodes cooperate via the FedAvg algorithm;
(ii) a centralized scenario using the CINIC10 dataset [15],
developed as a more diverse, drop-in alternative to CIFAR; (iii)
a centralized scenario using the GTSRB dataset [16], including
real-world pictures of road signs. In FL, nodes cooperate
through the FedAvg algorithm as implemented by the flwr
library. Additional details on the datasets and implementation
can be found in the Appendix.

The test accuracy achieved in the aforementioned cases is
summarized in Fig. 6. Consistently with Fig. 5(a), more data
always result in better accuracy; also, using loneliness as a
metric yields consistently a better accuracy. In agreement with
Fig. 5(c) and Fig. 5(d), the effect is more significant when
choosing two micro-datasets than when choosing three.

Results with the FL, CINIC10 and GTSRB experiments are
presented in Fig. 7, Fig. 8 and Fig. 9 (respectively), and are
consistent with those of Fig. 5.

VII. RELATED WORK

The problem of node selection in distributed learning and of
dataset selection in conventional learning is well investigated.
We review them here, organizing the literature into a taxonomy
that highlights where our contribution fits.

Node selection: Node selection in cross-device FL is
critical when data is heterogeneous and participation is inter-
mittent. Naive selection, as in FedAvg, can suffer from client
drift under non-IID data [17], and uneven client participation
creates a participation gap on top of the usual generalization
gap [18]. Prior work can be grouped into four broad categories.

Label-aware approaches: These rely directly on labeled
data or loss signals. For example, [18] propose sharing held-
out labeled data at the server to estimate participation gaps,
enabling sophisticated client-selection strategies [19]. In [20],
instead, clients are selected on the basis of the local training
loss, avoiding data sharing but still relying on label-based loss
evaluation.

Data valuation and utility-based approaches: These meth-
ods quantify the marginal contribution of clients to the global
model, typically inspired by data valuation or game-theoretic
frameworks. Shapley-value estimators [21] and gradient-based
utility estimates fall in this category. Reference [19] propose
a greedy algorithm that directly leverages Shapley-value ap-
proximations for client selection. Reference [22] select clients
with high local gradient norms at each round, while GPFL [23]
compares local and global descent directions to judge client
utility. FedGCS [24] further uses gradient-based optimization
in a learned continuous space to score and select clients.
Beyond these, Oort [25] guides client selection using a com-
bined measure of statistical utility and system efficiency, while
FedBalancer [26] adjusts client pacing and data contribution to
optimize efficiency under heterogeneous data. FedGRA [27]
selects clients using Grey Relational Analysis to combine de-
vice resource availability, training loss, and weight divergence.

System-aware approaches: FedCS [28] selects clients based
on resource availability, while TiFL [29] tiers clients to miti-
gate stragglers. The primary goal of these works is to optimize
runtime and resource efficiency.
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Privacy-aware approaches: Strategies that involve sharing
held-out data [18] enable sophisticated selection but run
counter to FL’s central purpose of preserving privacy.

In contrast to these categories, our loneliness-based method
provides a lightweight, privacy-preserving, and fully label-free
signal that can front-load utility estimation before labels or
steady participation are available.

Data selection: This is often referred to as data pruning
in the literature [30], and involves pruning low-quality data,
typically during the training process. An extensive review
of data pruning methods can be found in [31]. Among the
existing solutions, [21] uses the Shapely-value of a subset of
data to estimate their utility. Reference [32] removes from
the training set unforgettable examples, i.e., examples whose
predicted label is correct and does not change over the training
process. Reference [33], instead, retains “hard” examples, i.e.,
examples that have large /5-norm scores on trained models.

Coreset selection is another approach for data selection, with
an extensive review provided in [34]. CRAIG [35] selects a
subset of the training data that closely approximates the full
gradient. K-Center Greedy [36] aims to select a subset such
that every data point is close to at least one chosen point,
thereby minimizing the largest distance between any data
point and its nearest representative. Reference [37] proposes a
squared-loss-minimization objective with loss-reduction attri-
bution and the MRMC criterion, achieving strong performance
across image recognition tasks.

In contrast, our loneliness-based method provides a simple
and truly label-independent criterion that operates directly

in the input space, without requiring loss signals, labels, or
gradient information.

VIII. CONCLUSION

We have considered the problem of node selection in
cooperative learning scenarios where only a small number of
small datasets can be used. In this scenario, it is especially
advantageous to select the datasets (and, hence, the nodes)
without using label information, for both efficiency and privacy
reasons. To this end, we proposed a metric called loneliness,
which, using unlabeled data, computes the distance between
samples of the same dataset. We integrated loneliness with
a node- and data-selection strategy called Goldilocks, and
found—across multiple datasets and in both centralized and
federated schemes—that using loneliness consistently results
in higher improvement of training accuracy, by over 70%, in
spite of requiring no label information.
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APPENDIX

Datasets, architectures, meta-parameters: For our exper-
iments, we consider the following datasets:
MNIST [38], including 70 000 28 x 28 black-and-white images
of handwritten digits. The dataset is divided into a training
set of 60000 images and a testing set of 10000 images, and
comprises 10 classes, one per digit.
CIFAR [13], including 60 000 32x 32 color images of different
objects and animals (airplanes, cars, birds, cats, deer, dogs,
frogs, horses, ships, and trucks). The dataset is divided into
a training set of 50000 images and a testing set of 10000
images, and comprises 10 classes, one per object.
CINIC [15], including 270000 32 x 32 color images:
the 60000 ones from CIFAR, plus 210000 coming from
ImageNet. It includes the same classes as CIFAR and is
divided into train, test, and validation splits, each including
90000 images. It is meant as a drop-in, more challenging

replacement to CIFAR.

GTSRB [16] (German Traffic Sign Recognition Benchmark),
including over 38 000 color, real-world images of road signs,
belonging to 40 classes. Different images may have different
size, hence, we need to resize them to 32 x 32; the dataset is
divided into a training set of 26 640 images and a testing set
of 12630 images.

For MNIST, we use the LeNet5 convolutional network [38],
including three convolutional layers and two fully-connected
ones. For all other datasets, we use MobileNetV2 [14]. In
all scenarios, we train for 50 epochs, and consider the one
yielding the best performance. Stochastic gradient descent
is used as an optimizer, with a learning rate of 1073, All
experiments are performed with PyTorch, and training employs
the 1ightning library.

Evaluation of the PAC-Bayes bound in (4):: We use the
LeNet model [39] as the base model. Following [8, Sections
4.1 & 4.2], we train a compressed model (compressed size
= 1000) for 1000 epochs using the Adam optimizer with a
learning rate of 0.001. Then a quantized model (quantization
levels = 7) is trained for 30 epochs using the Adam optimizer
with a learning rate of 0.0001. The cross-entropy loss is
used during training, and the 0-1 loss is used to compute
the training loss in (4). The KL term in (4) is approximated
as follows. Let W* be the trained model obtained after the
compression and quantization. Then the posterior is set as
Py z = Iyw=w~, where I is the indicator function. The KL
term is then bounded as

KL(Pw z||Qw) = KL(Iy=w+
1 o
+2l0g (W), ©

Q—K(W)/'Y)

where p(W*) is the number of bits required to represent the
weights of W* and to obtain (1) we proceeded as in [40, The-
orem 14.2.3]. We use arithmetic coding to compute p(W*).



