
Deep Reinforcement Learning for In-Network
Placement of ACL Rules Under Constraints

Wafik Zahwa†∗, Abdelkader Lahmadi∗, Michael Rusinowitch∗, Mondher Ayadi†
∗ Université de Lorraine, CNRS, Inria, Loria, F-54000 Nancy, France, {firstname.lastname}@inria.fr

† NUMERYX, France, w.zahwa@numeryx.fr

Abstract—Efficient distribution of Access Control Lists (ACLs)
in modern networks is crucial for ensuring seamless connec-
tivity, robust security, and reliable operations across internal
services and hosts. ACLs are typically placed in the switch’s
Ternary Content-Addressable Memory (TCAM), which is in-
herently limited in capacity. As communication networks and
hosted services expand, the growing complexity and volume of
policies require scalable algorithms for effective rule placement.
This paper presents a novel approach that combines graph-
embedding neural networks (GNN) with deep Q-learning (DQN)
to automate optimized ACL distribution across network switches.
Our method efficiently manages TCAM utilization while inte-
grating operational constraints and is extensively evaluated on
both synthetic and real-world topologies. Results show that it
outperforms heuristic and Integer Linear Programming (ILP)-
based techniques, offering superior scalability, adaptability, and
robustness for ACL rule placement.

Index Terms—ACL, automated rule placement, SDN, graph
embedding, reinforcement learning, deep Q-learning, bandwidth
constraint, ordering constraint.

I. INTRODUCTION

The increasing complexity, scale, and dynamism of modern
networks have led to a rapid growth in Access Control List
(ACL) rules [1], [2]. This expansion is driven by rising traffic
volumes, evolving security requirements, and the adoption of
IoT, BYOD, and cloud services. Application-specific policies,
user-based controls, and multitenancy further contribute to
ACL proliferation [3], while frequent changes in topology and
traffic patterns necessitate constant updates.

Efficient enforcement of these rules requires specialized
hardware. Ternary Content Addressable Memory (TCAM) is
the dominant choice, as it supports parallel lookups and ternary
matching (0, 1, *) needed to encode prefixes, ranges, and prior-
ities. In contrast, SRAM and binary CAM are limited to exact-
match operations and lack native prioritization, making them
unsuitable for expressive packet filtering. However, TCAM is
costly, power-hungry, and capacity-limited: commercial chips
typically support only tens of thousands of entries (e.g., 10-20
Mb chips afford 33k IPv6 rules) [4], while large-scale envi-
ronments such as data centers, cloud-native infrastructures, and
5G/edge systems often require hundreds of thousands. Recent
studies confirm that TCAM overflow remains both a critical
bottleneck and a vulnerability in production deployments [5].

Although ACL placement and TCAM optimization have
been studied since the early SDN generation, the problem
remains pressing. High-end TCAM chips (e.g., 144 Mb in-
troduced in 2021 supporting up to 512k entries) provide

greater capacity but significantly increase power consumption,
sometimes accounting for up to 60% of a switch’s budget [6].
The demand for granular policies—including access control,
QoS, filtering, and service chaining-continues to intensify
this issue. Manual, static ACL management is no longer
scalable. Software-Defined Networking (SDN) offers central-
ized control and dynamic rule distribution, enabling global
optimization of TCAM resources, but it requires intelligent
algorithms to adapt to changing network conditions.

Recent work has explored splitting and distributing ACLs
across multiple switches to reduce per-switch TCAM load.
Initial strategies placed rules along single predefined paths [1],
[7], which are fragile under path failures or congestion. More
robust approaches have proposed multi-path placement over a
set of candidate paths [2], [8]. However, these methods assume
static routing and fail to generalize under dynamic conditions.

Real-world traffic patterns are typically unbalanced: a small
subset of paths carries the majority of traffic due to routing
preferences such as shortest-path selection, ECMP (Equal-Cost
Multi-Path) balancing, or bandwidth-based decisions. This
motivates optimizing rule placement across frequently used
paths to avoid redundant replication on underutilized links and
switches.

In this work, we propose a learning-based framework for
distributed ACL rule placement over a given set of source-
destination paths. We couple Deep Q-Learning (DQN) with
Graph Neural Networks (GNNs) to learn generalizable strate-
gies that optimize rule placement while satisfying practical
constraints. We evaluate our method across synthetic and real-
world topologies and compare it to ILP-based and heuristic
algorithms under various placement setups and constraints.
Our contributions are summarized as follows:

• We propose a novel hybrid GNN-DQN framework for
learning optimal ACL rule placements over multiple
routing paths.

• We incorporate practical deployment constraints, includ-
ing rule ordering, bandwidth optimization, and TCAM
capacity.

• We extensively evaluate our approach and compare it with
ILP and heuristic baselines, highlighting strengths and
trade-offs across diverse topologies.

The rest of the paper is structured as follows. Section II
provides background on ACLs, RL, and GNNs. Section III
discusses related work. Section IV presents the problem for-
mulation and network model. Section V describes our method,

2025 21st International Conference on Network and Service Management (CNSM)

978-3-903176-75-1 ©2025 IFIP

and Section VI outlines the experimental setup. Section VII
reports results, and Section VIII concludes.

II. BACKGROUND

A. Access Control List

ACLs are widely used in enterprise, data center, and WAN
networks to enforce security through ordered ⟨match, action⟩
rules evaluated top-down, typically with allow/deny seman-
tics [9]. While SDN platforms (e.g., OpenFlow, P4) sup-
port advanced actions, this work focuses on traditional al-
low/deny behavior consistent with firewall semantics. As
networks scale, ACL tables rapidly exceed TCAM capacity,
motivating strategies such as eviction, compression, and split-
and-distribution.Since eviction undermines persistent security
policies, split-and-distribution is preferred, partitioning ACLs
into subsets constrained by TCAM size and distributing them
across switches. Figure 2 illustrates this by dividing the ACL
into two sets f0 and f1 based on rule actions. The size of
each rule set is constrained by TCAM capacity-for example,
a 2Mb TCAM stores about 33k 60-bit entries [10]. In this
work, we assume ACLs are pre-validated and focus exclusively
on optimizing their placement, leaving inconsistency handling
and rule generation to future work.

B. Reinforcement Learning

RL models sequential decision-making as a Markov Deci-
sion Process (MDP) , where at each step an agent observes
a state st, selects an action at, receives a reward rt+1, and
transitions to st+1. The goal is to learn a policy π : S → A
that maximizes the expected return R(τ) =

∑N
k=0 γ

krt+k+1

over an episode τ , with discount factor γ. RL algorithms refine
π through trial-and-error based on observed rewards. In this
work, we adopt model-free Deep Q-Learning (DQN) [11],
where a neural network Q(s, a; θ) approximates action-values,
enabling scalability to large state spaces.

C. Graph neural network

GNNs learn from graph-structured data by computing node
embeddings through iterative message passing. Each node
v is initialized with µ0

v = I(xv) from input features xv .
At layer k, messages from neighbors are aggregated and
used to update embeddings: mk+1

v = Mk(µ
k
v , µ

k
u, wuvu∈N(v)),

µk+1
v = Uk(µ

k
v ,m

k+1
v). After T layers, a graph-level represen-

tation is obtained via a permutation-invariant pooling function
(e.g., sum or mean).

III. RELATED WORK

Several split-and-distribution methods have been proposed
to tackle the placement problem under different assumptions.
Authors in [1] introduce efficient algorithms for rule distri-
bution but are limited to series-parallel network structures.
Palette [2] offers a heuristic applicable to arbitrary paths, yet
does not handle bandwidth or priority constraints. MaxSMT-
based solutions [12], although expressive, lack scalability in
dynamic networks due to their recomputation overhead [13].
ILP-based approaches such as Raptor [8] model the problem

as a rule minimization task across multi-path networks, with
a post-processing heuristic to enforce rule ordering. Authors
in [14] extend this model to reduce bandwidth usage by
prioritizing rule placement near ingress points, introducing a
dual-objective formulation to jointly optimize rule count and
placement distance. However, ILP-based methods [8], [14]
face two key limitations: (i) scalability: on larger graphs or
under additional constraints, the solver frequently exhausts
memory and the observed runtime grows sharply (often near-
exponentially), leading to practical failures; and (ii) flexibility:
incorporating new constraints typically requires expressing
them in linear form, otherwise the ILP cannot accommodate
the objective or may fail to solve. Our earlier work [15], [16]
explored rule distribution across all possible source-destination
paths to address routing uncertainty. In this paper, we refine
the model by targeting a selected path set and integrating RL to
scale across varied topologies and constraints. Recent efforts
[17] have explored learning-based approaches and used deep
RL for rule eviction optimization. However, many learning-
based solutions rely on node-centric actions [18], limiting their
suitability for rule placement tasks involving more complex
decision spaces. Our method overcomes this by combining
deep Q-learning with graph-based encoding to support struc-
tured ACL placement over a defined set of paths, enforcing
memory, bandwidth, and priority constraints, and generalizing
effectively to unseen network topologies.

IV. PRELIMINARIES

This section introduces a motivating example of in-network
ACL placement, followed by the problem formulation and its
constraints. The notation is summarized in Table I.

Notation Description
s single source
t single destination
P set of paths
F set of ACL rules

m(v)
memory available on node v, i.e., maximum number of
rules that can be installed on v

||p|| length of path p, i.e., number of links contained in p
(not necessarily st-path)

pathsv subset of paths in P that contain node v
|P |, |pathsv | number of paths in P , in |pathsv |

min(P) shortest length of a path in P
PG set of all paths between s and t within a graph G

cv
coverage percentage, i.e., ratio of paths included in P
(and therefore that should be covered)

TABLE I: Notations for problem formulation

A. Motivating example

Consider the network in Fig.1, with source s, destination t,
and intermediate switches a–g (capacity 1 each). The initial
ACL table is split into two rule sets, f0 and f1 (Tables 2a, 2b),
based on their actions. The default action depends on order:
the earlier set permits unmatched traffic, while the final set
enforces a default deny.

With the basic constraint of covering all paths P =
[s, a, b, d, e, t], [s, c, d, g, t], [s, c, d, g, e, t] using the minimal
number of rules, f0 is placed at d and f1 at e, g. Since f1

2025 21st International Conference on Network and Service Management (CNSM)

Fig. 1: A placement scenario with topology comprising two
rules (f0, f1) and three paths: Path 1, Path 2, and Path 3.

includes a more specific deny rule (e.g., blocking 10.1.2.10)
than f0 (allowing 10.1.2.0/24), it must take precedence, lead-
ing to swapped placements: f1 at d and f0 at e, g. Moreover,
f1 denies ICMP types other than Echo Request, which should
be filtered early to save bandwidth. Under this constraint, f1
moves to a, c while f0 remains at d. This example illustrates
how rule placement adapts to evolving constraints-coverage,
ordering, and bandwidth-underscoring the need for flexible,
constraint-aware strategies in practice.

Source IP Source Port Dest IP Dest Port Protocol Action
192.168.1.10 Any 10.1.20.16 80 TCP Allow

192.168.0.0/16 Any 10.1.2.0/24 Any Any Allow
192.168.1.10 Any 10.1.10.50 Any ICMP Allow
192.168.1.10 53 10.1.1.30 Any UDP Allow

default rule

(a) First subtable: f0

Source IP Source Port Dest IP Dest Port Protocol Action
192.168.3.30 Any 10.1.2.10 443 TCP Deny
192.168.3.30 Any 10.1.3.40 Any ICMP Type!=8 Deny

default rule

(b) Second subtable: f1

Fig. 2: Example of a simplified ACL table divided into two
subtables f0 and f1 based on the action of the rules.

B. Network representation and problem statement

We model the network as a directed acyclic graph (st-
dag) G(V,E) with a single source s and destination t. Nodes
represent switches and edges links; any path from s to t is an
st-path, and all nodes belong to at least one such path.

Each node v ∈ V has a TCAM capacity m(v), i.e., the
maximum number of rules it can store. Let F = f1, . . . , fk
be the rule sets (or “rules”) and P = p1, . . . , pf the selected
st-paths where policies must be enforced. The goal is to place
rules on nodes so that every path in P is covered by all rules
in F , while minimizing TCAM usage and respecting capacity
limits. Redundant placement along the same path is allowed
only when unavoidable due to capacity or path overlap, and
should be minimized.

Problem formulation: Given G(V,E), memory bounds
m(v), rule set F of size k, and path set P , the placement
problem PLACE(G,m,F, P) seeks a mapping of rules to
nodes such that:

1) Resource minimization: total rule placements across all
nodes are minimized;

2) Capacity constraints: no node hosts more than m(v)
rules;

3) Path coverage: every path p ∈ P encounters every rule
f ∈ F at least once.

Let pathsv be the subset of P passing through node v, and
PG the set of all st-paths in G. A path p is covered by rule
f if f is placed on at least one of its nodes. The problem is
infeasible if the shortest path provides fewer slots than rules,
i.e., min(P)×m < k. Even in simple cases (m = 1, k = 1),
PLACE is NP-hard.

C. Rule placement problem with bandwidth constraint

Minimizing bandwidth wastage is essential for efficient
network performance, as bandwidth is consumed along the
links between switches. A practical strategy is to place deny
rules as close to the source as possible [14], allowing early
filtering of unwanted traffic. This prevents unnecessary data
from traversing multiple links, reducing congestion and im-
proving overall bandwidth utilization.

D. Rule placement problem with ordering constraint

Rule ordering is critical in ACL placement to ensure that
specific or high-priority rules are enforced before general ones,
thereby preserving correct filtering and preventing security
breaches. For example, a rule blocking 192.168.1.5/32 must
precede one allowing 192.168.1.0/24 [1]. In SDN, ACLs
may also encode advanced actions such as forward to port,
distinguishing endpoint policies (e.g., access control, QoS)
from routing policies (e.g., forwarding). Endpoint policies
must take precedence-for instance, a port-blocking security
rule should override any routing directive-ensuring both secure
and correct operation [8], [19].

V. DEEP REINFORCEMENT LEARNING APPROACH FOR
RULE PLACEMENT

A. Method overview

Fig. 3: GNN-DQN architecture dedicated to rule placement.

GNN-DRL design. As shown in Fig.3, the RL environment is
the network graph G(V,E). At each time step t, the agent ob-
serves a state st encoding the topology and current placements,

2025 21st International Conference on Network and Service Management (CNSM)

then selects an action at (placing a rule on an uncovered path
in P). States are encoded using a Message Passing Neural
Network (MPNN) [18], which produces node embeddings
µ
(T)
u capturing structural and policy features. These are fed

into a DQN that estimates Q-values from global and local
information, with the action maximizing Q̂(st, at; Θ). After
executing at, the environment updates and returns a reward
rt, enabling the agent to learn optimized placement strategies.
Role of GNNs. Applying DQN directly to graphs is difficult
because input/output dimensions vary with topology. Padding
or resizing introduces inconsistencies, since node roles differ
across graphs, thereby harming generalization. GNNs over-
come this by embedding each node with structural features
reflecting its role in the current graph, enabling accurate,
scalable, and topology-aware rule placement across diverse
instances.
Learning algorithm. Each episode simulates a full interaction
cycle between the agent and the environment, starting with a
graph sampled from dataset S, initializing features, and pro-
ceeding through message passing to compute states. Actions
are chosen via ϵ-greedy exploration, while rewards iteratively
update Q-values toward the optimal policy. An episode ends
when all paths in P are covered (donet = True) or the
step limit (MaxTry) is reached. Generalization is evaluated
by periodically testing the agent on unseen validation graphs
every valfreq episodes.

B. Agent state, action, and reward overviews

State: A state encodes the current rule distribution over
G(V,E). Each node v is associated with k feature vectors
x1
v, . . . , x

k
v , one per rule fi, where:

xi
v[1] Node degree (number of incident edges);

xi
v[2] Boolean: whether fi is installed on v;

xi
v[3] Number of paths through v that include fi;

xi
v[4] Number of paths through v that exclude fi;

xi
v[5] Remaining capacity of v (available memory);

xi
v[6] Boolean: whether v belongs to any path in P .

Local features (xi
v[2], x

i
v[5], x

i
v[6]) assess action validity,

while global features (xi
v[1], x

i
v[3], x

i
v[4]) guide selection by

reflecting structure and episode context.
Action: In our placement problem, an action a(v, fi) installs
rule fi on node v and is classified as valid, redundant, or
invalid. It is redundant if all paths through v already contain
fi, and invalid if v is the source/destination, lacks memory,
already hosts fi, or is not on any path in P . An action is
valid when neither redundant nor invalid, i.e., installing fi on
v respects constraints and covers new paths.
Reward: The goal is to cover all paths in P while minimizing
memory usage. Installing fi on v yields:

reward(a(v, fi)) =

{
−penalty if a(v, fi) is invalid or redundant,
pathsv,fi − occ otherwise.

where pathsv,fi ∈ [0, 1] is the ratio of newly covered paths
through v, and occ ∈ [0, 1] is memory occupancy, i.e., installed
rules divided by total capacity (participating nodes × m).

To handle the bandwidth constraint-placing deny rules close
to the source s- the reward for valid actions is extended to:
pathsv,fi − occ− dists,v,fi .
where

dists,v,fi =
1

|pathsv|
∑

p∈pathsv

||pi||
||p||

and pi being the prefix of p from s to the first node containing
fi. Since packets are processed at the first switch where fi
appears, only this occurrence is considered. The prefix length
||pi|| is normalized by ||p||, and dists,v,fi is the average across
all paths in P containing v.

C. Ordering algorithm

To enforce ordering constraints, we keep the same state,
action, and reward definitions but adjust validity conditions.
For two rules fi and fj with fi prioritized, a(v, fi) is valid
only if fj is not placed before v on any path in pathsv , and
a(v, fj) only if fi is not placed after v. This induces non-
Markovian behavior, since validity depends on prior actions,
violating the Markov property. We address this with a two-
phase strategy: the DQN agent first solves the base problem,
then a post-processing phase adjusts placements to respect
priorities.

Given a solution S from PLACE(G,m,F, P), we define a
pivot set S: the minimal set of nodes containing all placements
of a rule. We compute shortest-path distances from s to
S and from S to t. If d(S, t) × m ≥ |F | − 1, a virtual
source s′ is connected to S, high-priority rules are placed on
the pivot, and DQN handles remaining rules downstream. If
d(s,S) × m ≥ |F | − 1, a virtual destination t′ is created
after the pivot, low-priority rules are placed on S, and DQN
handles remaining rules upstream. If neither holds, a larger
pivot is selected. This procedure guarantees that rule priorities
are preserved whenever the algorithm completes successfully.

VI. EXPERIMENTS SETUP

We applied the GNN-DQN algorithm (Algorithm V-A) to
the rule placement problem, training on graphs generated by
our tool [16] emulating Internet Topology Zoo topologies [20].
Baselines include Palette [2], st-mincut [15], Raptor [8], and
Raptor++ for bandwidth constraints [14]. Experiments were
implemented in Python and run on a GPU server with an
Intel Xeon Gold 6258R, 503GB RAM, and an NVIDIA RTX
A6000 (CUDA 12.1) under Ubuntu 22.04.

Performance is evaluated with three metrics: Occupancy,
percentage of switch memory used; Success Rate, valid place-
ments on unseen graphs; and dist, which measures the average
distance of rules from the source s over all paths in P ,
extended to the average across k rules. This third metric
assesses the solution quality of the placement problem with
the bandwidth constraint.

Training uses γ = 0.8, a learning rate of 10−5, mini-batches
of 32, and a −10 penalty for invalid or redundant actions.
We run 2 episodes per graph, update the target network every
1000 steps, validate every 50 episodes, and use three layers of
message passing (T = 3) in the GNN

2025 21st International Conference on Network and Service Management (CNSM)

(a) Occupancy distribution with graphs of size 10 (b) Occupancy distribution with graphs of size 20

Fig. 4: Occupancy distribution of the four approaches across four graph sizes with varying cv.

VII. RESULTS AND DISCUSSION

We generated 1,000 training, 200 validation, and 500 testing
instances across graph sizes of 10–25 nodes. The coverage
ratio cv ∈ [0, 1] determines the fraction of st-paths selected for
policy enforcement (|P | = |PG| × cv). From this, |P | paths
are randomly selected. Models were trained once at cv = 0.5
with a fixed number of rules (3 for sizes 10 and 15, 4 for sizes
20 and 25) and evaluated on unseen graphs with varying cv.
Due to space limits, we report representative results; additional
findings will appear in an extended version.

A. Placement results with underutilized capacity

We evaluated the method on unseen graphs of sizes 10–25
with varying cv from 25–90%. Higher cv values increase the
number of selected paths in P , altering the graph structure.
The number of rules was fixed to half the slots of the shortest
path (3 rules for sizes 10 and 15, and 4 for sizes 20 and 25).
Comparisons were made against Palette, Raptor, and st-mincut.

Figures 4a and 4b show occupancy distributions for graph
sizes 10 and 20. Occupancy grows with cv since more paths
require coverage. Raptor and st-mincut achieve the lowest
occupancy, followed by Palette. For GNN-DQN, occupancy
is comparable on smaller graphs and tends to be higher
on larger graphs, reflecting the increased number of paths
and placement decisions. This is expected: heuristics apply
predefined strategies that quickly identify effective placements,
whereas GNN-DQN relies on exploration and is more sensitive
to hyperparameters. Despite this, GNN-DQN generalizes well.
Trained once at cv = 50%, it achieved over 95% success
across all graph sizes and cv values. Figure 5 shows that GNN-
DQN maintains high success rates on larger graphs (e.g., size
25), while Raptor declines with higher coverage. To further
assess scalability, we tested graphs of sizes 30 and 40 (30
samples each, cv = 25%). As reported in Table II, Raptor
failed, whereas GNN-DQN produced feasible placements.
Conclusion: ILP-based methods fail to scale as graph size
increases. In contrast, GNN-DQN, without retraining, adapts
to larger graphs and consistently generates valid placements.

Fig. 5: Success rates of Raptor and GNN-DQN on 500 size-25
graphs with varying cv.

Graph size-rules Avg. paths GNN-DQN Palette st-mincut Raptor
30-5 408 74 32 26 -
40-7 930 80.64 20.97 20.97 -

TABLE II: Average occupancy of four algorithms on 30 graphs
per size (cv = 25%).

B. Placement results at near maximum capacity

We further evaluated GNN-DQN under stricter constraints
by increasing the number of rules to near the available slots
in the shortest path (|F | = (min(P)×m)− 1), leaving little
placement flexibility.

Graph size-rules Avg. paths GNN-DQN Palette st-mincut Raptor
10-5 9.552 71.79 ± 8.6 61.31 ± 11.15 59.59 ± 10.21 57.25 ± 10.96
15-5 55.892 72.14 ± 8.85 53.82 ± 9.95 50.44 ± 8.26 44.85 ± 8.64
20-7 27.45 76.02 ± 7.26 56.72 ± 9.48 53.7 ± 8.48 47.35 ± 9.06

TABLE III: Average occupancy of four algorithms with |F | =
(min(P)×m)− 1 at cv = 50%.

Table III shows average occupancy at cv = 50%: Raptor
performs best, followed by st-mincut and Palette, while GNN-
DQN yields higher occupancy due to exploration and problem
difficulty. Nevertheless, Fig. 6 shows that GNN-DQN achieves

2025 21st International Conference on Network and Service Management (CNSM)

a higher success rate than Palette, demonstrating robustness
under capacity limits.

These results reflect two factors: the sensitivity of GNN-
DQN to hyperparameter tuning and the simplicity of the
placement problem under a single constraint. Adding rules
did not increase problem complexity but required more global
and strategic placement. As rule counts approach capacity,
algorithms must anticipate future placements to avoid blocking
solutions. Palette installs rules incrementally by prioritizing
high-coverage junction nodes. However, as these nodes get
saturated, it struggles to complete all paths, lowering its suc-
cess rate. In contrast, GNN-DQN leverages long-term rewards
and a global view to learn strategies that better handle such
constrained settings and anticipate future limitations.
Conclusion: Heuristic methods perform worse in constrained
scenarios requiring global awareness, while GNN-DQN main-
tains superior success without retraining.

Fig. 6: Success rate of GNN-DQN vs. Palette with |F | =
(min(P)×m)− 1 and cv = 50%.

C. Placement results with a bandwidth constraint

We further evaluated GNN-DQN under a multi-constrained
setting by adding the bandwidth constraint that minimizes the
distance between the source and rule placements. Four models
(graph sizes 10–25) were trained with |F | = 0.5× (min(P)×
m) using the same graphs as before. As deny-rule placement
was not fixed, all rules were optimized for proximity to the
source. Heuristic methods such as Palette and st-mincut could
not be adapted to this constraint, as they are tailored to
specific objectives and require redesign to handle new ones,
while GNN-DQN and Raptor++ (an ILP-based extension with
distance minimization) were evaluated.

GNN-DQN Raptor++
Graph size-rules Avg. occ(%) Avg. time(s) Avg. dist(link) Avg. Occ(%) Avg. Time(s) Avg. dist(link)

10-3 40.65 0.0147 2.24 43.49 0.0241 1.352
15-3 35.76 0.0247 2.51 31.51 0.0898 1.33
20-4 34.27 0.0566 2.95 31.37 0.1549 1.51
25-4 36.24 0.0701 2.96 25.55 0.1231 1.508

TABLE IV: Performance of GNN-DQN and Raptor++ on
placement with bandwidth constraint (cv = 50%).

Table IV reports average occupancy, execution time, and
distance across 500 unseen graphs at cv = 50%. GNN-DQN
was consistently faster than Raptor++, achieved lower occu-
pancy on small graphs, and comparable results on larger ones.

Raptor++ obtained shorter distances by greedily filling nodes
close to the source. In contrast, GNN-DQN balances multiple
objectives via its reward function (see Section V-B), promoting
path coverage, occupancy reduction, and proximity to the
source. By selecting junction nodes close to the source that
cover all paths in P , it optimizes trade-offs among competing
goals. Figure 7 shows that GNN-DQN achieves higher success
rates than Raptor++, demonstrating scalability and flexibility
in handling complex, multi-objective placement problems on
unseen topologies, with similar results at cv = 25%.
Conclusion: Heuristics lack flexibility since even minor
changes to objectives require redesign. ILP-based approaches
can adapt when constraints are linear but suffer from poor
scalability. In contrast, GNN-DQN incorporates new objectives
directly into the reward function, achieving superior flexibility,
scalability, and success rates.

Fig. 7: Success rates of GNN-DQN vs. Raptor++ under
bandwidth constraint and cv = 50%.

D. Practical considerations and discussion

The above experiments under various constraints were re-
peated on five real-world topologies from the Internet Topol-
ogy Zoo dataset [20], yielding consistent results.
Mininet emulation. We emulated the topology in Fig. 1
using Mininet with a RYU controller pre-installing rules.
Each switch had TCAM capacity m = 2, and forwarding
paths were P = Path 2,Path 3, [s, a, b, d, g, t], [s, c, d, e, t].
The initial ACL, derived from an enterprise firewall, was split
into five sets: f1 Ingress Filtering, f2 Transport/Port Filtering,
f3 Context-Aware Filtering, f4 Reverse Path Protection, and
f5 Last Switch Enforcement. Custom traffic was generated
to match each rule, and evaluation used (i) path coverage
(percentage of rules on all paths) and (ii) correctness (allowed
packets delivered, denied packets dropped). Since unmatched
packets are dropped by default, correctness is determined
solely by false negatives-allowed packets being dropped.
Palette placed only four rule sets (f1:[d], f2:[d], f3:[c,g],
f4:[c,g]), yielding 80% coverage and variable correctness
(f1:66%, f2:56%, f3:92.7%, f4:88%, f5:97.3%). In contrast,
GNN-DQN placed all sets (f1:[d], f2:[c,e], f3:[c,g], f4:[g,e],
f5:[d]), achieving 100% coverage and correctness.
Discussion. This work does not aim to surpass ILP-based or
heuristic approaches in solution quality (e.g., rule occupancy),
as GNN-DQN is a neural approximator meant to emulate their

2025 21st International Conference on Network and Service Management (CNSM)

Placement with Underutilized capacity
|F | = 0.5×min(P)×m

Near maximum capacity
|F | = min(P)×m− 1

Bandwidth constraint Ordering constraint

Graph parameters size ≤ 15 density ≥ 0.5 size ≥ 20 size ≤ 15 density ≥ 0.5 size ≥ 20 size ≤ 15 density ≥ 0.5 size ≥ 20
Palette + + + + - - - - - +

st-mincut + + + + - + - - - +
Raptor + + - + - - + - - +

GNN-DQN + + + + + + + + + +

TABLE V: Summary of algorithm strengths and weaknesses across placement setups and constraints.

behavior; rather, it highlights the distinctive strengths of the
GNN-DQN framework across diverse deployment scenarios.
Scalability: GNN-DQN scales to large topologies where ILP-
based methods (Raptor, Raptor++) fail due to exponential
growth in decision variables.
Generalization ability and robustness: Trained once, the
agent generalized to 500 unseen graphs of varying size,
density, path configurations, and rule counts, achieving a 95%
success rate with 0.14s inference time.
Adaptability and Flexibility: Heuristics such as st-mincut
and Palette, limited by greedy local optimization, fail under
strict constraints, while GNN-DQN leverages a global view to
maintain high success. In multi-constrained settings, heuristics
require reformulation and ILPs become infeasible (17% suc-
cess), whereas GNN-DQN integrates new constraints directly
into the reward function, sustaining strong performance (99%).
Table V consolidates all results. In summary, while ILP-based
approaches suffer from scalability issues, and heuristics lack
flexibility, GNN-DQN offers a versatile, generalizable, and
robust solution for ACL rule placement in complex, dynamic
network environments.

VIII. CONCLUSIONS & FUTURE WORK

We proposed a GNN-DQN approach for ACL rule place-
ment that combines graph embeddings with deep Q-learning
to generalize across diverse topologies. Experiments against
Palette [2], Raptor [8], and Raptor++ [14] showed superior
scalability, flexibility, and adaptability under constraints such
as rule ordering, prioritization, and bandwidth minimization.
These results demonstrate the method’s suitability for real
deployments. As future work, we plan to extend the approach
to continuous action spaces to further enhance generalization
and scalability.

ACKNOWLEDGMENTS

This work is supported by a CIFRE convention between the
ANRT (National Association of Research and Technology) and
the company NUMERYX Technologies.

REFERENCES

[1] Ahmad Abboud, Rémi Garcia, Abdelkader Lahmadi, Michaël Rusinow-
itch, and Adel Bouhoula. Efficient distribution of security policy filtering
rules in software defined networks. In Proceedings IEEE NCA, 2020.

[2] Yossi Kanizo, David Hay, and Isaac Keslassy. Palette: Distributing tables
in software-defined networks. In Proceedings IEEE INFOCOM, 2013.

[3] Changhun Jung, Sian Kim, Rhongho Jang, David Mohaisen, and Dae-
Hun Nyang. A scalable and dynamic acl system for in-network defense.
In Proceedings of the 2022 ACM SIGSAC Conference on Computer and
Communications Security, 2022.

[4] Curtis Yu, Cristian Lumezanu, Harsha V Madhyastha, and Guofei
Jiang. Characterizing rule compression mechanisms in software-defined
networks. In Passive and Active Measurement (PAM): 17th International
Conference,Heraklion, Greece, March 31-April 1. Springer, 2016.

[5] Ankur Mudgal, Abhishek Verma, Munesh Singh, Kshira Sagar Sahoo,
Erik Elmroth, and Monowar Bhuyan. Flora: Flow table low-rate overflow
reconnaissance and detection in sdn. IEEE Transactions on Network and
Service Management, 2024.

[6] Chad R Meiners, Alex X Liu, and Eric Torng. Bit weaving: A non-
prefix approach to compressing packet classifiers in TCAMs. IEEE/ACM
Transactions on Networking, 2011.

[7] Masoud Moshref, Minlan Yu, Abhishek Sharma, and Ramesh Govindan.
Scalable rule management for data centers. In 10th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 13), 2013.

[8] Pravein Govindan Kannan, Mun Choon Chan, Richard TB Ma, and Ee-
Chien Chang. Raptor: Scalable rule placement over multiple path in
software defined networks. In 2017 IFIP Networking Conference (IFIP
Networking) and Workshops. IEEE, 2017.

[9] Shuyuan Zhang, Franjo Ivancic, Cristian Lumezanu, Yifei Yuan, Aarti
Gupta, and Sharad Malik. An adaptable rule placement for software-
defined networks. In 2014 44th annual IEEE/IFIP international confer-
ence on dependable systems and networks. IEEE, 2014.

[10] Kalapriya Kannan and Subhasis Banerjee. Compact tcam: Flow entry
compaction in tcam for power aware sdn. In International conference
on distributed computing and networking. Springer, 2013.

[11] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu,
Joel Veness, Marc G Bellemare, Alex Graves, Martin Riedmiller, An-
dreas K Fidjeland, Georg Ostrovski, et al. Human-level control through
deep reinforcement learning. Nature, 2015.

[12] Daniele Bringhenti, Guido Marchetto, Riccardo Sisto, Fulvio Valenza,
and Jalolliddin Yusupov. Automated firewall configuration in virtual
networks. IEEE Transactions on Dependable and Secure Computing,
2022.

[13] Haifeng Sun, Xingjian Liao, Jingyu Wang, Qi Qi, Zirui Zhuang, Jianxin
Liao, and Dapeng Oliver Wu. Fast and scalable acl policy solving
under complex constraints with graph neural networks. IEEE/ACM
Transactions on Networking, 2024.

[14] Yu-Wei Chang and Tsung-Nan Lin. An efficient dynamic rule placement
for distributed firewall in SDN. In IEEE Global Communications
Conference. IEEE, 2020.

[15] Wafik Zahwa, Abdelkader Lahmadi, Michael Rusinowitch, and Mondher
Ayadi. Automated placement of in-network ACL rules. In 2023 IEEE
9th International Conference on Network Softwarization (NetSoft), 2023.

[16] Wafik Zahwa, Abdelkader Lahmadi, Michael Rusinowitch, and Mondher
Ayadi. In-network ACL rules placement using deep reinforcement
learning. In 2024 IEEE International Mediterranean Conference on
Communications and Networking (MeditCom). IEEE, 2024.

[17] Manuel Jiménez-Lázaro, Javier Berrocal, and Jaime Galán-Jiménez.
Deep reinforcement learning based method for the rule placement
problem in software-defined networks. In NOMS, IEEE/IFIP Network
Operations and Management Symposium. IEEE, 2022.

[18] Thomas Barrett, William Clements, Jakob Foerster, and Alex Lvovsky.
Exploratory combinatorial optimization with reinforcement learning. In
Proceedings of the AAAI Conference on Artificial Intelligence, 2020.

[19] Nanxi Kang, Zhenming Liu, Jennifer Rexford, and David Walker. Op-
timizing the” one big switch” abstraction in software-defined networks.
In Proceedings of the ninth ACM Conference on Emerging Networking
Experiments and Technologies, 2013.

[20] Simon Knight, Hung X Nguyen, Nickolas Falkner, Rhys Bowden, and
Matthew Roughan. The internet topology zoo. IEEE Journal on Selected
Areas in Communications, 2011.

2025 21st International Conference on Network and Service Management (CNSM)

