2025 21st International Conference on Network and Service Management (CNSM)

Exploratory Performance Evaluation of VM
Migration as MQTT Moving Target Defense

Matheus Torquato*, Tiago Cruz*, Denis Rosariot, Michele Nogueira$, Eduardo Cerqueirat
*University of Coimbra, CISUC/LASI, DEI, Coimbra, Portugal
Federal Institute of Alagoas, Campus Arapiraca, Arapiraca, Brazil
fFederal University of Pard, Belém, Brazil
§Department of Computer Science - Federal University of Minas Gerais, Brazil
{mtorquato, tjcruz} @dei.uc.pt*, matheus.torquato@ifal.edu.br!, {denis, cerqueira} @ufpa.brt, michele @dcc.ufmg.br}

Abstract—The Message Queuing Telemetry Transport (MQTT)
protocol is a cornerstone of IoT communications. It relies
on service brokers to enable reliable data delivery between
devices and clients. In modern deployments, MQTT brokers are
frequently hosted in virtualized environments to support scala-
bility, flexibility, and resource efficiency. However, virtualization
enlarges the attack surface, posing challenges to service reliability
and security. This paper investigates the use of Virtual Machine
(VM) migration as a Moving Target Defense (MTD) to enhance
security in MQTT-based IoT services. While VM migration is
an established technique in network and service management for
workload balancing and fault tolerance, its impact, when used as
a proactive security mechanism in MQTT deployments, remains
unexplored. This work shows a comprehensive performance
evaluation of VM migration under both normal and active attack
scenarios. The results demonstrate that the security benefits of
VM migration come with minimal performance degradation,
characterized by a modest effect size (Cohen D measure<(.5),
thus ensuring service continuity and operational stability. How-
ever, it comes with a cost of increased performance oscillation
(i.e., higher incidences of peaks in the response time). This
paper also introduces an interactive, web-based tool that enables
pre-deployment MTD simulation. This work offers insights into
integrating security-aware VM migration within IoT service
management.

Index Terms—VM migration, MQTT, Moving Target Defense,
Internet of Things, Performance Evaluation

I. INTRODUCTION

The Message Queuing Telemetry Transport (MQTT) pro-
tocol [1] is one of the most widely adopted communication
standards in the Internet of Things (IoT) ecosystem. It operates
on a publish-subscribe model, where a central broker is
responsible for managing and forwarding messages between
clients, such as sensors and data consumers. In order to support

This research was conducted within the framework of the SATERA project,
being funded by the SESAR 3 Joint Undertaking (JU) under grant agreement
No 101164313. The JU is supported by the European Union’s Horizon
Europe research and innovation programme, as well as by the SESAR 3
JU members other than the Union. This research was also supported by the
INCT of Intelligent Communications Networks and the Internet of Things
(ICoNIoT) funded by CNPq (proc. 405940/2022-0), Coordenacio de
Aperfeicoamento de Pessoal de Nivel Superior — Brasil (CAPES) Finance
Code 88887.954253/2024-00, and by CISUC/LASI, through national
funds by FCT - Fundag@o para a Ciéncia e a Tecnologia, I.P., in the framework
of the Project UIDB/00326/2025 and UIDP/00326/2025.

978-3-903176-75-1 ©2025 IFIP

scalability and reliability, MQTT brokers are often deployed in
cloud-based, virtualized environments. However, this reliance
on virtualization also enlarges the attack surface, exposing
brokers to potential threats stemming from vulnerabilities in
the underlying infrastructure.

A previous attempt to tackle this problem [2] followed the
execution throttling (ET) approach. It limits the attacker’s
available resources to undermine attack progress. Prior re-
search also has explored the use of Virtual Machine (VM)
migration as a defensive mechanism to enable Moving Target
Defense (MTD) strategies in virtualized environments [3].
However, there is a lack of analysis on how VM migration
affects service performance both under normal operating con-
ditions and during full-scale attack scenarios, where no safe
or unaffected resources are available for migration.

This context motivates the investigation to understand the
central research question (RQ): What is the performance
impact in adopting VM migration as a defensive mechanism
Jor MQTT brokers? Hence, this paper presents a comprehen-
sive experimental study with three scenarios: (i) measuring
migration-induced downtime, (ii) assessing performance im-
pacts in an attack-free environment, and (iii) analyzing system
behavior under a full-scale attack, where all physical resources
are targeted. The attack model is based on Memory Denial of
Service (memDoS) [4] (Section II-B provides more details).

The contributions of this paper are the following:

o The first and more straightforward is the assessment of
managing VM migration-based MTD to MQTT perfor-
mance, with a distinguishing aspect: under a full-scale
memDoS attacks — a serious threat in constrained envi-
ronments where attackers leverage co-location strategies
to intensify the attack.

e The second contribution is the evaluation of VM migra-
tion downtime using a purpose-built, open-source moni-
toring tool', with results indicating consistent system
downtime levels regardless of attacker presence.

¢ As a third contribution, we provide a readily available
web-based tool? for custom evaluations.

Thttps://github.com/matheustor4/MigrationDowntime Analysis
Zhttps://github.com/matheustor4/webAppPerfEvaluation2

2025 21st International Conference on Network and Service Management (CNSM)

This paper proceeds as follows. Section II details the exper-
imental setup. Section III documents the experimental results
and analysis, highlighting the key takeaway points. Section IV
provides an overview of the related works. Section V discusses
some threats to validity and approaches for their mitigation.
Section VI shows the web app details to simulate the attack-
defense scenario. Section VII closes the paper, presenting
conclusions and possible future research directions.

II. EXPERIMENTAL SETUP

This section presents the details of the testbed used for ex-
perimentation and has three subsections. Section II-A presents
the architecture components and their configuration. Sec-
tion II-B presents the details of the cybersecurity attack
used in the experiments. Section II-C explains the adopted
experimental approach for each studied scenario.

A. System architecture

The experimental setup architecture (see Figure 1) has
five components, namely: 1) STRESSER - External machine
generating the MQTT workload for the VICTIM VM; 2) HOST
A - Primary VM physical host; 3) HOST B - Secondary VM
physical host (bear in mind that VMs can migrate back and
forth between HOSTS A and B); 4) VICTIM VM - VM running
the MQTT broker service; and 5) ATTACKER VM (1,2) -
Attacker VMs conducting memDoS against HOSTS A and B.
Table I presents the host configurations.

WM migration

Attacke
W 2

Stresser

Host A Host B

Fig. 1: System architecture - Environment used for the experiments

TABLE I: Host configuration summary

Host Hardware 0OS/Config
Stresser Intel Xeon E5-2620 2.0GHz Linux Fedora 6.10.8-100 with MQTT
16 GB RAM benchmark tool [5].
Host A Intel Xeon E5-2620 2.0GHz Ubuntu Server 20.()4A6A, kernel
16 GB RAM 5.4.0-195, KVM hypervisor 4.2.1
Host B Intel Core 17-9700 3.0GHz Ubuntu Server 20.04.6, kernel
16 GB of RAM 5.4.0-195, KVM hypervisor 4.2.1

Additionally, the ATTACKER and VICTIM VMS are hosted
on a Kernel Virtual Machine (KVM) hypervisor, with equal
setups - single core vCPU and 3 GB of RAM with Ubuntu
Server 20.04.2, kernel 5.4.0-190. The ATTACKER VMS run
the Memory Denial of Service (memDoS) attacks (source
available at [4]), and the VICTIM VM runs the Mosquitto
MQTT Broker [6] version 1.6.9, with protocol version 3.1.1.

Connectivity is provided by a TP-link TL-SG105 GbE Switch.
We implement a python client-server script for VM migration
downtime monitoring. The script consists of an User Datagram
Protocol (UDP) client sending requests for the VM under
migration. Then, we collect the fimeout messages for proper
downtime measurement.

B. Attack model

The ATTACKER VM is running the memDoS attack [4],
which overloads the internal VM memory. Due to isolation
issues, the attack affects the VMs inside the same physical
host (i.e., co-resident VMs) — this way, the attacker aims to
produce a denial of service effect on VMs that are co-located
with the ATTACKER VMS. In this case, we consider that, while
under attack, both ATTACKER VMS are running the attack
simultaneously.

The previous works applied VM migration to defend against
memDoS [7], [8]. However, the VM migration was assumed to
always arrive at an attacker-free host destination. In this paper,
the approach is different since it is assumed that no safe places
for migration exist while the system is under attack (i.e., full-
scale attack). Since the VM migration MTD-based has already
been evaluated as a defensive mechanism, the idea is to shift
the focus to its potential performance impact under a worst-
case scenario, shedding light on the pros and cons of adopting
this approach for MQTT virtualized systems.

C. Experiment design

The evaluation follows a set of experiments with four dif-
ferent scenarios. Scenario #1) No mig + No attack (NMNA)
- This first scenario is the baseline scenario, that establishes
what are the expected levels of MQTT broker performance
without interference. Scenario #2) Mig + no attack (YMNA)
- In this second scenario, the VICTIM VM is continuously
migrating back-and-forth between HOST A and HOST B.
Both ATTACKER VMS are running but idle. Scenario #3)
No mig + attack (NMYA) - VICTIM VM stays at HOST
A without migration and under ATTACKER VM memDoS.
Scenario #4) Mig + Attack (YMYA) - VICTIM VM migration
between HOST A and HOST B. In this last scenario, both
ATTACKER VMS are running the memDoS attack. At least 30
measurements were performed for each scenario.

The metric of interest in the experimentation is the mean
per-message Round-Trip Time latency (i.e., time to send and
receive a reply from an MQTT broker), which will be referred
to as “response time” in the following sections for simplicity.
The previous capacity planning [2] suggested that the proper
(i.e., workload our system can respond with stable perfor-
mance) MQTT workload is 100 clients publishing messages of
1500 bytes each. The comprehensive set of scenarios presented
above provides a complete picture of the impact of VM
migration in an MQTT attack-defense setup.

III. RESULTS AND ANALYSIS

This section presents and discusses the results for VM
migration downtime (Section III-A) and the performance eva-
luation of the MQTT broker (Section III-B).

2025 21st International Conference on Network and Service Management (CNSM)

A. VM migration downtime

The analysis of VM migration downtime is a recurrent
subject in the literature [9], [10], with the majority of the
research in the field being focused on minimizing system
downtime during migration or evaluating it under different
circumstances. Unlike these, the experiment hereby discussed
aims to evaluate VM migration downtime while the technique
is applied as MTD against a host-based attack. For measure-
ment purposes, a custom VM migration downtime monitor!
was implemented in Python. It consists of a lightweight User
Datagram Protocol (UDP)-based client-server application in
which the client requests the time from the server in an infinite
loop, capturing timeout errors to detect possible interruptions
in server activity.

As mentioned, the scope of the attack from the ATTACKER
VMS is limited to the internal state of HOST A and HOST B.
The network is not a target of the considered attack. Indeed,
the traffic generated between the STRESSER and the VICTIM
VM is due to the MQTT benchmark and VM migration
downtime monitor. Two rounds of 30 VM migration operations
were executed for each scenario: under attack (Attack) and
without attack (Id1le). Figure 2 presents a box plot comparing
both scenarios, with Table II presenting the numerical results.

0. 60
0. 50
0. 40
0.30
0. 20
0.10
0. 00

°

——

ETdle WAttack

Time (sec)

Fig. 2: VM migration downtime analysis boxplot. The blue box
represents the results from the idle state (i.e., without attack) and
the red box are the results from the experiment under attack.

TABLE II: Results of VM migration downtime experiment

Experiment | Mean (sec) | Standard deviation (sec)
Idle 0.417191 0.077689
Attack 0.380208 0.064294

The results suggest that there is no statistically significant
difference in the VM migration downtime due to the
memDoS attack, with the Mann-Whitney U test (i.e., one
of the samples does not follow normality) failing to reject
the null hypothesis (p-value of 0.1268), meaning there is no
statistically significant difference between the samples. Thus,
although VM migration affects system availability, the results
suggest that the observed downtime does not seem to vary
regardless of whether the system is under memDoS attack.

B. MQTT performance evaluation

The MQTT performance evaluation results are into three
groups: (1) Without Attack (i.e., Scenarios #1 and #2), (2)
With Attack (Scenarios #3 and #4), and (3) Delay violation
analysis. There is a brief discussion at the end of this section.

1) Without attack - VM migration impact in absence of attack

The tests undertaken for this scenario aim at assessing the
performance impact due to VM migration in our considered
MQTT environment, thus establishing a comparison baseline
for applying VM migration in an attacker-free environ-
ment. It is important to note that VM migration can also be
triggered by other factors, such as preventive maintenance or
server consolidation (i.e., packing VMs onto fewer physical
machines to reduce power consumption). Time-based VM
migration policies have also been proposed as a defense
mechanism against zero-day attacks [11]. Therefore, gaining
a deeper understanding of the impact of VM migration in
an attacker-free MQTT environment is essential for informed
deployment and operational planning.

Fig. 3 presents the result comparison for Scenario #1 (No
mig + No attack) and Scenario #2 (Mig + No attack). The
continuous line corresponds to the mean message time, the
dotted line to the minimum message time, and the dashed line
to the maximum message time. The X-axis corresponds to the
collected measurements over time.

As expected, there is a disturbance in MQTT performance
while the system is under continuous VM migration. The plots
on Fig. 3 show that the mean and minimum values for both
experiments (i.e., No Mig + No attack and Mig + No attack)
are similar. However, the maximum value in No Mig + No
attack experiment is below 40 ms, while the same value in Mig
+ No attack experiments peaks at 1555 ms. It suggests that,
although the system experiences heavy oscillations during the
continuous VM migration operations, it manages to roughly
preserve a mean message time close to the baseline (i.e., No
mig + No attack) conditions. Therefore, the maximum value
peaks in Mig + No attack results seem to be outliers, as the
mean values remain at levels similar to the baseline.

Fig. 4 presents a box plot comparison of the mean message
time for both experiments to illustrate the disturbance effects
better. It also contains a table with the mean and standard
deviation of the two samples and the Cohen D effect size®. The
obtained value was 0.32, suggesting that the VM migration
produces only a modest effect* in the expected normal (i.e.,
baseline) results.

2) Under attack - VM migration impact in presence of attack

While previous studies [3] have already demonstrated VM
migration-based MTD effectiveness, the scenario assumes that
a large-scale resource exhaustion attack (specifically, a mem-
DoS) aiming at overloading the system is taking place. The
tests undertaken for this scenario aim at evaluating the VM
migration-induced performance impact in the MQTT envi-
ronment under a memDoS attack. The goal lies in assessing
if the system endures the combined attack and VM migration
loads without experiencing a complete crash or failure. It
also evaluates the resulting performance degradation in a VM-
hosted MQTT system. This is relevant as VM migration —

3This is a measure of the relationship between two variables [12].

4The usual limits for the Cohen D effect size are: small (d = 0.2), modest
(d = 0.5), large (d = 0.8), very large (d = 1.20), and huge (d = 2.0)

2025 21st International Conference on Network and Service Management (CNSM)

No Mig + No attack Mig + No attack T;mming inr 2000 [)
ne area o
. 40 mllo i i [(] i " interest 1000 |||
=] aod ar 2 'Y - el
P VU R VA y MY N i TR vy
~ 20 W\/.V—\ 20 v = =)Maximum () "o . 2
.% ==l\lcan 10 20 30
=) ST T PPN oot --’-:‘M 0 ORI A K P RIS POR T LN eeeoMinimum Complete results of
0 10 20 30 0 10 20 30 Maximum Message Time
Experiment time Experiment time (Mig + No Attack)

Fig. 3: Experiment results - Without attack Scenarios. The leftmost plot shows the results from the experiment without attack and migration.
The middle plot presents a zoomed section of the rightmost plot with the data of interest for comparison. The rightmost plot presents the

complete results of the maximum message time.

30 Mig + No Mig +
No Attack No Attack
25
E T Mean
= 20 —f— 15. 4195 16. 5369
15 = .
® < Standard deviation
g
=
= 10 l 4. 5029 1. 8185
5 = Mig+NoAttack Cohen D effect size
0 =NoMigtNoAttack 0. 3254

Fig. 4: Experiment results - Without attack Scenarios. The box plot
presents the comparison between the results of both experiments. The
table summarizes the desired statistics.

even in live mode [13] — that introduces a non-negligible
resource overhead [14], which can aggravate the system strain
during an ongoing attack. Fig. 5 shows the results.

The obtained results reveal unstable performance in both
experiments. As with the baseline tests, comparing the mean
values of experiments with and without VM migration does not
capture the whole picture — however, the migration scenario
produces significantly higher outliers (1614 ms with migration
vs. 127 ms without migration). Fig. 6 presents a box plot of the
mean message time for both experiments. Fig. 6 also presents
the mean, standard deviation, and Cohen D effect size.

Overall, the results are similar to those of the previous
experiment, indicating that VM migration imposes a modest
overhead on a system already under attack. This finding
complements prior research [8] — now incorporating scenarios
of VM migration-based MTD in the context of an ongoing full-
scale memDoS attack. Indeed, Mann-Whitney U Test® results
in a p — value of 0.189, indicating that the results there are
no statistical differences between the two samples.

3) Delay Violation - Impact in a hypothetical application

The results presented provide a general aspect of the impact
of VM migration in the mean response time. They highlight
only a modest effect in the expected values. However, bringing
additional context to enrich the proposed analysis is essential.
For example, there are MQTT applications that have strict
deadlines. Such cases highlight the maximum response time
to verify possible acceptable delay violations.

SUsed because one of the samples is not normally distributed

For this illustrative analysis scenario, let us consider an
MQTT healthcare application. For this hypothetical scenario,
suppose that the maximum allowed delay is 100 ms (arbitrarily
defined, albeit based on [15]). From the result distribution, the
maximum response time measurements made in each scenario
are above the predefined acceptable delay. Fig. 7 presents a
histogram for all four scenarios. The red dashed line represents
the 100 ms threshold.

VM migration imposes heavy performance oscillations that
lead the maximum values to surpass the predefined threshold.
The results show that the scenarios with VM migration (prefix
YM) have significant delay violations. We also computed the
proportion of violations in each scenario for a better decision-
making process. For that purpose, it bootstraped® the data to
ensure fair comparison (see Table III).

TABLE III: Proportion of delay violations in each scenario

Scenario Estimated Proportion

[95% CI - Mean 95% CI +]
NMNA 0.0% 0.4% 0.7%
NMYA 16.0% 28.0% 40.0%
YMNA 29.2% 41.7 % 54.2%
YMYA 67.7% 80.6 % 93.5%

The presented results highlight that VM migration induces
a higher incidence of response time peaks when compared to
migration-less scenarios. Indeed, the migration itself (YMNA)
brings heavier oscillation when compared with the attack itself
(NMYA). Although VM migration has a protective effect, as
demonstrated in the previous case study and prior work [8],
its use in time-sensitive domains requires special caution.

C. Takeaways

The analysis of the results presented in the previous section
yields several key takeaways, which are next outlined.

VM migration downtime does not present substantial
variation due to memDoS ongoing attack: We noticed that
when the VM is under an indirect attack (memDoS targets
the underlying host to affect the co-resident VMs), the VM
migration downtime remains at the same levels of an attacker-
free environment.

6Resampling method to assure fairness in the comparison by drawing
random samples from the data. It uses a bootstrap sample size of 5000.

2025 21st International Conference on Network and Service Management (CNSM)

No Mig + Attack
250

250 - -
i

g mmmp: |
= [] Iy
=125 | e n =125
\ a N\l {
2 Vhary VO g]
= v v g [L]

0 leecvecececseceee®ece®onse 0 'aa®esare

0 10 20 30 0 10

Mig + Attack

2000

Zooming in
the area of

interest

0
? v - == Maximum 0 10 20 30
—\lcan Complete results of
------- .. Maximum Message Time
eeeeMinimum

20 30 (Mig + Attack)

Fig. 5: Experiment results - With attack Scenarios. The leftmost plot shows the results from the experiment with attack and without migration.
The middle plot presents a zoomed section of the rightmost plot with the data of interest for comparison. The rightmost plot presents the
complete results of the maximum message time for the experiment with migration.

00 No Mig + Mig +
50 Attack Attack
©n T Mean
=40
<} = 32.2420 29. 2469
o
g 30 Standard deviation
= 20
= 8. 7349 10. 5823
10 -
= NoMig+Attack Cohen D effect size
0 m)Mig+tAttack 0. 3086

Fig. 6: Experiment results - With attack Scenarios. The box plot
presents the comparison between the results of both experiments.
The table summarizes the desired statistics.

1‘; NMNA ;_,C\ NMYA

=] | S

O 40 1 o

L | Q

> | >

2 20 | e

[J] | 3]

> 1 >

o o

[o

= 100 200 & 50 100 150
Value Value

= YMNA = YMYA

C C

>S5 =)

(@) (o)

C 20 C

> >

g g

[J] 10 v 5

= o

L o Lo

= 0 1000 w 0 1000
Value Value

Fig. 7: Maximum response time result histograms for each scenario.

VM migration produces a modest effect in the mean
response time: This result has further supported the adop-
tion of VM migration for multiple purposes (e.g., system
management, preventive maintenance, or server packing) in
safe (i.e., attacker-free) environments. The results from the
environment under attack show that the VM migration effect
is also modest. These results show that VM migration-based
MTD can preserve expected mean performance levels.

VM migration as MTD in an MQTT time-sensitive sce-
nario should be considered with extra caution: Although the
mean response time stays acceptable, the maximum values

tend to achieve higher peaks compared to a migration-free
approach. These results suggest that VM migration-induced
peaks may lead the system to accumulate Service Level
Agreement (SLA) violations. The general recommendation
from our results is to carefully understand the time limitations
of the particular deployments before enforcing continuous
VM migration. However, it is important to highlight that our
evaluation considers the worst-case scenario, with no safe host
for migrations.

IV. RELATED WORKS

Previous works [7], [8] have validated VM migration as
a defensive technique. However, they neglect the possibility
of a full-scale attack. The attacker may leverage co-location
strategies or even replicate their VMs to increase attack power.
Therefore, understanding how VM migration-based defense
may affect the system is of utmost importance. Thus, the
current paper offers a distinct perspective when compared
to these previous works: 1) it examines the impact of VM
migration specifically within an MQTT environment, and 2)
it focuses on the performance implications of the technique
rather than its effectiveness as an MTD strategy.

A relevant set of related works applies SDN techniques in
the context of MTD for IoT. Zhou et al. work [16] merges
MTD with cyber deception techniques to thwart cyberattacks.
Swati et al. [17] present an SDN-powered MTD that leverages
an intelligent traffic classifier to filter network packets, propos-
ing a platform that also enables dynamic admission rules and
resource remapping to ensure system availability. There are
also techniques merging SDN and Game Theory to enhance
MTD protection for IoT environments [18]. While our research
used a different MTD strategy (i.e., VM migration), there is
room for combining the proposed technique with SDN-based
ones to improve overall MTD protection.

V. THREATS TO VALIDITY AND LIMITATIONS

Below is a list of threats to the validity and limitations of
this research, as well as suggestions for possible mitigation
strategies. Due to space limitations, it is a non-exhaustive list.

1) Limited testbed scale: the considered testbed is mi-
nuscule when compared to large and more representative
IoT deployments. Indeed, the collected VM migration mea-
surements may (and likely will) vary in other environments,

2025 21st International Conference on Network and Service Management (CNSM)

thus calling for caution regarding their use for orchestration
policy definition purposes. Nevertheless, the focus was to
dismiss the idea that VM migration-based MTD is a universal
strategy, calling attention to its limitations in certain situations.
Additionally, the techniques and tools are publicly available,
making it possible to adapt them accordingly to each scenario.

2) The proposed technique is not specifically tailored for
IoT.: The threats for IoT are continuously evolving, the
proposal of comprehensive MTD approaches is an appropriate
strategy. Current [oT deployments tend to rely on cloud com-
puting to integrate their numerous devices. Therefore, as cloud
computing is a vulnerable point for [oT, this paper investigates
the VM migration-based MTD under an IoT scenario.

3) The representativeness of the selected threat model.: This
research is complementary for those dealing with other threats.
Possibly, the provided web app may help the investigation
of different policies against a broader scope of attacks. VM
migration-based MTD is intended to be combined with other
defensive methods to improve overall system security.

VI. WEB-BASED PERFORMANCE EVALUATION TOOL

We developed software to support the analysis of different
scheduling approaches for attack and VM migration, where
the transition between states of migration and attack can be
user-driven, allowing him to exercise different VM migration
scheduling scenarios against host-based attacks. Unlike our
previous approach [7], the proposed tool offers the possibility
of state transition based on the user decision (not only on a
predefined model). Besides that, we adopted a web-based tool
to enable the visualization of performance behavior during the
experiment run. The tool provides a set of insightful outputs
to support the decision-making process.

In summary, the tool acts as an environment simulator, based
on pre-acquired data about the system behavior, to assess the
expected performance when applying the user preferred policy,
updating a plot dynamically based on the input data. The
sections below show the details of the tool implementation.
The tool source code was made available’, as well as a
demonstration®.

A. System state-machine

The system transits between four states based on the ex-
periment scenarios (See Fig. 8). The intuition behind the tool
development is to allow the user to analyze policies, where
the system state changes upon their designed policy. The
users can define and evaluate custom approaches before actual
deployment.

In the states with activated migration, migration follows
a continuous back-and-forth behavior between the available
hosts (as presented in Section 1). Hence, while the system
is in such states (prefix YM states), the expected performance
behavior presents oscillations due to VM migration overhead.

7https://github.com/matheustor4/webAppPerfEvaluation2
8https://web-app-perf-evaluation2.vercel.app/

_~~ start attack
...* stop attack

I = stop migration

v

—start migration

Fig. 8: System state-machine

Quick note on data acquisition: Data is from the labo-
ratory specific hardware testbed configuration as input for
the tool, thus being hard to generalize for other hardware
configurations. The main recommendation is reproducing the
performance evaluation experiment to gather appropriate data
to feed the tool.

B. Web Application User interface

The user interface (see Fig. 9) is organized into six areas.

1) history - stores the history of user-triggered state
changes, including transition triggering time.

2) state machine - highlights the current system state
of the simulation.

3) plot area - dynamically updated plot of the MQTT
response time during the simulation experiment.

4) delay panel - input of acceptable delay and number
of violations during the simulation experiment.

5) state transition panel - controls state transitions.

6) cost panel - input for: 1) expected operational cost per
unit of time in each state; 2) cost per detected acceptable
delay violation.

7) simulation panel - simulation control (the stop
button ends the simulation and downloads the output).

C. Tool outputs

The tool uses the performance evaluation data as in-
put for plot generation. It has three outputs: history,
simulation_output and simulation_report. The
history file has the content of the history panel from the
tool interface. The simulation_output file contains the
hypothetical performance evaluation results from the policy
that the user exercised in the tool (i.e., raw numerical data
from the plot area). The simulation_output file also
presents the acceptable delay and accumulated violations. The
simulation_report is a one-page PDF file that offers
a comprehensive picture of the exercised policy. It contains
the generated plot and the history of state changes. Besides
that, it adds a perspective of how much time the system spent
in each state (i.e., sojourn time). Finally, it also presents an
economic sustainability summary with the expected costs of
the exercised scenario based on the input values of cost
panel. Future development involves to add the comparison
feature, enabling the user to compare different policies, and
the metrics calculator, allowing for metric computation during
the simulation runs.

9More guidance on replicating the experiment is on the repository page?

2025 21st International Conference on Network and Service Management (CNSM)

0;NMNA; t=0

state machine

No migration
No attack
Migration

Attack

Acceptable Delay

history

Actions

Value:
150 Start Migration

Violations: 1

delay panel state transition panel

‘ Stop Attack

e plot area
800 — o Y e
0 "
v ‘\
o |
|
- |
|
300 |
| |
200 | |
1 A AL ol
...... i : VRIE g r
Cost ($) Simulation
NMNA: 0,01
YMNA: 0,05 ‘ > ‘ ‘ n ‘ ‘ L ‘
NMYA: 0.10
YMYA: 0,15
Violation: 5,00
cost panel simulation panel

Fig. 9: Web-based tool interface. Annotations in blue. Better visualization at https://web-app-perf-evaluation2.vercel.app/

A comment on tool flexibility for other scenarios: As long
as the user has performance data for the desired scenarios, it
is possible to adapt the tool to act as a switching state game
to obtain a hypothetical perspective of policy deployment,
for example, in a redundancy allocation problem scenario.
The user should collect data from the redundancy allocation
alternatives and change the tool input files, thus allowing
the analysis of the deployment with dynamic changes in
the allocation approach using the state transition and the
simulation panels.

VII. CONCLUSION AND FUTURE WORKS

This paper presented a comprehensive performance eval-
vation of VM migration-based MTD against Memory DoS
attacks. The study assessed the impact of VM migration on the
performance of an MQTT broker instance, both under normal
operating conditions and during an active attack. Experimental
results showed that VM migration downtime remains compara-
ble in both scenarios, with attack-free experiments indicating
that the MQTT broker’s performance is largely unaffected.
However, for time-sensitive applications, VM migration sig-
nificantly increases the number of deadline violations. These
findings suggest that adopting VM migration as a defense
mechanism requires careful consideration in attack scenarios.
In general, the strategy is recommended only for systems with
strict timing constraints when it is possible to guarantee a
safe and attack-free target host. Future work will focus on
integrating SDN-based MTD techniques into VM migration-
enabled environments, investigating how their combination can
strengthen overall MTD protection strategies.

REFERENCES

[1]1 G. C. Hillar, MQTT Essentials-A lightweight IoT protocol. — Packt
Publishing Ltd, 2017.

[2] M. Torquato, B. Jesus, F. A. Silva, and E. Cerqueira, “Empirical
observation of execution throttling as MQTT broker defense against
memory denial of service attacks,” in Proc. of the 13th Latin-American

Symposium on Dependable and Secure Computing, 2024, pp. 184-187.

[3] T. Zhang, F. Kong, D. Deng, X. Tang, X. Wu, C. Xu, L. Zhu, J. Liu,
B. Ai, Z. Han et al., “Moving target defense meets artificial intelligence-
driven network: A comprehensive survey,” IEEE Internet of Things
Journal, 2025.

[4] T. Zhang, Y. Zhang, and R. B. Lee, “DoS attacks on your memory
in cloud,” in Proceedings of the 2017 ACM on Asia Conference on
Computer and Communications Security, 2017, pp. 253-265.

[5] Krylovsk, “Krylovsk/mqtt-benchmark: MQTT broker benchmarking
tool.” [Online]. Available: https://github.com/krylovsk/mqtt-benchmark

[6] R. A. Light, “Mosquitto: server and client implementation of the MQTT
protocol,” Journal of Open Source Software, vol. 2, no. 13, p. 265, 2017.

[71 M. Torquato, P. Maciel, and M. Vieira, “Evaluation of time-based virtual
machine migration as moving target defense against host-based attacks,”
Journal of Systems and Software, vol. 219, p. 112222, 2025.

[8] M. Torquato and M. Vieira, “VM migration scheduling as moving target
defense against memory DoS attacks: An empirical study,” in 2021 IEEE
Symposium on Computers and Communications (ISCC), 2021, pp. 1-6.

[9]1 F. Salfner, P. Troger, and A. Polze, “Downtime analysis of virtual

machine live migration,” in 4th Int. Conf. on Dependability (DEPEND).

IARIA, 2011, pp. 100-105.

N. Mukhopadhyay and B. P. Tewari, “Cost and energy aware migra-

tion through dependency analysis of vm components in virtual cloud

infrastructure,” Computing, vol. 107, no. 1, pp. 1-44, 2025.

J.-H. Cho et al., “Toward proactive, adaptive defense: A survey on

moving target defense,” IEEE Communications Surveys & Tutorials,

vol. 22, no. 1, pp. 709-745, 2020.

J. Cohen, Statistical power analysis for the behavioral sciences.

ledge, 2013.

C. Clark et al., “Live migration of virtual machines,” in Proc. of the

2nd Symp. on Networked Systems Design & Implementation (NSDI’05)

- Volume 2, 2005, pp. 273-286.

W. Voorsluys et al., “Cost of virtual machine live migration in clouds:

A performance evaluation,” in /st Int. Conference on Cloud Computing.

Springer, 2009, pp. 254-265.

P. Akshatha and S. D. Kumar, “Delay estimation of healthcare applica-

tions based on MQTT protocol: a node-RED implementation,” in /[EEE

Int. Conf. on Electronics, Computing and Comm. Tech., 2022, pp. 1-6.

Y. Zhou, G. Cheng, and S. Yu, “An SDN-enabled proactive defense

framework for DDoS mitigation in IoT networks,” IEEE Transactions

on Information Forensics and Security, vol. 16, pp. 5366-5380, 2021.

Swati, S. Roy, J. Singh, and J. Mathew, “Securing IIoT systems against

DDoS attacks with adaptive moving target defense strategies,” Scientific

Reports, vol. 15, no. 1, p. 9558, 2025.

M. Priyadarsini and P. Bera, “SDN deployed secure application design

framework for IoT using game theory,” AI-Based Advanced Optimization

Techniques for Edge Computing, pp. 317-340, 2025.

[10]

[11]

[12] Rout-

[13]

[14]

[15]

[16]

(17]

[18]

