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Abstract—Real-time multi-view 3D reconstruction is a mission-
critical application for key edge-native use cases, such as fire
rescue, where timely and accurate 3D scene modeling enables sit-
uational awareness and informed decision-making. However, the
dynamic and unpredictable nature of edge resource availability
introduces disruptions, such as degraded image quality, unstable
network links, and fluctuating server loads, which challenge the
reliability of the reconstruction pipeline. In this work, we present
a reinforcement learning (RL)-based edge resource management
framework for reliable 3D reconstruction to ensure high quality
reconstruction within a reasonable amount of time, despite the
system operating under a resource-constrained and disruption-
prone environment. In particular, the framework adopts two
cooperative Q-learning agents, one for camera selection and one
for server selection, both of which operate entirely online, learn-
ing policies through interactions with the edge environment. To
support learning under realistic constraints and evaluate system
performance, we implement a distributed testbed comprising
lab-hosted end devices and FABRIC infrastructure-hosted edge
servers to emulate smart city edge infrastructure under realistic
disruption scenarios. Results show that the proposed framework
improves application reliability by effectively balancing end-to-
end latency and reconstruction quality in dynamic environments.

Index Terms—Reinforcement Learning, Multi-view 3D Recon-
struction, Edge Computing, Reliability.

I. INTRODUCTION

Multi-view 3D reconstruction of unknown scenes is becom-
ing a foundational capability for mission-critical smart city
applications, such as emergency response and public safety,
providing situational awareness for rapid, informed decision
making [1], [2]. This technique aggregates images from mul-
tiple viewpoints to generate 3D representations, typically as
point clouds or meshes. Reconstructing 3D scenes from over-
lapping views requires substantial computational resources.
While data centers can easily handle such workloads, smart
city deployments rely on city-scale edge servers for lower
latency, cost efficiency, and data privacy. While these edge
servers are geographically closer and suitable for ‘near real-
time’ processing, they lack the capacity of remote data centers.
Delivering timely results thus necessitates intelligent resource
management to balance conflicting performance requirements.

The already tricky proposition of edge management for
multi-view 3D reconstruction becomes even more challeng-
ing in mission-critical scenarios due to its susceptibility to
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disruptions and fluctuations. This comes from three factors:
i) the nature of the reconstruction process, ii) the volatile
environments of the underlying use cases, and iii) the resource
constraints of smart city edge ecosystems. Unlike simpler
video processing applications that operate on independent
frame streams [3], [4], [5], 3D reconstruction requires high-
quality, spatially and temporally aligned images from multiple
viewpoints. When such data is degraded or partially missing,
the reconstruction results can be compromised both quanti-
tatively (e.g., incomplete surfaces and missing objects) and
qualitatively (e.g., geometric distortions). This vulnerability is
exacerbated in dynamic, high-risk settings, such as fire scenes,
disaster zones, or urban deployments, where sensing and
communication infrastructure is prone to disruption. Further,
the inherently volatile nature of smart city infrastructure can
also cause disruptions, including unstable network condition,
limited edge connectivity, processing delays, and resource
contention. Although these issues mainly affect end-to-end
processing latency, degraded or unavailable input images can-
not be retransmitted or recovered within the tight latency
constraints of rapidly evolving environments.

Reducing end-to-end latency of multi-view 3D reconstruc-
tion pipelines [6], [7], [8] without significantly degrading
reconstruction quality is thus a challenging task, especially
in smart city edge deployments where network conditions
and camera availability fluctuate, timing constraints are strict,
and the true system state is only partially observable [2],
[9]. Achieving consistent performance across these varying
conditions requires a reliable decision-making process, one
that adapts to disruptions while ensuring reconstruction re-
sults remain timely and accurate. Traditional heuristic-based
approaches for edge management rely primarily on static
environment and prior knowledge of system parameters —
assumptions that are unrealistic in such dynamic environments.
Consequently, their static design prevents them from ensur-
ing reliable performance. Reinforcement learning (RL)-based
decision-making, which enables the system to learn effective
policies online without full knowledge of the environment in
advance, can offer robust and adaptive solutions for managing
the latency—quality trade-off in mission-critical applications.

In this paper, we focus on two critical decisions: selecting
camera subsets, affected by visual or network disruptions, and
choosing edge servers, influenced by computational load and
network conditions. We develop an RL-based framework that
enables the system to make these decisions adaptively. We
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employ two cooperative Q-learning agents, one for camera
selection and one for server selection, learning adaptive poli-
cies that improve responsiveness and reliability under unpre-
dictable disruptions. The agents learn entirely online during
system operation, thus requiring practical implementation to
expose the agents to representative system dynamics. Thus, we
implement and evaluate our framework on a realistic testbed
composed of resource-constrained end devices in the lab, along
with FABRIC network and server infrastructure that emulates
network and edge-server components, operating under diverse
simulated disruption scenarios. Results demonstrate that the
camera selection strategy achieves up to 15% higher reliability,
while the adaptive server selection strategy achieves up to
a 50% improvement over baselines. Overall, these findings
highlight the potential of RL to enable robust, disruption-aware
decision making in real-time edge systems.

The remainder of this paper is organized as follows. Sec-
tion II reviews the background and related work. Section III
describes the system model and details the proposed rein-
forcement learning—based framework for camera and server
selection. Section IV presents our testbed setup, evaluation
methodology, and experimental results under various disrup-
tion scenarios. Finally, Section V summarizes the key findings.

II. BACKGROUND AND RELATED WORKS

Here, we present an overview of multi-view 3D reconstruc-
tion and discuss related works.

A. Multi-view 3D reconstruction

Multi-view 3D reconstruction generates 3D representations
of objects or scenes from RGB images or occasionally
sketches. It uses images captured from multiple perspec-
tives, either as sequential frames or sparse views. Outputs
include voxel grids, point clouds, and meshes [10], with
point clouds and meshes particularly versatile, scalable, and
accurate. Geometry-based reconstruction follows a two-step
pipeline: Structure-from-Motion (SfM) and Multi-View Stereo
(MVS). OpenMVG/openMVS [6], [7] is a popular library
implementing this pipeline. Deep learning methods estimate
object geometry using prior knowledge [11], [12], but of-
ten yield lower accuracy and generalization than geometry-
based approaches. In this work, we adopt the geometry-based
pipeline for its robustness and reconstruction quality.

B. Evaluating reconstruction quality

A key objective of latency-optimized edge management
for 3D reconstruction is ensuring high-quality outputs, which
requires reliable techniques to evaluate generated point clouds.
Quality can be assessed via three main methods: Geometry-
Oriented [13], Color-Oriented [14], and Combined [15], all
of which rely on ground-truth point clouds. However, ground
truth for unknown 3D scenes in a smart city environment
is typically unavailable. In its absence, point cloud quality
must be evaluated using no-reference methods, including tra-
ditional [16] and learning-based approaches [17]. Traditional
methods assess internal geometric consistency or appearance

cues derived from projections, while learning-based methods
predict perceptual metrics such as the Mean Opinion Score
(MQOS) using neural networks trained on annotated datasets.
Since creating and managing large annotated datasets for
city-scale indoor/outdoor scenes is impractical, we employ a
latency-efficient geometry-based technique leveraging known
intrinsic and extrinsic camera parameters (focal length, dis-
tortion, pose) to produce perspective-aligned images that
preserve geometric Sstructure and visual appearance. This
generates high-fidelity projections that enable robust quality
assessments even without ground truth.

C. Reinforcement Learning for edge resource management

Edge resource management for complex, time-sensitive ap-
plications such as 3D reconstruction is challenging. Reinforce-
ment learning has emerged as a promising approach for se-
quential decision-making in dynamic edge environments [18],
[19], [20]. RL has been applied to optimize resource allocation
for 3D pose reconstruction in robotic minimally invasive
surgery [21], manage edge server orchestration for augmented
reality workloads [22], and support adaptive wireless access
in emergency response [23]. DRL-based frameworks like
DRJOA [24] jointly optimize task offloading and wireless
resources in MEC scenarios. However, many RL-based meth-
ods rely on offline training or assume relatively static en-
vironments. Real-time, disruption-prone, resource-constrained
settings like ours require online learning and rapid adaptation.
Our work addresses this gap.

D. Managing disruptions in distributed systems

Disruption management in distributed systems is becoming
a critical area of research aimed at improving system reliability
and security. Recent studies explore various aspects of this
challenge. For example, the ReSeT system [25] focuses on
reducing service disruption by optimizing handover times for
mobile nodes. Work, such as [26] addresses latency in real-
world applications by proposing a two-phase scheduling strat-
egy to mitigate disruptions in edge environments. Additionally,
[27] explores spatio-temporal disruption patterns that can
impact video processing quality and applies a portfolio theory-
inspired approach to model these disruptions. Video processing
in edge systems is exposed to different types of disruptions
beyond general system reliability. These include environmental
and infrastructure constraints such as obstructions, occlusions
[28], and mission-critical disruptions [29] that directly affect
image quality and coverage. Unlike these, in our work, we aim
to explore a combination of factors, including environmental
and infrastructure constraints, alongside coverage, accuracy,
and computational complexity. We propose a resource selec-
tion strategy that is specifically tailored to address the unique
challenges of complex 3D video processing tasks to ensure
high-quality reconstruction.

III. PROBLEM FORMULATION AND SOLUTION STRATEGY

Here, we discuss the proposed system model, RL based
problem formulation, and Q-learning based solution strategy.



2025 21st International Conference on Network and Service Management (CNSM)

A. System model

We consider a smart city environment running a 3D recon-
struction application using city-hosted edge servers. The key
components are: a set of edge servers for computation, a fleet
of camera-equipped end devices (e.g., drones, robots) for scene
capture, and a central edge controller or resource manager for
overall resource allocation.

Edge servers (£) — We consider a set of m smart city edge
servers, each responsible for performing computationally in-
tensive 3D reconstruction tasks. These servers operate under
dynamically changing workloads due to processing demands
from a variety of smart city applications running simultane-
ously. The available computational capacity and processing
latency of each server fluctuate over time, and are not directly
controlled by the controller.

Camera-equipped end devices (C) — We consider a fleet of
n end devices (e.g., drones, robots), each equipped with a
high-resolution camera of identical hardware specifications but
capturing the scene from different viewpoints. These devices
continuously stream visual data to the edge system. However,
environmental factors such as smoke, fog, or fire may degrade
the quality of captured images, while wireless communication
disruptions can prevent timely delivery of images to the
controller. Both types of disruptions affect the availability and
usefulness of each camera’s data during processing runtime.
Controller — We assume a centralized decision-making module
operating at the network edge responsible for overall resource
management of the entire smart city environment. In the
context of the 3D reconstruction use case which serves as
the problem at hand, the controller’s objective is to make
latency- and quality-aware decisions, adapting to disruptions
in sensing, communication, and computation. In this context,
we reiterate that such systems operate in a disruption-prone
environment, where among issues, unpredictable fluctuations
in sensing quality, communication reliability, and computation
capacity impact the end-to-end latency and reconstruction
quality balance the most.

While the system model can accommodate multiple re-
source allocations (e.g., network paths, wireless channels), this
work focuses on camera selection and server assignment under
dynamic conditions. The primary disruptions either block data
from a camera, reducing reconstruction quality, or overload
a server, increasing latency. We study the controller’s ability
to adaptively select cameras and servers at each timestep in
response to the evolving system state.

B. Defining 3D reconstruction reliability

A 3D reconstruction application is considered reliable if it
consistently produces usable reconstructions within a prede-
fined near real-time latency budget under dynamic conditions.
Formally, we define the reliability (R;) at timestep ¢ as a
binary variable: TRUE if both quality and latency constraints
are satisfied, and FALSE otherwise. In other words, a camera
and server selection is reliable if it meets the minimum quality
threshold and maximum latency constraint. Thus:

1, ifQ;>Oand L; < @
o (1)
0, otherwise

where:

e (; denotes the point cloud quality score at timestep ¢,

e L, denotes the total end-to-end latency which includes
transmission and processing (i.e., reconstruction) delays,

e O is the minimum acceptable reconstruction quality,

o ® is the maximum allowable latency.

Long-term reliability is the proportion of timesteps with
R; = 1, directly reflecting task success under predefined qual-
ity and latency constraints and supporting real-time evaluation.

C. RL-based problem formulation

As reliability is defined as satisfaction of two constraints:
(1) reconstruction quality must remain above a minimum
threshold, and (ii) reconstruction latency must not exceed a
predefined upper bound, the problem is formulated as a con-
strained optimization task to select camera subsets and edge
servers that maximize reliability under operational constraints.

We model the camera and server selection problem as a

Markov Decision Process (MDP) to enable RL-based opti-
mization under uncertain and variable environmental condi-
tions. While some system components are partially observable,
the MDP framework allows decision-making as a sequence
of actions guided by measurable outcomes such as recon-
struction quality and latency. This supports policies that adapt
over time and generalize across deployment scenarios where
handcrafted heuristics fail and prior learning is infeasible. To
manage complexity and enable efficient online learning, we
decompose the process into two cooperative agents: one for
camera selection and one for server selection. This separation
is motivated by the large combinatorial space of camera
selection, which complicates online adaptation if coupled with
server decisions. Server selection depends on broader system
context, including chosen cameras and projected resource
load. Decoupling these roles allows each agent to optimize
its subproblem independently with tailored rewards.
Camera selection — The camera selection task is formulated
as a stateless Markov Decision Process (MDP). To support
real-time inference and reduce model complexity, the agent
operates without an explicit state representation. It selects
actions based solely on its learned policy, without access to
dynamic environment variables such as camera availability,
quality degradation, or network conditions. As a result, the
environment is treated as stateless from the agent’s perspective,
and learning is driven purely by interaction and feedback.

At each timestep t, the agent selects a subset of cameras
from a pool of IV candidates, based on the current set of valid
combinations provided by the environment. The action space
Ac is defined as:

AC = {a c {07 1}N | kmin < ||a||1 < kmax} (2)
where each binary vector a encodes which cameras are
selected (1) or not (0), and the /1 norm constrains the number

of selected cameras within predefined bounds.
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The reward received by the camera agent at each timestep
t reflects the system’s reliability objective and is shaped to
encourage selections that meet quality and latency constraints.
Specifically, the reward R is computed as:

RS =w; - 85 +wy - S 3)

where SS ) and S(Lt) represent the normalized reconstruction
quality and latency scores at time ¢, and wy,ws € [0, 1] are
weighting coefficients summing one. Latency accounts solely
for reconstruction delay, ignoring transmission overhead.

The quality score Sg ) is defined by normalizing the point
cloud quality (@) at timestep ¢ with respect to a reference

threshold O:
Sg) = min (1, %) 4)

The latency score S](Lt) captures how closely the reconstruc-
tion latency approaches the system’s real-time threshold &,

and is given by:
S — max (0 1— Lt) (5)
L — ’ P

This reward formulation enables the agent to receive partial
credit for decisions that approach but do not fully satisfy the
reliability constraints, thereby supporting progressive learning.
The stateless design ensures lightweight, fast decision-making
compatible with real-time deployment, while still promoting
constraint-aware behavior in dynamic and partially observable
environments.

Server selection — The server selection task is formulated as an
MDP. At each timestep ¢, after the camera subset is selected,
the server agent receives a state s; defined as:

st = ([laell1,af_y) (6)
where:

e ||a;||1 denotes the number of cameras selected at time ¢,
o af_, is the server selected at the previous timestep.

The act of including the number of selected cameras in the
server agent’s state allows the agent to condition its server
choice on the expected computational load associated with
the camera selection decision. This coordination between the
camera and server selection agents enables more effective
adaptation to the dynamic conditions of the system.

The agent then selects an action af € Ag, where Ag
denotes the set of available servers. The reward for the server
agent at timestep ¢, denoted R, is based solely on the end-
to-end latency of the 3D reconstruction process, computed as:

RE = st )
where the latency score Sg) is defined as:
L
S — max (0, 1- @t) (8)

This formulation enables the server agent to learn dynamic
server assignment strategies that minimize end-to-end latency
under varying server loads and network disruptions.

D. Q-learning based solution methodology

To solve the decision-making problems formulated as
MDPs, we employ tabular Q-learning for both the camera
selection and server selection agents.Q-learning is a model-
free reinforcement learning algorithm that estimates an action-
value function Q(s,a), which represents the expected return
of taking action « in state s and following the current policy
thereafter. At each timestep, the agent observes the current
state s;, selects an action a;, receives a reward r;, observes
the next state s;y1, and updates the Q-value as:

Q(st,ar)  Q(sp,ar) + [Tt + ymaxy Q(si+1,0") — Q(s¢, ar)

9
This temporal-difference update rule allows the agent(tg

iteratively refine its value estimates without requiring a model
of the environment. Q-learning is particularly well-suited to
our setting due to the discrete action spaces and its ability to
handle delayed rewards, which are common in scenarios where
the consequences of decisions (e.g., reconstruction quality or
end-to-end latency) may manifest several steps later.

Both agents employ an e-greedy strategy for exploration:
at each timestep, the agent selects a random action with
probability €; and otherwise selects the action that maximizes
the current Q-value. This balances exploration of new actions
with exploitation of known good actions:

random action

arg max, Q(s¢, a)

with probability e, (10)
with probability 1 — €,

To improve adaptability under non-stationary conditions,
we extend Q-learning with adaptive adjustment of both the
learning rate oy, and the exploration rate €, resulting in Adap-
tive Q-learning. When performance degradation is detected ,
both parameters are temporarily increased to encourage faster
adaptation:

41 = min(ay - Ainc, Qmax)

(1D

During steady-state operation, both are gradually decayed
to promote convergence:

€t+1 = min(et * Tinc 6max)a

o1 = max(a « Adee, Qin)
(12)
Here, Nine > 1, Ndee < 1, Aine > 1, and Agee < 1 are
adaptation factors that control the degree of responsiveness
and stabilization. This mechanism enables the agent to remain
flexible in the face of environmental volatility while converg-
ing efficiently when conditions are stable. In this work, we
adopt standard Q-learning based camera selection strategy and
adaptive Q-learning based server selection approach.

€t+1 = Max(€r - Ndec, €min),

IV. EVALUATION AND RESULTS

In this section, we evaluate our proposed ad-hoc camera
selection and resource management framework through testbed
experiments conducted in a realistic Edge-Al environment.
We begin by describing the testbed setup, including system
components and network design, followed by evaluation met-
rics, baselines, datasets, and implementation details. We then
present and analyze the experimental results.
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Fig. 1: Smart city testbed implementation

A. Testbed Setup and Experiment Design

The smart city testbed, illustrated in Fig. 1, comprises of
multiple components:

1) End devices: To replicate camera-enabled end-devices,
we use 5 Nokia 2.2 smartphones with that has multi-view
video dataset already pre-stored. The devices connect to the
forwarding server through an LTE network and are synchro-
nized to simultaneously transmit the pre-stored video frames
to the forwarding server.

2) Base stations: To enable reliable communication be-
tween end devices and forwarding server(s), we deploy eNB-
based base stations. These stations handle data transmission
over the LTE network, ensuring low-latency connectivity for
video frame streaming.

3) Forwarding server: To manage data flow between edge
devices and end servers, we deploy a forwarding server that
receives video streams from the base stations and forwards
them to the appropriate edge servers based on controller’s
decisions. The end devices, base stations, and forwarding
servers are implemented within lab hardware at CUNY.

4) End servers: The smart city edge servers are simulated
using four virtual servers from FABRIC testbed [30], each
equipped with a 16-core CPU (2.8 GHz), 32 GB of RAM, 100
GB of disk space, and an NVIDIA Quadro RTX 6000 GPU
for accelerated processing. State-of-the-art 3D reconstruction
pipeline are pre-installed on the edge servers.

5) Controller: The controller or resource manager is de-
ployed on a machine within FABRIC, equipped with a 20-core
CPU (2.8 GHz), 32 GB RAM, and 100 GB disk space. It runs
the proposed RL agents, making dynamic decisions on camera
and server selection based on system state.

6) Network Implementation: To create a real-world setting,
we establish an LTE network for end-device connectivity to the
forwarding server using the srsSRAN4G library, enabling a con-
trolled and adaptable LTE environment. The LTE network is
supported by multiple eNodeBs, each simulated using USRP-
2901 devices with sub-1 GHz antennas. The Evolved Packet
Core (EPC), responsible for managing high-level network
functions such as user session management, mobility, security,
and external data routing, is implemented using Open5GS. It
is co-located on the same machine as the eNodeBs, creating
a compact and integrated smart city environment setup.

7) Multi-view 3D reconstruction datasets: We use our own
multi-view dataset [2] that represents different degrees of

indoor dynamic scenes, e.g., Pickup, Walk and Handshake.
Each scene captures dynamic indoor environments using five
synchronized Raspberry Pi cameras, providing long sequence
recordings for 3D reconstruction. The scenes are structured
with diverse objects, controlled lighting, and a central focal
point to ensure consistency. Videos are recorded at 25-30
FPS and are later processed into sequential images for 3D
reconstruction. This dataset enables a detailed analysis of 3D
reconstruction performance.

8) Simulating disruption: Camera disruption probabilities
are simulated over a 4000-frame timeline using a predefined
correlation matrix to capture interdependencies. Cameras 1
and 2, and Cameras 3 and 5, are highly correlated, re-
flecting scenarios where nearby cameras or shared wireless
channels fail together (e.g., due to fire, smoke, or interfer-
ence). Additionally, 10 random bump events—each lasting
50 frames—are injected across camera groups {1,2}, {3,5},
and Camera 4 independently, introducing temporary spikes in
failure probability with a threshold of 0.6, producing binary
traces (0 = disruption, 1 = normal). Server-side disruptions
are modeled over the same timeline with four independent
servers, each having a baseline transmission latency of 150 ms
with small fluctuations. Ten random latency spike events are
injected independently, adding 400—1200 ms for 50 frames per
event, emulating temporary server overloads while preserving
independent behaviors.

9) 3D reconstruction Pipeline: Due to the time-sensitive
nature of 3D reconstruction, generating the final dense point
cloud using the openMVG/openM VS pipeline creates a latency
bottleneck for timely decision-making. On our testbed edge
server, this process takes 5 seconds, exceeding near real-
time requirements. However, sparse point clouds generated as
intermediate outputs are leveraged to update the RL model’s
policy before dense reconstruction completes. In the absence
of ground truth, reconstruction quality is quantified by pro-
jecting sparse 3D points back onto the original 2D images
and measuring the average reprojection error.

10) Evaluation metrics: We evaluate our RL-based system
in terms of observed performance, focusing on reliability, qual-
ity, and latency. Reliability is the primary metric, defined as the
proportion of frames meeting both reconstruction quality and
end-to-end latency thresholds (Section III-A); latency captures
the average end-to-end delay per frame from image capture to
reconstruction; and reconstruction quality is measured using a
projection-based metric.

11) RL agent training parameters: We evaluate both fixed
and adaptive variants of tabular Q-learning for camera and
server selection. All Q-tables are initialized to zero, and
training occurs online during system execution. For the camera
selection task, the fixed agent uses a learning rate of a = 0.9,
a discount factor of v = 0.1, and a fixed exploration rate of
€ = 0.1. The adaptive camera agent starts with a base learning
rate of 0.5 and an initial exploration rate of ¢ = 1.0, which
decays to a minimum of 0.05 based on runtime conditions.
For server selection, the fixed Q-learning agent is configured
with a = 0.9, v = 0.1, and € = 0.1. The adaptive server agent
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TABLE I: Camera selection performance comparison

TABLE II: Server selection performance comparison

Camera Selector Avg PQ  Avg Recon Lat. (s)  Avg Total Lat. (s)  Reliability
Q-learning 582 0.79 2.54 62.53%
Greedy-3 542 0.67 2.45 59.92%
Epsilon-Greedy Bandit 443 0.71 3.45 24.69%
Adaptive Q-learning 378 0.70 247 36.38%
Random 386 0.69 2.26 25.05%
100
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74 cams
705 cams
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Fig. 2: Distribution of selected camera subsets

uses an initial learning rate of 0.3, an initial exploration rate
of ¢ = 0.2, and a discount factor of v = 0.95.

12) Baseline approaches: We compare our proposed Q-
learning and Adaptive Q-learning strategies to baselines for
camera and server selection, spanning non-learning, heuristic,
and learning-based approaches.

Camera selection baselines: We compare our RL-based
strategies against three baselines: (i) Random, which uniformly
samples a valid camera subset at each timestep as a non-
adaptive lower bound; (ii) Greedy-3, which always selects the
3-camera subset predicted to yield the highest reconstruction
quality, ignoring latency and variability; and (iii) Epsilon-
Greedy Bandit, which treats camera subset selection as a multi-
armed bandit and balances exploration and exploitation via an
e-greedy policy.

Server selection baselines: We compare against two non-
learning baselines: (i) Round-Robin, which cycles through
servers in a fixed order without considering load or latency,
serving as a simple deterministic benchmark; and (ii) Latency-
Greedy, which selects the server with the lowest estimated
latency based on an exponentially weighted moving average,
adapting to recent trends but without anticipating future vari-
ations or accounting for camera quality.

B. Testbed Results and Discussions

1) Camera selection performance: To evaluate different
camera selection strategies, we fix the server policy to a
Round-Robin scheduler so all strategies operate under identical
server conditions. Each camera strategy dynamically selects
a subset of available cameras at each timestep to optimize
quality and responsiveness. Reliability is defined as the per-
centage of frames meeting all of the following: (1) at least
400 matching points per view, (2) total latency under 3 sec,
and (3) reconstruction latency under 1 sec.

Tab. I shows that the proposed Q-learning achieves the
highest reliability (62.53%) and overall point cloud quality,
demonstrating its ability to learn policies over time. Interest-
ingly, Greedy-3, despite being a simple deterministic policy,
performs competitively, achieving a reliability of 59.92% with
lower average latency than the Q-learning agent. This suggests
that consistently selecting a strong camera subset can serve as
a robust baseline in stable environments. The Epsilon-Greedy
Bandit and Random strategies perform poorly in terms of

Server Agent Total Lat. (s) Recon Lat. (s)  Reliability
Round-Robin 3.20 0.91 31.5%
Latency-Greedy 532 2.14 4.1%
Q-Learning 347 2.72 16.9%
Adaptive Q-Learning 3.62 2.13 55.0%

Server 0 Server 1 Server 2 Server 3

o
S

Selected (%)

o

Round-Robin Latency-Greedy Q-Learning Adaptive Q-Learning

Fig. 3: Distribution of selected servers

both reliability (24.69% and 25.05%, respectively) and average
point cloud quality. These results reflect their inability to ac-
count for delayed feedback and their tendency to make subop-
timal choices under variable network conditions. The Adaptive
Q-learning agent, while designed to respond to environmental
changes, exhibits instability and lower reliability (36.38%),
likely due to overreaction to short-term fluctuations. Fig. 2
visualizes the selection distribution of camera subsets for each
strategy. While Q-learning and Greedy-3 agents concentrate on
a limited set of high-quality subsets, the Adaptive Q-learning
and Random policies show more dispersed behavior. These
findings highlight the importance of balancing adaptability and
consistency in view selection for real-time 3D reconstruction.

2) Server selection performance: To isolate the impact of
server selection policies, all experiments use the Greedy-3
camera selection strategy. Reliability is defined as the per-
centage of frames meeting all of the following: (1) at least
500 matching points per view, (2) total latency under 3 sec,
and (3) reconstruction latency under 1 sec.

Tab. II shows that Round-Robin achieves strong per-
formance with a reliability of 31.5%, outperforming both
Latency-Greedy and Q-learning. While Q-learning is designed
to adapt based on feedback, it suffers from delayed response to
performance degradation and tends to repeatedly select servers
that were previously fast, leading to overload. In contrast,
the fixed Round-Robin policy maintains a balanced server
distribution — assigning approximately 25% of frames to each
server, which results in more stable latency under dynamic
conditions. The uniform selection pattern is clearly observable
in the server selection results (Fig. 3). This selection behavior
also influences system latency, which varies across the four
strategies as shown in Fig. 4. Round-Robin exhibits the highest
median latency and widest inter-quartile range (IQR) among
the more stable strategies, indicating its consistent but non-
optimized performance. In contrast, both Latency-Greedy and
Adaptive Q-learning show lower medians and narrower IQRs,
suggesting more efficient server choices under typical condi-
tions. However, the standard Q-learning agent displays a much
wider spread, with a long box and numerous high-latency
outliers. This indicates instability and delayed responsiveness
to changing network conditions. These results highlight the
importance of balancing adaptiveness with robustness in server
selection policies. All evaluation related codes and data are
available through Github [31].
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Fig. 4: Distribution of end-to-end latency
V. CONCLUSIONS

Latency-sensitive and edge-native multi-view 3D recon-
struction is crucial for mission-critical applications, where
meeting strict latency and quality constraints enables effective
decision-making, often in the presence of disruptions. We
present an RL-based framework that dynamically selects cam-
era subsets and allocates server resources based on observed
conditions. The method learns adaptive policies that enhance
responsiveness and reliability under unpredictable disruptions.
Evaluation in simulated and physical environments shows
substantial gains: the camera selection agent achieves up to
15% higher reliability than random selection and 2% over
Greedy-3, while the adaptive server agent improves up to
24% over round-robin and 50% over latency-greedy baselines.
These results demonstrate RL’s potential for robust, disruption-
aware decision-making in latency-sensitive edge systems.
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