
Digital Twin and LLM Assisted Online Diagnosis
in Microservices Based Enterprise Systems

Sourav Das, Krishna Kant
Computer and Information Sciences Temple University, Philadelphia, USA

{sourav.das | Kkant}@temple.edu

Abstract—In this paper we explore a Partial Digital Twin
(PDT) framework for online diagnosis of faults in Microservices
(µSs) based systems. The microservices environment is highly
dynamic and suffers from configuration problems due to frequent
changes driven by CI/CD; therefore, quick online diagnosis is
crucial but has not been addressed in the literature. We have
designed the following mechanisms: (1) a conversational LLM
assisted interface to automatically generate the initial “trouble-
ticket” based on the problem(s) encountered by the user, (2)
integration of tests for several key µSs patterns to diagnose
distributed transaction failures, and (3) ensuring robustness of
fault diagnosis scheme. Our methodology leverages the service
mesh capabilities for µSs to dynamically reconstruct transac-
tional contexts while incorporating a hierarchical testing strategy.
Experimental results demonstrate that the framework requires
only 8% more tests on average beyond the theoretical optimal
for complex transaction chains. The LLM component shows an
initial fault categorization accuracy of 92%, enabling precise
reproduction of failure scenarios in the PDT environment without
disrupting the production system.

Index Terms—microservices, digital twin, root cause analysis,
saga pattern, conversational AI

I. INTRODUCTION

Modern cloud-native architectures increasingly rely on ser-
vice oriented architecture (SOA) [1] and DevOps practices
to achieve scalability and rapid iteration [2] which are well
supported by using the concept of service-mesh along with
µSs. However, the distributed nature of these systems in-
troduces critical diagnostic challenges: 63% of production
outages now stem from transaction coordination failures in
service meshes, while 41% involve persistent data inconsis-
tencies across sharded databases [3]. Traditional monitoring
tools struggle with these issues due to the temporal nature of
distributed transactions and the combinatorial complexity of
microservice interactions [4].

In this paper, we explore online testing to find the root cause
of the faults as and when they are reported by end users,
developers, administrators, etc., still referred to as users for
convenience. Often the reported problems affect only a few
services/users, and thus we want to conduct online diagnosis
without any significant impact on the production system.
Towards this goal, we introduce the notion of “Partial Dig-
ital Twin” (PDT) for diagnosis purposes. A PDT essentially
creates a very limited copy of the most relevant µSs and their
data so that it is possible to run the tests in relative isolation.
This is facilitated by the “service mesh” concept integral to

This research was supported by NSF grant CNS-2011252

µSs paradigm [5]. Such isolation not only avoids impact on
the production system but also allows for testing with changes
to configuration parameters or even to the code version, which
wouldn’t be allowed in the production system.

A crucial aspect in online diagnosis is the opportunity for an
automated online dialog with the user by using the emerging
large language models (LLMs) to better understand the issue
and thus create an accurate trouble ticket used to guide the
diagnosis. This helps to reduce the number of tests needed
for root cause analysis. Also, the microservice paradigm is
typically defined in terms of a number desired patterns, many
of which are intended to enhance parallelism often at the
cost of safety and robustness. Thus concurrency bugs can
occur much more frequently than in traditional contexts. These
patterns also involve specialized configuration parameters
whose improper settings could lead to subtle problems. Thus,
specialized online tests to uncover problems related to them
become essential in µSs based systems. In particular, data
consistency is often the most crucial issue in µS systems
with SAGA based management of database (DB) transaction
consistency being the most prevalent use case. SAGA is a way
to manage distributed transactions by chaining local operations
together. If one step fails, it runs compensating actions to undo
previous steps, ensuring data stays consistent. Thus, we make
the following 3 contributions in this paper:

1) Design of an LLM conversation agent that guides users
through symptom description via structured dialogues,
extracting reproduction parameters for trouble-ticket
construction with 92% accuracy.

2) We demonstrate the practical advantages of our partial
digital twin (PDT) implementation, specifically high-
lighting its ability to substantially reduce memory and
storage overhead.

3) We implement detailed mechanisms to explore violation
of SAGA patterns and consistency violations across
multiple storage tiers (cache, DB, message queues) using
differential analysis of storage layer snapshots.

Since there is no comparable (online) diagnosis mechanism
in the literature, we evaluate the effectiveness of our method-
ology in 3 ways: (a) Number of tests required for diagnosis
against the (unrealizable) ideal case where there are no wasted
tests (i.e., every test brings us closer to determining the root
cause), (b) Diagnosis gain by including tests for specialized
µSs patterns such as SAGA, and (c) Accuracy of trouble ticket

2025 21st International Conference on Network and Service Management (CNSM)

978-3-903176-75-1 ©2025 IFIP

generation and its impact on number of tests required.
We chose a medium sized, 26 µSs online shopping platform

for evaluation [6]. In all cases, the average number of tests
required for diagnosis were only about 1-2 more than for the
ideal diagnosis. After the inclusion of saga-specific tests, the
median diagnosis time decreased from 8.2 to 2.1 minutes and
persistence testing reduced undetected data inconsistencies by
73%. The LLM interface itself was very effective, as it yielded
a trouble ticket with 92% accuracy, as it engages the user in
a dialog to clarify the initial complaint which could be quite
vague. The PDT implementation also maintains operational
isolation where 98% of tests do not impact live transactions.

The rest of this paper is organized as follows: Sec. II
talks about the related work. Sec. III includes some basic
background on µSs, misconfigurations, and PDT. Sec. IV
describes the design of the LLM. Sec. V details on the
PDT environment. Sec. VI presents quantitative results across
multiple fault categories, followed by conclusions in Sec. VII.

II. RELATED WORK

Although µS diagnosis has been extensively explored,
nearly all of the work concerns offline diagnosis, which
involves continuously collecting activity logs and analyzing
those offline [7]. In a highly dynamic DevOps driven envi-
ronment an online diagnosis (based on reports of problems
encountered) and repair also become essential. Traditional
methods, often relying on rule-based systems or statistical
machine learning models, face challenges in managing the
dynamic interactions and sheer volume of telemetry data in
cloud-native environments [8]. While these techniques have
contributed to anomaly detection and fault localization, they
are limited by the need for large-scale labeled datasets or
system-specific models [9]. Recent advancements in Artificial
Intelligence for IT Operations (AIOps) have seen the rise of
intelligent AI agents and the application of LLMs to automate
complex operational tasks, including root cause analysis (e.g.,
RCACopilot [10]), fault detection, and incident response (e.g.,
IRCopilot [11]). These LLM-driven approaches demonstrate
significant potential in processing unstructured operational
data and generating explanatory narratives, moving towards
more autonomous Site Reliability Engineering (SRE).

A critical and pervasive source of failures in µSs stems from
misconfigurations, which are notoriously difficult to diagnose
due to complex interdependencies [12]. While LLMs are
beginning to address these challenges, showing promise in
configuration validation (e.g., Ciri [13]) and even automated
remediation (e.g., LLMSecConfig [14]), they introduce new
concerns such as hallucinations, non-determinism, and the
need for robust safety mechanisms to prevent unintended
system state changes [15]. Furthermore, while LLMs have
shown capabilities in log analysis and generating components
of incident information [16], the direct integration of mis-
configuration identification with the automated generation of
complete and actionable incident tickets remains an area with
significant scope for improvement. Our work aims to bridge

this gap by leveraging LLMs to not only detect misconfig-
urations but also to seamlessly translate these findings into
structured, actionable incident tickets which could then be
exploited to run the most relevant tests and thereby diagnose
the problem more quickly.

III. BACKGROUND

A. Key Elements of Microservices Architecture

The µSs paradigm decomposes applications into indepen-
dent, loosely coupled services, each of which focuses on a
single functionality or encapsulates a single resource for its ex-
clusive management. Typically both the user applications and
infrastructure services (e.g., consistency/synchronization and
authentication services) are implemented as µSs [17]. Each
resource (e.g., a DB table, shared file, etc.) is also wrapped
within an owner µS which provides read/write services for
the resource. The microservice paradigm is often described
in form of desired “patterns” [18]. One important pattern is
SAGA, which is used to ensure consistency across updates to
multiple databases. It is an alternative to the classical “two-
phase commit” (2PC) [19] mechanism, and requires every
transaction to follow the same update order. It uses semantic
locking where the orchestrator sets “pending-update” flags for
DB items, and all µSs need to explicitly avoid using un-
updated data. Such a mechanism is both inelegant (compared
with 2PC) and prone to mistakes, and thus likely to reduce
robustness. In case of unexpected interference, the orchestrator
runs a compensating transaction to correct data values and
the affected µS must retry the operation. Other important
patterns are asynchronous calls to µSs and weak consistency
of updates, both of which can lead to subtle errors.

B. Managing µSs with Service-Mesh

Fig. 1: Service Mesh

Microservices can be scaled up
by creating instances running in
different containers and potentially
working on different data ranges
(e.g., DB shards), and managed col-
lectively by a service-mesh (Fig. 1).
Here we have two instances of the
service in two different containers
(on the same or different servers)
and the desired instance is selected
by the ingress gateway. The in-
stances need not be identical which
allow multiple version to run concurrently. The two domi-
nant open-source, service-mesh implementations are Istio and
Linkerd [20] with former being more capable. Both support
a layer-7 SDN architecture1 per µS, where the data plane is
implemented via a sidecar proxy in each instance.

The proxy acts as an intermediary for the microservice
by intercepting all interactions (e.g., calls to/from other µSs,
storage and network IO, etc.) Two primary types of sidecars

1SDN (Software-Defined Networking) separates control from the underly-
ing hardware and allows software-based management of network.

2025 21st International Conference on Network and Service Management (CNSM)

are (a) Service Mesh and (b) API Gateway. The proxy inserts
itself in the data path transparently (e.g., by terminating the
TCP/TLS connections), and acts on the packets via rule-
matching. There is also a centralized Service Control Plane
(SCP) that provides the rules for engaging the instances,
their configuration, and handles traffic redirection in case
of an instance failure. The proxy connects to the physical
L2/L3 networking infrastructure via a virtual switch. Finally,
ingress/outgress gateways apply entry/exit policies to the
traffic. Ingress policies can enable load balancing across the
instances. Istio provides several logging and monitoring tools.
For example, we used Prometheus [21] to collect µS metrics.

C. Misconfiguration Issues in µSs Systems

The emphasis on parallelism in µS patterns and the use of
settable configuration parameters for them tend to be detrimen-
tal to consistency. For example, in an e-commerce platform
where Redis caching is misconfigured with an excessively
long TTL, the users may see outdated product prices or
inventory levels long after updates were made. Similarly, if
a MongoDB cluster’s read preference is set to secondary
without proper awareness of replication lag, customers might
place orders based on stale product availability data, leading
to overselling [22]. In payment processing systems, overly
aggressive saga timeout settings could prematurely trigger
compensation logic, causing completed transactions to be
erroneously rolled back. For a Cassandra cluster tuned for
“ONE” consistency might return different results to concurrent
queries [23], while a misconfigured Kafka consumer with an
insufficient idempotency window could process duplicate mes-
sages [24], creating phantom orders. Istio’s “circuit breaker”
thresholds, if improperly calibrated, might interpret normal
latency spikes as failures and isolate healthy µSs.

D. PDT Based Online Root Cause Analysis

To support arbitrary but isolated online testing, we explore
the concept of a PDT —a lightweight, on-demand replica of
the most relevant µSs and data used for their online fault
diagnosis. This approach is easily supported by the instance
replication capability of service mesh. The tailored testing
sequences, informed by hierarchical fault categorization, can
localize misconfigurations with high accuracy while maintain-
ing low overhead. While we explored the PDT concept in
our prior work in a simple setting [25], we now add several
components to make it into a comprehensive, online fault
localization mechanism in µSs mesh environment.

Fig. 2: Overview of framework to report and diagnose faults

Fig. 2 depicts our overall architecture which operates
through three distinct phases: (i) Enterprise users interact with
an LLM-powered chatbot that conducts structured dialogues to

extract symptom details and automatically generates trouble
tickets with 92% accuracy. We use a fine-tuned Mistral-
7B model that classifies faults into eight categories through
conversational refinement; (ii) PDT Construction focuses on
building the partial digital twin environment through three
key components: service selection, query transformation, and
traffic mirroring. In our previous work [25] we showed how the
system selects the most relevant microservices by considering
historical error rates, call frequencies, and transaction call
graphs. It then applies query transformation techniques to cre-
ate compressed data subsets that maintain statistical properties
of the original datasets. Traffic mirroring via Istio ensures
that the PDT remains synchronized with production traffic
while operating in complete isolation from the live system.
This foundational approach already demonstrated efficiency,
requiring only about 2 more tests than the theoretical optimal
for complex transaction chains; (iii) Diagnosis encompasses
the actual fault localization process through a hierarchical test
suite, SAGA analyzer, and PPE. The system executes tar-
geted diagnostic tests ordered by relevance scores determined
through zero-shot learning (ZSL), while the SAGA analyzer
reconstructs distributed transaction workflows from Istio trace
data to identify transaction coordination failures. The PPE
validates data consistency across multiple storage tiers (caches,
databases, message queues), and detects the root cause through
systematic execution of the test suite.

IV. LLM BASED INITIAL FAULT CLASSIFICATION

A. LLMs for Trouble Ticket Generation

The emergence of LLMs has opened new frontiers in
automating and assisting the fault diagnosis process. Unlike
static rule-based systems, LLMs can parse unstructured prob-
lem descriptions provided by users, ask contextually relevant
follow-up questions, and iteratively refine their hypotheses.
This capability helps in designing an LLM agent that can
hold a conversation with the user to clarify the problem being
encountered, obtain additional relevant details, and ultimately
generate an accurate trouble ticket, similar to or better than
the one that is traditionally generated manually. The generated
trouble ticket can contain the following elements:

• Problem summary and classification (e.g., network-level
failure in a microservice).

• Contextual information gathered through the conversation
(user environment, service name, timestamps).

• Confidence level of fault classification.
Such automation significantly reduces mean time to detect

(MTTD) and mean time to resolve (MTTR) by bridging
the gap between problem detection and actionable response.
By maintaining conversational logs and user interactions,
the chatbot system creates an auditable trail of diagnostic
reasoning, which can be invaluable for compliance and even
future analyses. The integration of AI-driven conversational
agents with incident management systems (IMS), such as Jira,
can further enhance operational efficiency. Our trouble ticket
generation comprises the following key components:

2025 21st International Conference on Network and Service Management (CNSM)

• User Interaction Layer: A chatbot interface designed to
gather natural language fault reports.

• Classifier: Predicts fault labels with a fine-tuned LLM.
• Follow-up Question Engine: Dynamically generates rele-

vant probing questions based on predicted fault category.
• Trouble Ticket Generator: Compiles structured reports for

issue tracking systems (e.g., ServiceNow, Jira).
This modular design ensures adaptability and allows each
component to be evaluated or replaced independently.

B. Designing LLM Agent

The LLM component operates in two stages: an interactive
dialog stage to clarify symptoms followed by a stage where
a crude classification is generated by the LLM agent. Based
on the types of faults typically encountered, we use the
following fault types for this classification: UN (Unresponsive
Network), SN (Slow Network), US (Unreachable Service),
SS (Slow Service), DE (Data Error), DC (Data Corruption),
UA (Unauthorized Access), and BA (Blocked Access). The
LLM is trained to output exactly one of these labels given
an input query. We utilize Mistral-7B-Instruct-v0.1, a causal
language model optimized for instruction-following tasks. To
adapt it for fault classification, we perform parameter-efficient
fine-tuning using the Low-Rank Adaptation (LoRA) technique.
The training dataset is structured in JSONL format, with each
record containing a user-generated natural language fault re-
port (instruction) and its corresponding fault class abbreviation
(output). The fine-tuning dataset contains instruction-output
pairs specifically designed for parameter-efficient fine-tuning
of the Mistral model using LoRA. It includes variations like
’Payment fails with timeout’→’SS’, ’Wrong inventory count
displayed’→’DE’. Instruction tuning is facilitated through
prompt formatting, where each input is encapsulated in a
structured template. A representative example is as follows:
<s>[INST] <<SYS>>

You are a t e c h n i c a l suppor t engineer . C l a s s i f y the f a u l t
type from user repo r t s . Return only the c o r r e c t f a u l t

abb rev ia t i on from : [UN, SN, US, SS, DE, DC, UA, BA] .
<</SYS>> < f a u l t repor t> [/ INST] [< l abe l >]</s>

It is passed through a tokenizer augmented with special
tokens corresponding to each fault label. The model is resized
accordingly to accommodate these new tokens. Fine-tuning
is configured with LoRA parameters set to a rank of 64,
scaling factor of 128, and a dropout rate of 0.05. Target
layers for LoRA injection include the query, key, value, and
output projections in the transformer attention mechanism [?].
The optimizer used is paged_adamw_32bit, with a cosine
learning rate scheduler and a warmup ratio of 0.03. Training is
conducted over 3 epochs using a gradient accumulation strat-
egy to simulate larger batch sizes in constrained environments.

The performance of LLMs in classification tasks is highly
sensitive to prompt design. In our system, instruction tuning
is employed to align the model’s behavior with the classifi-
cation objective. Prompts are explicitly formatted to include
system-level role instructions and label constraints. Token-
level control is exerted by injecting task-specific tokens such
as [UN], [DC], etc., directly into the tokenizer’s vocabulary.

These tokens are used both during training and inference,
enabling the model to predict labels as discrete token com-
pletions. The instruction format minimizes generation entropy
and constrains the output space, reducing hallucination and
enhancing model reliability. Upon predicting a fault class,
the chatbot initiates a follow-up dialogue to verify or refine
the classification. For instance, if the predicted class is UN
(Unreachable Network), the system asks questions such as
”Are you unable to access the entire application or specific
parts of it?”, ”Does refreshing or restarting the app help?”,
and ”Can you access other websites on the same network?”.
Each class is associated with a curated question set, stored in
a structured format and selected dynamically. These follow-up
interactions emulate the diagnostic process of a human expert
and help in narrowing down the root cause more effectively.

Algorithm 1 shows the overall algorithm for user conversa-
tion and trouble ticket generation. The BuildPrompt function
encodes the conversation history into a structured format
with system instructions. We include special tokens for fault
labels and prompt the model to ask yes/no or multiple-choice
questions. The loop ends when the classifier’s confidence
exceeds a threshold or no new information is gained. At the
end, a fine-tuned BERT encoder model (or the last step of
the decoder) predicts the final fault label. This hybrid design
combines the LLM’s ability to conduct natural conversation
with the precision of an encoder classifier. The module cor-
rectly classified 92% of the samples, significantly higher than
the BERT-only baseline. We can formalize the classification
subtask as mapping a conversation context C to a label y.
Let the dialog be a sequence C = (u1, q1, u2, q2, . . .) of user
answers ui and system questions qi. We train an LLM M
to model P (qi | C) for generating the next question, and
an encoder E to compute P (y | C). The pipeline alternates
between:

• Question Generation: qt = argmaxq P (q | Ct−1;M).
• User Response: Append the actual user reply to C.
• Classification: After T turns, predict y∗ =

argmaxy P (y | CT ;E).
This design allows the model to iteratively focus the user on
the most relevant symptom questions (e.g., “Is the microser-
vice returning error 503 or 504?”) before final categorization.

V. CONSTRUCTION OF PDT AND ITS USE IN DIAGNOSIS

This paper builds on our initial PDT design in [25], which
we describe briefly before detailing the SAGA analysis which
is the main contribution of this paper.

A. Overview of Diagnosis Procedure

To build PDT we exploit Istio features to replicate a limited
number of µSs and portions of databases used by them. To

2BuildPrompt: Constructs the LLM prompt by combining: (a) a static role
description, (b) a truncated or summarized conversation history to fit context
window limits, and (c) optional diagnostic guidance if available.

3ConvergenceReached: Returns True if either: (1) MAX_TURNS is
reached, (2) LLM confidence is high and sufficient information is available
(via a custom heuristic), or (3) the user indicates completion (via keywords
like “done”, “no more info”, etc.).

2025 21st International Conference on Network and Service Management (CNSM)

Algorithm 1 Fault Reporting and Diagnosis with LLM
1: conv hist ←; MAX TURNS ← 5; LLM CONF THRES ← 0.8;
2: turn count ← 0; curr llm pred ←
3: NULL; curr llm conf ← 0.0; prev llm guidance ← ””
4: repeat
5: turn count ← turn count + 1
6: prompt ← BuildPrompt2(conv hist, prev llm guidance)
7: llm response ← Mistral.generate(prompt)
8: conv hist.append(llm response)
9: user input ← GetUserInput()

10: conv hist.append(user input)
11: if turn count ≥ 3 and (turn count mod 3 = 0 or turn count =

MAX TURNS - 1) then
12: (curr llm pred, curr llm conf) ← Mistral.predict(conv hist)
13: if curr llm conf < LLM CONF THRES then
14: prev llm guidance← “The system is uncertain about the diag-

nosis. Ask more targeted questions to differentiate between ” +
GET TOP UNCERTAIN LABELS(curr llm pred)

15: else
16: prev llm guidance ← “The system is leaning towards ” +

curr llm pred + “. Consider questions to confirm/refine details.”
17: end if
18: end if
19: until ConvergenceReached3(conv hist, turn count,

MAX TURNS, curr llm pred, curr llm conf, user input)
20: final label ← Mistral.predict(conv hist)
21: return final label

identify µSs to replicate we assign a fault-score for each µS
based on the analysis of performance metrics obtained from
Prometheus, such as historical error rate (HER), historical
call frequency (HCF), and transaction call graph (TCG). In
computing the score from these measures, we use exponential
smoothing over successive fault episodes and also introduce
penalties to the fault rates based on a predefined threshold
value. Then starting with the µS that encountered the problem
initially, we follow the chain of µSs invoked and add the
ones with highest fault score to the PDT cache. Each round of
addition is followed by the diagnosis procedure so that further
addition happens only if the root cause cannot be determined
by testing the µSs added so far.

Since replicating a lot of data is expensive, we use an
innovative schemes that we call query transformation (QT).
The idea is to judiciously choose entries from large tables,
and alter the queries on the fly to refer to only the limited
data range stored in PDT. Joins present a significant challenge
in this regard since we ideally want the similar join selectivity
across the compressed tables as the original. Our current
solution is based on the detailed knowledge of the tables
used in application. We use stratified sampling of tables,
where data is divided into homogeneous subgroups (strata)
based on important attributes like time ranges, transaction
amounts, or customer demographics. For queries that involve
summary statistics, we aggregate the tables to ensure that the
statistics will be similar to those using the real tables. The
data to be included is determined by analyzing the queries
and choosing the tuples that are most frequently invoked.
We then implement in-memory caching using a Redis cache
server. Our PDT employs polyglot persistence with Redis
caching, MongoDB for semi-structured data, and PostgreSQL
for ACID-compliant operations, choosing optimal stores based

on consistency requirements.
Our diagnosis is triggered by a reported problem in the

trouble ticket, followed by any addition to the cached µSs as
described above. The test set is determined for each fault-type
from a neural net. The neural net is constructed using ZSL [26]
to assign a relevance level to each test to the fault category.
The tests are run sequentially in the order of decreading
relevance. If all such tests are used up without finding the
misconfiguration, we add more µSs to the PDT as described
above and repeat. Thus in the worst case, it is possible that all
µSs need to be replicated but this is extremely unlikely and
never observed in our tests.

B. Analysis of SAGA Issues

Once a potential fault category is identified (especially
if it involves transaction anomalies), we invoke the Saga
Analyzer to examine distributed transaction state. The Saga
Analyzer gathers all relevant trace spans associated with a
particular transaction, which provides details such as the
service name, event timestamp, operation performed (e.g.,
”Reserve Items”), and its outcome (success or failed) as shown
in Fig. 3. These individual events are then sorted by their
logical time, ensuring that their chronological order within
the transaction is maintained. Then, they are grouped together
based on the specific instance of the saga they belong to.

Fig. 3: SM generation flowchart

From this data, the
Analyzer constructs a
State Machine(SM),
which records the
progress of the overall
goal (e.g., order
placement). The Saga
Analyzer then moves
into the Failure Injection
Analysis phase, where
it actively simulates potential failures to pinpoint the exact
step that might have gone wrong. This diagnostic process
employs two key strategies. The first is Timeout Simulation.
Here, the Analyzer essentially ”pauses” or ”aborts” a specific
transaction step within a cloned version of the state machine.
By doing so, it observes whether the system correctly triggers
its compensating transactions, i.e., the rollback mechanisms
designed to undo any changes made by preceding successful
steps. If a timeout at a particular step leads to an unexpected
system state or a failure to compensate, it indicates a problem
with the timeout configuration or the compensation logic
for that specific step. The second strategy is Compensation
Replay. In cases where a step has already failed in the original
trace, the Analyzer takes the constructed SM and, starting
from the failed step, simulates walking backward through
the transaction. During this backward walk, it executes
the compensation functions associated with each preceding
successful step. The goal is to see if the system successfully
rolls back to a consistent state. If the rollback process
halts prematurely or leaves the system in an inconsistent

2025 21st International Conference on Network and Service Management (CNSM)

state, it signals an issue with the compensation logic at that
particular step. This targeted replay capability is invaluable for
diagnosing complex distributed transaction bugs and cannot
be done without the PDT. The Analyzer effectively narrows
down issues to specifics like ”Service X never received the
compensating call” or ”the timeout for service Y was set too
short.” For concept drift adaptation, the algorithms provide
two mechanisms: (1) Continuous cache updates based on
fault-score, which prioritizes recently problematic services,
and (2) Online learning capability where new fault patterns
update the relevance scores.

The system also employs the Persistence Probe Engine
(PPE) to scrutinize the data layer for anomalies. This engine
conducts a series of read-only tests across various persistence
tiers, including caches, DB, and message queues, focusing
on specific data keys that might have been affected by a
transaction. For each data key under investigation, the PPE
first reads its value from the cache, then from the DB, and
finally peeks into any relevant message queue entries without
consuming them. With this information in hand, it performs
a series of tier-wise checks. For cache tiers, such as Redis
or Memcached, it verifies the Time-To-Live (TTL) values and
version tags. An entry is immediately flagged as ”stale cache”
if its TTL has expired or, critically, if its version timestamp is
older than the corresponding timestamp in the DB, indicating
outdated data.

When examining databases like MongoDB, the probe com-
putes a quick checksum or hash over critical fields, ensuring
it’s version-aware. This allows it to detect subtle inconsisten-
cies like partial writes or missed updates to a record, flagging
them as ”DB write inconsistency.” For message queues like
Kafka, the probe scrutinizes offsets and de-duplication mark-
ers. It can identify if a message queue has duplicate entries for
a key or if there’s a violation of message order, reporting these
as ”Queue anomaly.” These probes operate with low priority,
often using snapshot reads, to avoid any interference with live
data. The anomalies are collected and reported per data key,
which is crucial for pinpointing the exact entity whose data
has diverged or become inconsistent across the distributed
persistence landscape.

Table I presents an extended test suite (we already have 26
tests [25]) designed to validate the behavior and reliability of
Saga-based transaction analyzers and persistence probes. The
suite includes nine new tests covering log traceability (T1),
compensating actions (T2), rollback consistency (T3), cache
TTL integrity (T4), replica checksum validation (T5), DB
versioning (T6), Kafka consumer lag (T7), replay idempotency
(T8), and cache-to-database freshness (T9). Each test specifies
a command and a deterministic pass/fail condition to ensure
system correctness under distributed failure scenarios.

VI. EXPERIMENTAL EVALUATION

A. Experimental Setup

We evaluate on a synthetic online shopping system con-
sisting of 26 µSs [6]. These include services for user man-
agement, product catalog, shopping cart, order processing

TABLE I: Extended Test Suite for Saga Analyzer and Persis-
tence Probes

ID Commands to Run Pass/Fail Conditions
T1 istioctl proxy-config log <pod> –

level debug
1 iff saga transaction logs captured
for each step.

T2 curl -X POST <order api> 1 iff compensating transactions in-
voked on simulated timeout.

T3 python saga replay.py –saga-
id=<id>

1 iff full rollback of saga confirmed
in replay.

T4 redis-cli –scan — while read key; do
redis-cli ttl $key; done

1 iff no stale TTLs in cache keys
(TTL >0 for active keys).

T5 python db checksum.py –
table=orders

1 iff consistent row checksums
across replicas.

T6 db-query ”SELECT version, up-
dated at FROM orders WHERE
id=<order id>;”

1 iff DB record version matches
latest (no partial update).

T7 kafka-consumer-groups.sh –
bootstrap-server <broker> –
describe –group <group>

1 iff consumer offset in sync with
latest broker offset (no lag).

T8 kafka-replay-test.sh –topic=<topic>
–replay-offset=<offset>

1 iff replay delivers all events ex-
actly once (no duplicates).

T9 python cache freshness probe.py –
key=<session>

1 iff cache value freshness < 5s
w.r.t DB timestamp.

(with sub-services for payment, shipping, inventory, billing),
as well as ancillary functions (review/blog, recommendations,
analytics). Each service is a separate Kubernetes deployment
with its own data store. This platform is based on an extended
version of the open-source µSs-demoscaled up to cover more
realistic e-commerce functions. Services communicate over
HTTP/gRPC, and shared Kafka topics and Redis instances
implement async workflows and caching. All inter-service
traffic is managed by Istio, which provides transparent sidecar
proxies. We use JMeter to generate user loads. Our deployment
uses 3 microservice replicas per service; we do horizontal
autoscaling 1-5 pods based on CPU>70%. JMeter generates
1000 req/s baseline with 2500 req/s bursts. Fault injection
follows production incident distributions: 40% network, 35%
configuration, 25% data corruption.

Scenarios include browsing products, adding to cart, check-
ing out, and administrative tasks (stock replenishment). We
generate a realistic mix of steady background load and burst
events (to mimic holiday spikes). While the system runs
under these conditions, we inject faults. We implement Istio
fault-injection (HTTP aborts or delays) to simulate network
latency or errors; custom scripts to corrupt data in the DB;
and disabling Kafka brokers to drop messages. Each fault
injection is tagged so we know ground truth. The PDT is
deployed alongside production: for each production request of
interest, Istio’s traffic mirroring feature replicates the request
into the PDT namespace. The mirrored requests are routed
to the replicated service instances in the PDT (which run
the same code and have a subset of data). This way, each
real user interaction can be played in the twin for diagnosis
without affecting the real user. Test scenarios cover a wide
fault space. Saga faults include introducing delays in a single
service (to trigger compensation paths), failing a compensation
step, or causing multi-step timing anomalies. Persistence faults
include injecting outdated TTLs in Redis (to cause stale reads),
corrupting a MongoDB document (to simulate phantom reads),
and duplicating Kafka offsets. We also test independent faults

2025 21st International Conference on Network and Service Management (CNSM)

like a service crash (generic service-unavailable), for which
the LLM should classify as “Unreachable Service.”

B. Rationale for Partial Digital Twin

The key purpose of PDT mechanism is to enable ef-
fective diagnosis using the recent snapshot of the system
while minimizing the resource consumption. This is done via
Kubernetes-driven dynamic orchestration, which selectively
provisions µSs based on fault diagnosis demands rather than
replicating all services in the affected transaction statically.
Three architectural innovations drive this efficiency: partial
data mirroring synchronizes only recent DB partitions (≤72h)
and active cache keys (TTL ≤ 300 s), reducing storage over-
head by 86.3% compared to full-system cloning; tiered service
prioritization classifies services into critical-path components
(e.g., API gateway, always replicated), service dependencies
(e.g., order-service, activated when checkout-service fails too),
and low-priority modules (e.g., analytics-service, provisioned
in 4% of cases); and overhead-aware scheduling leverages
Kubernetes HPA to trigger provisioning only when test queues
exceed five pending tasks. This approach reduces median
CPU utilization by 72% (32 cores → 9 cores) and memory
consumption by 85% (128GB → 19.2 GB).

TABLE II: Resource Utilization Comparison Between Full
Cloning and Incremental PDT Strategies

Metric Full Cloning Incremental PDT Reduction
CPU Cores 32 9 ± 1 72%
Memory (GB) 128 19.2 ± 2.4 85%
Storage (GB) 1040 142.3 ± 15.7 86.3%

The storage savings exhibit nonlinear acceleration at scale.
For 78 services (3 instances of the 26 services), our proposed
PDT requires merely 218 GB versus 3,600 GB under full
cloning as delta snapshots and LRU cache eviction minimize
redundant data replication. For instance, in our PDT, launching
just five µSs requires provisioning fewer containers, initializ-
ing smaller data subsets, and activating minimal service de-
pendencies, resulting in faster deployment and lower baseline
resource consumption. By contrast, full-system cloning for an
order checkout transaction replicates all 18 services (out of
total 26), many of which are memory-heavy or rarely involved
in faults (e.g., the analytics-service alone consumes 28 GB of
memory but is relevant in ≤2% of cases), leading to substantial
and unnecessary utilization of CPU cores and memory.

C. Initial Fault-Type Classification Effectiveness

TABLE III: Effectiveness w/o and w/ LLM fine-tuning

Parameter w/o FT w/ FT
Overall Accuracy 63% 92%
Ambiguity Score 58% 90%

Table III lists the overall average classification accuracy,
which is high enough to be usable in practice. To address
the evaluation comprehensiveness, we conducted testing on
12,400 fault reports collected from three different deployment

TABLE IV: Normalized Confusion Matrix for LLM Fault
Classification (Actual vs. Predicted)

Predicted Classification

UN SN US SS DE DC UA BA

R
ea

l
C

la
ss

ifi
ca

tio
n

UN 93% 2% 0% 0% 0% 0% 3% 2%
SN 4% 91% 2% 2% 0% 0% 1% 0%
US 0% 2% 88% 4% 0% 0% 6% 0%
SS 0% 6% 2% 89% 0% 0% 0% 3%
DE 0% 0% 0% 1% 88% 8% 0% 3%
DC 0% 0% 0% 0% 6% 89% 0% 5%
UA 2% 0% 2% 0% 0% 0% 95% 1%
BA 2% 0% 0% 1% 1% 1% 2% 93%

scenarios of our baseline application. These reports were gath-
ered from: (i) a standard deployment running under normal
load conditions (n=4200), (2) a high-stress variant with 2.5x
traffic load (n=4100), and (3) a multi-tenant configuration with
shared databases and 3 instances of the application (n=4100).
Note that we used 7B Mistral model; we expect that bigger
and more advanced emerging LLM models would yield even
higher accuracy. The ambiguity score measures the LLM’s
success rate in classifying faults from vague or imprecise user
descriptions, after engaging in a clarifying dialogue. The goal
of the LLM based user dialog is to accurately predict the
fault-type so that the diagnosis procedure does not conduct
irrelevant tests. Table IV presents the confusion matrix for
this classification, where each cell represents the percentage
of samples from an actual fault class that were classified
into a predicted class. As seen, the diagonal elements are
predominantly close to 90%, reflecting strong model per-
formance in most fault classes. However, some off-diagonal
elements reveal concentrated misclassifications. For example,
the SN and SS classes exhibit mutual misclassification rates.
This is likely due to symptom overlap, as both conditions
often manifest elevated latency and degraded user experiences.
Similarly, the confusion between DE and DC can be attributed
to shared symptoms which complicates their separation based
solely on observable metrics. Such confusion can actually be
exploited to reduce the number of tests; for example, if the
DE related tests do not reveal any problem, it would be useful
to try DC tests next.

Fig. 4 illustrates the relationship between the number of
words in an input prompt and the latency (in milliseconds)
for two different language models: BERT and Mistral. It
shows that Mistral consistently has lower inference latency
than BERT as prompt length increases from 10 to 50 words.

Fig. 4: Input Prompt Length (number
of words) vs. Latency

This efficiency in
Mistral-7B is due
to architectural
optimizations like
the Grouped-Query
Attention (GQA)
and Sliding Window
Attention (SWA). Its use
of parameter-efficient

fine-tuning (LoRA) and 4-bit quantization further contributes
to its faster processing speeds and lower memory footprint,
making it more suitable for real-time interactive dialogues.

2025 21st International Conference on Network and Service Management (CNSM)

D. Effectiveness of Diagnosis Procedure

The diagnosis procedure utilizes a PDT framework to iden-
tify faults without impacting the live production system. When
a problem is reported, the system first identifies a subset of
relevant microservices for replication within the PDT. This se-
lection is based on a fault-score that considers historical error
rates and call frequencies. Once replicated, a series of hierar-
chical tests are performed on these microservices within the
isolated PDT environment. The selection and ordering of these
tests are determined using a Zero Shot Learning (ZSL) neural
network, which assesses the relevance of various diagnostic
tests to the reported fault based on semantic features. The
process continues until the root cause of the misconfiguration
is found, or further services are added to the PDT if the initial
set of tests is inconclusive [25]. Specifically, the Saga Analyzer
diagnoses distributed transaction failures by constructing a
SM from trace data of reported transactions. It then performs
failure injection analysis through timeout simulations and
compensation replays. Then it compares the outcomes to
expectations to identify the faulty step. This targeted replay
helps pinpoint hard-to-reproduce distributed transaction bugs.
Fig. 5 reveals a critical insight into our generic diagnostic
strategy which is the number of tests required to pinpoint
a misconfiguration does not scale proportionally with the
increasing number of µSs in the affected chain, but rather
quickly plateaus. This non-linear behavior, where the curve
flattens around 10-11 affected µSs and remains stable, sig-
nifies that our system efficiently localizes misconfigurations
without incurring escalating testing overheads.

1) Diagnosis With SAGA Tests: The underlying reason for
this plateau lies in the fundamental nature of misconfiguration
faults and our intelligent diagnostic approach. Unlike complex
transactional faults that might involve a cascade of failures
across a SAGA, misconfigurations are often static errors like
incorrect environment variables, incorrect API endpoints, or
mismatched schema versions, that are highly localized and
manifest predictably. Our diagnostic system is designed to
leverage this characteristic by employing a highly targeted
search strategy, akin to a binary search or dependency-aware
probing rather than an exhaustive sweep. For instance, if
a misconfigured DB connection in the ‘payment-service‘ is
the root cause, a small set of tests targeting its immediate
dependencies and configuration will quickly expose the issue,
irrespective of whether the overall transaction involves 5 or
15 downstream services. Adding more services to the chain
beyond this point does not introduce new types of miscon-
figurations that necessitate a vastly expanded test suite. The
existing, efficient set of tests remains sufficient to identify
the limited set of common misconfiguration patterns. This
demonstrates that our method effectively bounds the diagnostic
effort, ensuring that as the scope of an affected chain grows,
the system’s ability to find misconfigurations does not degrade,
maintaining a consistent and low number of required tests.

Fig. 6 illustrates the relationship between the number of
steps in a saga-based transactional workflow and the cor-

Fig. 5: # of µSs in the diagnosed
chain vs # of tests required to find
the misconfiguration

Fig. 6: # of steps for SAGA re-
lated faults for increasing number
of µSs chain length

responding number of diagnostic steps required for fault
diagnosis for saga specific faults. The x-axis represents the
number of µSs involved in the transactional chain, while
the y-axis reports the number of test steps executed by the
diagnostic framework. The graph compares two curves: the
blue line represents the Theoretical Optimal, denoting the
minimum number of tests achievable under ideal conditions
(which implies using the highest test-fault relevance scores and
the flowchart hierarchy for test execution demonstrated in our
previous work [25]), while the red line shows the performance
of the Proposed PDT. Notably, the PDT curve closely follows
the theoretical optimal across the entire range, indicating
that the tool achieves near-optimal diagnostic efficiency. Our
previous work lacks saga specific tests and semantic insight
into the transactional context, thus requiring broader brute-
force coverage of service states and potential compensation
paths. In contrast, the optimized PDT, integrated with the
saga analyzer, exhibits near-linear scaling. The apparent linear
increase in the number of tests required specifically illustrates
the diagnostic complexity as the length of a single SAGA
transaction chain increases, with the x-axis representing the
number of µSs participating in that particular SAGA, not the
total number of µSs in the entire system. For an ecosystem
comprising hundreds of µSs, a typical fault diagnosis does not
necessitate activating and testing every single one. Instead, a
fault usually manifests within a specific business transaction,
which might involve a SAGA spanning, for example, 5, 10,
or up to 15 µSs as shown in the graph. Therefore, if a system
possesses 100 µSs but a given fault occurs within a SAGA
involving only 7 of them such as an order-service interacting
sequentially with payment-service, etc., our Proposed PDT
will operate within the complexity bounds corresponding to
7 µSs on the graph, bypassing the remaining 93 services.

2) Performance for Different Persistent Layers: Fig. 7
provides empirical results on the diagnosis success rate of the
persistence probes when applied to each memory tier. The x-
axis represents the three targeted persistence layers namely
cache, DB, and message queue, while the y-axis measures the
number of faults correctly identified by the probes. Each bar
in the chart corresponds to the count of faults detected for
that memory category, derived and aggregated from repeated
diagnostic runs across a diverse set of injected faults. The
cache probes achieved a detection accuracy of approximately
93%. Despite their lightweight execution, these probes suffer
from limitations inherent to eventual consistency and race

2025 21st International Conference on Network and Service Management (CNSM)

conditions—common in high-throughput µSs—where a cache
entry might appear valid in isolation but be globally outdated.

The DB probes performed best, with
a detection accuracy exceeding 94%.

Fig. 7: PDT performance by
memory-level categorization

These tests employ
version-aware
checksumming and
snapshot reconciliation
techniques. For large
record sets or under
high write load,
computing full-row
hashes introduces
a latency overhead of up to 6%, which the system
mitigates through deferred checksum scheduling or sampling
techniques. The message queue probes yielded the lowest
accuracy, around 87%. The corresponding tests operate by
scanning the consumer offsets, deduplication markers, and
message ordering constraints for the target keys. To validate
consistency, the system replays message consumption from
a specific offset and verifies whether all expected events
are delivered once and in order. Failures are recorded if
duplicate messages are observed, or if certain events are
missing or delayed beyond acceptable bounds. The relative
weakness of this layer’s detection accuracy is due to the
asynchronous and distributed nature of message queues.
Offset drift and network jitter contribute to anomalies that
evade snapshot-based inspection, making full detection
difficult in this tier.

In the message queues, duplicates and reordered messages
were produced by manipulating Kafka offset and replication
configurations. After fault injection, the PDT issued the probes
and logged their ability to correctly detect each anomaly based
on pre-known ground truth. The results highlight the diag-
nostic trade-offs inherent in persistence-layer testing. While
DB probes are the most robust, their computational cost is
higher. Cache probes are fast but more error-prone due to
their distributed nature. Queue probes struggle with detection
accuracy due to the timing and ordering complexity of modern
event-driven systems. These results underscore the need for
multi-tiered diagnostic strategies that adjust not only their
probing logic but also their statistical thresholds and frequency
depending on the underlying memory model.

VII. CONCLUSIONS

In this paper, we introduced a PDT framework for online
diagnosis of faults in µSs, incorporating a conversational
LLM assisted interface and specialized testing. The LLM
component demonstrated 92% accuracy in the initial trouble
ticket generation, and the PDT implementation showed 72%
reduction in CPU and 85% in memory compared to full
cloning, while maintaining operational isolation. The hier-
archical testing strategy, especially with the integrated saga
and persistence analyzers, achieved near-optimal diagnostic
efficiency, requiring only 1-2 more tests than the theoretical
ideal. In the future, we will explore continuous learning

mechanism and integrate sliding-window correlation analysis
for detecting intermittent faults.

REFERENCES

[1] Olaf Zimmermann. Microservices tenets. Computer Science-Research
and Development, 32(3):301–310, 2017.

[2] Mojtaba Shahin. Architecting for devops and continuous deployment.
In Proc. of ACM ASWEC, pages 147–148. ACM, 2015.

[3] Shenglin Zhang, Sibo Xia, Wenzhao Fan, et al. Failure diagnosis in
microservice systems: A comprehensive survey and analysis. ACM
Transactions on Software Engineering and Methodology, 2024.

[4] Shenglin Zhang, Pengxiang Jin, Zihan Lin, et al. Robust failure diagnosis
of microservice system through multimodal data. IEEE Transactions on
Services Computing, 16(6):3851–3864, 2023.

[5] Nabor Mendonça, Craig Box, Costin Manolache, and Louis Ryan. The
monolith strikes back: Why istio migrated from microservices to a
monolithic architecture. IEEE Software, 38:17–22, 09 2021.

[6] “GitHub - GoogleCloudPlatform/microservices-demo” https://github.
com/GoogleCloudPlatform/microservices-demo. [Accessed 02-08-
2024].

[7] Adrian Ramsingh, Jeremy Singer, and Phil Trinder. Classifying the
reliability of the microservice architectures. 2022.

[8] Manish Shetty, Yinfang Chen, et al. Building ai agents for autonomous
clouds: Challenges and design principles. In Proceedings of the 2024
ACM Symposium on Cloud Computing, pages 99–110, 2024.

[9] Arthur Vitui and Tse-Hsun Chen. Empowering aiops: Leveraging large
language models for it operations management, 2025.

[10] Yinfang Chen, et al. Automatic root cause analysis via large language
models for cloud incidents. In Proceedings of the Nineteenth European
Conference on Computer Systems, pages 674–688, 2024.

[11] Xihuan Lin, Jie Zhang, et al. Ircopilot: Automated incident response
with large language models. arXiv preprint arXiv:2505.20945, 2025.

[12] Shenglin Zhang, Sibo Xia, Wenzhao Fan, et al. Failure diagnosis in
microservice systems: A comprehensive survey and analysis, 2024.

[13] Xinyu Lian, Yinfang Chen, et al. Configuration validation with large
language models. arXiv preprint arXiv:2310.09690, 2023.

[14] Ziyang Ye, Triet Huynh Minh Le, and M Ali Babar. Llmsecconfig:
An llm-based approach for fixing software container misconfigurations.
arXiv preprint arXiv:2502.02009, 2025.

[15] Michael Assad, et al. Can my microservice tolerate an unreliable
database? resilience testing with fault injection and visualization. Proc.
of IEEE/ACM 46th ICSE, pages 54–58, 2024.

[16] Zhihan Jiang, et al. L4: Diagnosing large-scale llm training failures via
automated log analysis. arXiv preprint arXiv:2503.20263, 2025.

[17] Wubin Li, Yves Lemieux, Jing Gao, et al. Service mesh: Challenges,
state of the art, and future research opportunities. In Proc. of IEEE
SOSE, pages 122–1225. IEEE, 2019.

[18] Chris Richardson. Microservices patterns: with examples in Java. Simon
and Schuster, 2018.

[19] George Samaras, Kathryn Britton, Andrew Citron, and C Mohan. Two-
phase commit optimizations in a commercial distributed environment.
Distributed and Parallel Databases, 3(4):325–360, 1995.

[20] Thilo Fromm. Performance benchmark analysis of
istio and linkerd. https://kinvolk.io/blog/2019/05/
performance-benchmark-analysis-of-istio-and-linkerd/, May 2019.

[21] Meixia Yang and Ming Huang. An microservices-based openstack
monitoring tool. In Proc. of IEEE ICSESS, pages 706–709. IEEE, 2019.

[22] Kristina Chodorow. Scaling MongoDB: Sharding, Cluster Setup, and
Administration. ” O’Reilly Media, Inc.”, 2011.

[23] Abdul Wahid and Kanupriya Kashyap. Cassandra—a distributed
database system: An overview. Emerging Technologies in Data Mining
and Information Security: Proceedings of IEMIS 2018, Volume 1, pages
519–526, 2019.

[24] Sean Rooney, Peter Urbanetz, Chris Giblin, et al. Kafka: the database
inverted, but not garbled or compromised. In 2019 IEEE International
Conference on Big Data (Big Data), pages 3874–3880. IEEE, 2019.

[25] Sourav Das, Jit Gupta, and Krishna Kant. Online diagnosis of mi-
croservices based applications via partial digital twin. Proc. of IEEE
NCA conference, Oct 2024. Available at https://www.kkant.net/papers/
Microservices diagnosis.pdf.

[26] Farhad Pourpanah, Moloud Abdar, Yuxuan Luo, et al. A review of
generalized zero-shot learning methods. IEEE transactions on pattern
analysis and machine intelligence, 45(4):4051–4070, 2022.

2025 21st International Conference on Network and Service Management (CNSM)

