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Abstract—QUIC has emerged as a fundamental transport pro-
tocol for modern Internet infrastructure, serving as the founda-
tion for HTTP/3. Although QUIC implements congestion control
algorithms (CCA) to ensure fair network resource allocation, its
user-space implementation architecture creates significant secu-
rity vulnerabilities through accessible parameter manipulation.
As transport layers become increasingly programmable, these
vulnerabilities represent a broader security challenge for future
network infrastructures where applications may deploy custom
transport implementations. This paper presents a systematic
analysis of selfish behaviors in QUIC through deliberate con-
gestion control parameter (CCPM). Using the aioquic implemen-
tation, we experimentally demonstrate how strategic parameter
manipulation in both NewReno and CUBIC algorithms provides
substantial unfair bandwidth (BW) advantages. NewReno exhibits
a major vulnerability with Loss Reduction Factor (LRF) and
Congestion Avoidance Growth Rate (CAGR) manipulation, while
CUBIC demonstrates better resilience, but remains exploitable,
with combined LRF (Bcubic) and Maximum Idle Time (MIT)
manipulations.

Index Terms—QUIC, Congestion Control, Selfish Behavior,
NewReno; CUBIC, Network Fairness, Transport Protocols, QoS,
CCPM Attack, Programmable Transport Layer, QUIC Security

I. INTRODUCTION

QUIC is a transformative transport protocol that addresses
TCP limitations through enhanced performance and security
mechanisms [1]. Evolving from Google’s experimental im-
plementation in 2012 to IETF’s standardized RFC 9000 in
2021 [2], QUIC represents a fundamental paradigm shift in
transport architecture [3]. Built on the top of UDP, QUIC
implements connection-oriented semantics with reduced la-
tency, enhanced reliability, and embedded TLS 1.3 security
to overcome TCP’s limitations in high-latency, loss-prone
networks [4], [5]. Since Chrome’s initial deployment of QUIC
in 2014 [6], QUIC has achieved substantial Internet-scale
adoption, with approximately 35% of websites supporting
HTTP/3 and an additional 8.6% supporting QUIC for other
applications [7]. This widespread deployment is particularly
evident in multimedia applications such as real-time streaming
and interactive services, with major technology companies
including Google, Meta, Microsoft, Cloudflare, and Akamai
integrating QUIC into their production infrastructure [4].

A critical aspect of QUIC’s performance is its flexible
CCA framework, which allows different algorithms to be
implemented and configured [8]. Although RFC 9002 specifies
a CCA similar to TCP NewReno [8], most implementations
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default to CUBIC, with BBR available as an optional deploy-
ment [9]. QUIC’s performance and fairness critically depend
on its configurable parameters that vary across CCA [3], [9].
However, QUIC’s user-space implementation [3], [10] enables
rapid deployment [6] and exemplifies how programmable
transport layers allow applications to implement custom trans-
port mechanisms independent of kernel constraints [11]. This
design approach introduces new security concerns, as demon-
strated in this investigation, where transport layer protocol
(QUIC) implementation (e.g. aioguic [12]) becomes vulner-
able to our proposed CCPM (Congestion Control Parameter
Manipulation) attack. Unlike kernel-based TCP implemen-
tations, where parameter modification requires administra-
tive privileges [13], QUIC’s user-space nature may enable
selfish clients to manipulate congestion control parameters
more easily [10]. This accessibility may give selfish clients
an opportunity to gain unfair bandwidth advantages through
aggressive parameter tuning. Such behavior can potentially
cause bandwidth starvation and, in extreme cases, denial-of-
service (DoS) conditions for normal clients on shared links.

Although extensive research has examined selfish behavior
and parameter manipulation in TCP environments [13]-[15],
and other security issues in QUIC [16]-[19], comprehensive
investigations of congestion control parameter manipulation
in QUIC implementations are still lacking. Although TCP-
focused congestion control studies [13]-[15] are limited to
theoretical analysis due to kernel space implementation con-
straints [20], QUIC’s user space architecture with pluggable
congestion control [2], [8] enables direct parameter manip-
ulation. This creates new security vulnerabilities, such as
the CCPM attack, which is not present in traditional TCP
implementations. To address this critical knowledge gap, this
research systematically investigates the manipulation of con-
gestion control parameters in QUIC and its implications for
network fairness. We conducted comprehensive experiments
with NewReno and CUBIC algorithms using the aioquic
implementation [12] in controlled network environments. Our
experimental results demonstrate that NewReno exhibits ex-
treme vulnerability with Loss Reduction Factor (LRF) and
Congestion Avoidance Growth Rate (CAGR) manipulation,
allowing monopolization of up to around 85% of available
bandwidth at network bottlenecks. CUBIC demonstrates better
resilience due to its cubic window growth function. However, it
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remains exploitable with combined LRF (B.ypic) and Maximum
Idle Time (MIT) manipulation, which allows a selfish client to
gain up to 59% of bandwidth resources while degrading the
Quality of Service (QoS) of the normal (legitimate) client.

The contribution of this paper can be summarized as fol-
lows:

o We present the first empirical study examining the ex-
ploitability of QUIC CCA (NewReno and CUBIC) from
the security perspective;

o« We developed a testbed based on aioquic to evaluate
the gains of selfish QUIC clients through manipulating
congestion control parameters;

e Our empirical study reveals a major vulnerability that
selfish clients can achieve significant bandwidth (BW)
advantages through strategic parameter manipulation, re-
veals multiplicative vulnerability effects.

The remainder of this paper is organized as follows. Section
IT reviews the background and related work. Section III details
our empirical methodology and evaluation. Section IV presents
the overall discussion. Section V concludes the paper.

II. BACKGROUND AND RELATED WORK

QUIC’s congestion control architecture provides enhanced
bandwidth management through three key design principles.
First, enhanced ACK frames deliver richer feedback than
conventional TCP acknowledgments, allowing more precise
transmission rate adjustments [8]. Second, seamless connec-
tion migration preserves the congestion control state across
network transitions, maintaining optimization when connec-
tions move between interfaces [2]. Third, flexible algorithm
selection allows endpoints to deploy specialized congestion
control beyond baseline specifications [8]. QUIC supports
many CCA. Among them, NewReno and CUBIC [8] are
widely adopted by QUIC implementations.

A. NewReno Congestion Control Algorithm

NewReno serves as QUIC’s reference CCA [8], operating
through three synchronized states: Slow Start, Congestion
Avoidance, and Fast Recovery. As shown in Figure la, the
algorithm begins with exponential window growth in Slow
Start until reaching the slow start threshold (ssthresh) or
detecting packet loss. It then transitions to linear growth in
Congestion Avoidance, increasing by one maximum datagram
size per round trip time (RTT). Upon packet loss, Fast Recov-
ery immediately halves the congestion window and updates
ssthresh, creating a feedback loop where the algorithm returns
to Congestion Avoidance with adjusted parameters. This tri-
state coordination enables adaptive transmission rate control
while maintaining network stability [21].

B. CUBIC Congestion Control Algorithm

CUBIC employs a time-based cubic function, W (t) =
C(t — K)® + Wyae, where C is the scaling constant, K
represents the time to reach W, 4., and W,,,,, is the window
size at the previous congestion event [22]. Unlike NewReno’s
RTT-dependent approach, CUBIC synchronizes with elapsed
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Fig. 1: Congestion Window Behavior Comparison Over Time

time since congestion, creating the concave-convex pattern
shown in Figure 1b. The algorithm operates through three
phases: conservative growth approaching W,,,, (concave),
stabilization at the inflection point, and aggressive bandwidth
probing beyond W,,,, (convex). This time-based coordina-
tion enables consistent behavior regardless of RTT variations,
making CUBIC suitable for high-speed networks while bal-
ancing caution near known congestion points with aggressive
exploration of new bandwidth opportunities [22].

C. Selfish Behavior studies

Studies on selfish behavior in transport protocols has pri-
marily focused on TCP environments. Akella et al. [13]
pioneered game-theoretic analysis of TCP congestion control,
demonstrating that users can achieve significant gains through
strategic manipulation of additive increase and multiplicative
decrease (AIMD) parameters. Their work established that
protocol design decisions fundamentally influence network
stability under selfish user behavior. In addition, Zhang et
al. [14] extended this analysis through the TCP Connection
Game, quantifying how opening multiple concurrent connec-
tions could lead to potentially unbounded efficiency losses.
Chen et al. [15] provided contemporary frameworks for an-
alyzing competing TCP implementations, demonstrating how
selfish behavior leads to suboptimal network utilization while
identifying potential mechanisms to maintain efficiency.

However, these TCP-focused congestion control related
studies [13]-[15] face a fundamental limitation in their ap-
plicability to QUIC due to architectural differences between
the protocols. While previous research has been primarily
constrained to theoretical analysis of TCP behavior, examin-
ing generalized AIMD parameters through analytical models
and simulation studies [23], [24] rather than actual param-
eter manipulation, due to TCP’s kernel-space implementation
where the CCA requires kernel recompilation for updates [20],
QUIC’s user-space architecture fundamentally transforms this
landscape [2]. Its congestion control implementation enables
easy upgrades and supports configuration of different CCA for
applications [8], allowing future changes to be made without
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kernel modifications. This architectural shift from theoretical
modeling of fixed kernel implementations to direct algorithm
customization expands the scope for potential manipulation far
beyond the simulation-based parameter studies conducted for
TCP environments.

Although multiple studies have focused on QUIC perfor-
mance optimization through legitimate parameter tuning, no
research work has systematically investigated the security
implications of deliberate parameter manipulation for unfair
bandwidth advantage. Letourneau et al. [25] demonstrated
early exploitation of QUIC’s CCA in Low Latency, Low Loss
and Scalable Throughput (L4S) environments through ECN-
based attacks targeting low-latency flows, though their work
focused on specific L4S vulnerabilities rather than systematic
manipulation strategies. Kharat and Kulkarni [26] achieved
35% throughput increases through congestion window opti-
mizations, while Han et al. [9] demonstrated 10.87% higher
throughput with modified parameters for performance en-
hancement purposes. These studies, however, operate under the
assumption of benevolent usage and focus solely on legitimate
performance improvements rather than analyzing exploitation
potential.

The complexity of detecting implementation-level param-
eter differences is underscored by implementation diversity
across QUIC stacks [27]. Mishra et al. [27] found signif-
icant implementation divergence across QUIC implementa-
tions, making it challenging to distinguish between legitimate
implementation variations and potentially malicious parameter
modifications. Their follow-up work [10] revealed that ma-
jor providers deploy custom congestion control variants that
deviate from standard implementations. This implementation
flexibility, combined with user-space accessibility, creates an
unprecedented attack surface that has not been systematically
analyzed yet. Moreover, the trend toward programmable trans-
port layers [28] suggests that applications may soon deploy
custom transport implementations, potentially introducing un-
trusted mechanisms into network environments. Such devel-
opments extend the security concerns identified in this work
beyond QUIC to any custom application-defined protocol.

III. EMPIRICAL METHODOLOGY AND EVALUATION

We adopted an empirical experimental approach because
QUIC’s congestion control exhibits complex nonlinear dy-
namics that cannot be predicted theoretically, particularly
with simultaneous parameter interactions, and its user-space
implementation creates behaviors requiring empirical vali-
dation [29]. Unlike TCP/kernel, parameter manipulation is
realistic in QUIC since user-space implementations give ap-
plications direct control over congestion control parameters,
enabling selfish clients to modify parameters for unfair band-
width advantages. To study the exploitability of QUIC conges-
tion control, we built our experiments on aioquic, a Python-
based QUIC implementation incorporating NewReno [30] and
CUBIC [22] algorithms [12]. We focus on these algorithms as
they represent different paradigms: NewReno is a traditional
loss-based algorithm with linear growth [30], and CUBIC is

TABLE I: Network Configuration Parameters’ Details

Virtual Machine Network Interface IP Address
Client-1 VM (Normal) | enp0Os8 192.168.56.102
Client-2 VM (Selfish) enp0s8 192.168.56.103
Server VM enp0s8 192.168.57.101
Router VM enp0s8 (Client-facing) 192.168.56.50
Router VM enp0s9 (Server-facing) 192.168.57.1

an advanced loss-based algorithm with polynomial window
growth [22]. In contrast, BBR [9] is a model-based algorithm
that uses bandwidth and round-trip time measurements rather
than packet loss for congestion detection [31]. While BBR
represents an important alternative approach, we focus on
NewReno and CUBIC as they share loss-based principles that
allow systematic parameter manipulation analysis. We system-
atically evaluate how parameter modifications can be exploited
for unfair bandwidth advantages, using unified terminology
with LRF denoting loss reduction factor for both NewReno’s
Fast Recovery and CUBIC’s multiplicative decrease (Seubic) as
implemented in aioquic [12]. In this section, we have evaluated
QUIC congestion control manipulation through experimental
setup, parameter selection and setting, NewReno & CUBIC
performance analysis and cross-algorithm comparison.

A. Experimental Setup

Our experimental setup consists of a unitary testbed com-
prising four Linux Ubuntu 24.04.2 Virtual Machines (VMs)
deployed in Oracle VirtualBox version 7.1.6, a hosted hyper-
visor, on an ASUS VivoBook laptop (AMD Ryzen 7 5800HS,
16GB RAM). The testbed includes three experimental VMs
and one router VM configured with Linux Traffic Control
(tc) and netem to control network conditions, as illustrated
in Figure 2. Experiments were conducted across multiple
physical locations using identical virtual topologies. The spe-
cific network configuration parameters are detailed in Table I.
The implementation utilized the Hierarchical Token Bucket
(HTB) [32] queuing discipline configured with a 15 Mbps
bandwidth limit, creating a bottleneck scenario that compels
client VMs to compete for network resources and enables
direct comparison of CCA under resource contention. The
HTB configuration incorporates burst parameters that permit
temporary token-bucket borrowing beyond the configured rate,
thereby accommodating the inherently bursty characteristics of
network traffic. Complementing the bandwidth limitation, the
netem discipline introduces a 15 ms propagation delay and
0.3% packet loss rate to emulate authentic network impair-
ments [33]. It should be noted that instantaneous bandwidth
measurements may occasionally exceed the 15 Mbps threshold
due to burst allowances and the measurement granularity
inherent in the Linux tc with netem framework. This carefully
selected combination of parameters establishes an optimal
experimental environment for evaluating the performance of
CCA under realistic network constraints.

B. Parameter Selection and Setting

After reviewing CCAs, we have identified specific parame-
ters in the NewReno and CUBIC algorithms that could impact
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Fig. 2: Network Topology Overview

in the aggressiveness of the congestion control, allowing the
selfish client to gain advantage in bandwidth allocation.

1) NewReno Manipulation Parameters: Two critical param-
eters in the NewReno algorithm were selected for analysis:
LRF controls the congestion window reduction following
packet loss events, while CAGR determines window expansion
during stable transmission periods. Normal clients employ
standard values (LRF=0.5, CAGR=1 MSS (Maximum Segment
Size) per RTT, while selfish clients utilize modified ranges
(LRF=0.6-0.9, CAGR=2-6 MSS per RTT).

2) CUBIC Manipulation Parameters: For CUBIC algo-
rithm analysis, we have also focused on two parameters,
namely, LRF and MIT. LRF controls window reduction during
congestion events, while MIT governs CUBIC’s character-
istic cubic growth function. Higher MIT values accelerate
CUBIC’s window growth phase, allowing selfish clients to
capture bandwidth more aggressively, while elevated LRF val-
ues result in less aggressive window reduction during packet
loss events, enabling faster recovery and sustained higher
bandwidth. Normal clients operate with default parameters
(LRF=0.7, MIT=2.0), while selfish clients employ elevated
values (LRF=0.75-0.99, MIT=2.5-3.5).

C. NewReno Exploitation Results and Analysis

1) Loss Reduction Factor (LRF) Manipulation: We con-
ducted controlled experiments using the experimental (VM)
setup described in Section III-A with simultaneous 100 MB
file uploads from both clients (normal and selfish). We tested
one baseline configuration (both clients at LRF=0.5) and four
manipulation scenarios where the selfish client used LRF val-
ues of 0.6, 0.7, 0.8, and 0.9 while the normal client remained at
LRF=0.5. Each configuration was repeated 20 times, capturing
separate PCAP and JSON files for each client during each
trial. Post-processing extracted BW measurements from PCAP
files and congestion window (CWND) data from JSON files,
generating a CSV dataset (file) containing 20 samples with
BW measurements, BW ratios, average and maximum CWND
values, and CWND ratios for each LRF configuration. In
addition, we have performed two types of statistical analysis
on the CSV dataset using 95% confidence intervals (CI) with t-
distribution: BW allocation analysis comparing normal versus
selfish client performance across various LRF values, and

BW advantage analysis, quantifying the relative unfairness BW
gained through manipulation.

Under std. baseline conditions, NewReno demonstrates fair
allocation with equitable BW distribution between clients (Fig-
ure 3a) and balanced CWND behavior (Figure 3d). However,
manipulation scenarios reveal severe unfairness escalation.
As selfish client LRF increases (LRF=0.9), dramatic inequity
emerges with the selfish client capturing significantly more BW
while constraining the normal client (Figure 3b). The selfish
client maintains substantially larger CWND values by reducing
windows less aggressively during loss events compared to the
normal client (Figure 3e). The BW allocation analysis reveals
a clear inverse relationship where selfish client BW increases
progressively while normal client BW diminishes correspond-
ingly across LRF values (n=20, 95% CI) (Figure 4a). The BW
advantage analysis demonstrates that the selfish client achieved
dramatically escalating and nonlinear BW advantages over
the normal client through LRF manipulation, fundamentally
undermining network equity (n=20, 95% CI) (Figure 4d).

2) Congestion Avoidance Growth Rate (CAGR) Manipula-
tion: We conducted controlled experiments using the same
experimental (VM) setup and methodology. We tested one
standard baseline configuration (both clients at CAGR=1x)
and manipulation scenarios where the selfish client used
CAGR values ranging from 1x to 6x while the normal
client remained at standard CAGR=1Xx. Each configuration
was repeated 20 times, following identical data collection
and statistical analysis procedures with BW measurements
extracted from PCAP files and CWND data from JSON files,
generating a CSV dataset containing 20 samples with BW
measurements, BW ratios, average and maximum CWND
values, and CWND ratios for each CAGR configuration.

Under baseline conditions, both clients demonstrate equi-
table BW distribution (Figure 3a). However, CAGR manipu-
lation (6x) reveals severe resource monopolization where the
selfish client captures substantially more BW compared to the
normal client (Figure 3c). The underlying mechanism shows
the selfish client maintaining considerably larger CWND val-
ues, enabling aggressive BW acquisition between congestion
events (Figure 3f). The BW allocation analysis demonstrates
distribution shifting from near-equality at baseline to marked
disparity at higher CAGR values, where selfish client BW
increases progressively while normal client BW diminishes
correspondingly (n=20, 95% CI) (Figure 4b). The BW advan-
tage analysis reveals that the selfish client achieve progressive
exploitation growth from baseline equality to substantial BW
advantages over the normal client at maximum growth rates
(n=20, 95% CI) (Figure 4e). This manipulation is most ef-
fective when there are few packet losses, because the selfish
client can keep growing its window size for longer periods
without interruption, leading to more unfair BW distribution.

3) Combined Parameters (LRF+CAGR) Manipulation: We
conducted controlled experiments using the same VM setup
and methodology to investigate simultaneous manipulation
of multiple parameters and evaluate combined exploitation
effects. We tested scenarios where the selfish client em-
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(a) Standard BW: LRF=0.5, CAGR=1x

(d) Standard CWND: LRF=0.5, CAGR=1x

(b) BW: S LRF=0.9 vs N LRF=0.5

(e) CWND: S LRF=0.9 vs N LRF=0.5

(c) BW: S 6xXCAGR vs N 1xCAGR

(f) CWND: S 6xXCAGR vs N 1xCAGR

Fig. 3: NewReno parameter manipulation analysis showing BW and CWND behavior (S=Selfish, N=Normal)

(a) LRF avg BW (N LRF=0.5)

(d) S BW advantage (LRF)

(b) CAGR avg BW (N CAGR=1x)

(e) S BW advantage (CAGR)

(c) S combined vs N standard

(f) S combined vs N standard

Fig. 4: NewReno statistical validation and combined manipulation effects on BW and CWND (S=Selfish, N=Normal)

ployed both LRF=0.9 and CAGR=6x simultaneously while
the normal client maintained standard parameters (LRF=0.5,
CAGR=1x). Each configuration was repeated 20 times, fol-
lowing identical data collection with BW measurements ex-
tracted from PCAP files and CWND data from JSON files.
Combined parameter manipulation reveals catastrophic fair-
ness collapse that exceeds individual vulnerabilities. The
selfish client achieves severe BW monopolization, captur-
ing approximately 85% of available BW while the normal
client receives substantially reduced capacity (Figure 4c). The

underlying mechanism shows the selfish client maintaining
dramatically larger CWND values compared to the normal
client, creating persistent capacity advantage through com-
pounding effects (Figure 4f). In the NewReno algorithm,
this combined exploitation significantly surpasses individual
parameter manipulation, demonstrating amplified unfairness
beyond single-parameter manipulation. This dual manipulation
strategy represents a fundamental threat to QUIC fairness,
demonstrating how reduced loss response enables maintenance
of higher windows during congestion, while increased growth
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rate facilitates aggressive recovery, creating sustained domi-
nance rather than brief advantage periods.

D. CUBIC Experimental Results and Analysis

1) Loss Reduction Factor (LRF) Manipulation: We evalu-
ated LRF manipulation effects on CUBIC congestion control
using the same established VM experimental environment with
concurrent 100 MB file transfers from both clients. Our testing
included one baseline scenario (both clients at LRF=0.7)
and multiple manipulation configurations where the selfish
client employed LRF values ranging from 0.7 to 0.99 while
the normal client maintained standard LRF=0.7. We repeated
each configuration 20 times, collecting individual PCAP and
JSON files for both clients in every trial, then extracted BW
measurements from PCAP files and CWND data from JSON
files to create a CSV dataset containing 20 samples with
BW measurements, BW ratios, average and maximum CWND
values, and CWND ratios for each LRF configuration. Two sta-
tistical analyses were performed on the CSV dataset with 95%
confidence intervals (CI) and t-distribution: BW allocation
analysis examining normal versus selfish client performance
and BW advantage analysis measuring relative unfairness.
CUBIC congestion control demonstrates greater resilience to
parameter manipulation compared to NewReno, still remains
exploitable through strategic modifications. Under standard
baseline conditions, both clients achieve equitable BW dis-
tribution (Figure 5a) with balanced CWND dynamics showing
coordinated congestion responses (Figure 5d). However, LRF
manipulation (LRF=0.99) creates measurable unfairness and
significant QoS degradation for the normal client, manifesting
as BW instability rather than absolute reduction, where the
selfish client maintains stable BW while the normal client
experiences severe oscillations and unpredictable performance
drops (Figure 5b). The underlying mechanism shows the
selfish client maintaining substantially larger average windows
with stable performance, while the normal client exhibits
dramatic CWND fluctuations causing unpredictable BW and
potential service interruptions (Figure 5e). The BW allocation
analysis reveals controlled increase in unfairness across LRF
values, with the selfish client maintaining consistent perfor-
mance while the normal client shows decreasing capacity
(n=20, 95% CI) (Figure 6a). The BW advantage analysis
demonstrates that the selfish client achieves linear growth from
essentially zero to moderate BW advantages over the normal
client at maximum LRF values (n=20, 95% CI) (Figure 6d).
While CUBIC’s polynomial growth provides better resistance
than NewReno, the consistent linear progression demonstrates
that LRF manipulation remains an effective exploitation vector,
particularly damaging to normal client’s QoS through sus-
tained performance instability.

2) Maximum lIdle Time (MIT) Manipulation: We evalu-
ated MIT manipulation effects using the same experimental
setup with one standard baseline scenario (both clients at
MIT=2.0) and manipulation configurations where the selfish
client employed MIT values ranging from 2.0 to 3.5 while
the normal client maintained standard MIT=2.0. Each con-

figuration was repeated 20 times, following identical data
collection procedures to create a CSV dataset containing 20
samples with BW measurements, BW ratios, average and
maximum CWND values, and CWND ratios for each MIT
configuration. We applied two analytical methods to the CSV
dataset using 95% confidence intervals (CI) and t-distribution:
BW allocation analysis and BW advantage analysis. MIT
manipulation (MIT=3.5) demonstrates minimal exploitation
potential under standard CUBIC configurations. The selfish
client achieves only marginal BW advantages with modest
distribution shifts (Figure 5c), while CWND behavior reveals
similar average window sizes with synchronized oscillatory
patterns, demonstrating CUBIC’s inherent resistance to MIT
manipulation (Figure 5f). The BW allocation analysis shows
lack of systematic exploitation reliability, with performance
remaining relatively stable across different MIT values (n=20,
95% CI) (Figure 6b). The BW advantage analysis confirms
minimal variation with overlapping confidence intervals (n=20,
95% CI) (Figure 6¢). This demonstrates that MIT manipulation
does not translate into statistically significant exploitation
potential, as CUBIC’s synchronized congestion control effec-
tively neutralizes attempts to exploit the system through MIT
parameter manipulation alone.

3) Combined Parameters (LRF+MIT) Manipulation: In
this experiment, we investigated multi-parameter manipulation
effects on CUBIC congestion control to evaluate combined ex-
ploitation impacts. We tested scenarios where the selfish client
employed both LRF=0.99 and MIT=3.5 simultaneously while
the normal client maintained standard parameters (LRF=0.7,
MIT=2.0). Each combined manipulation configuration was re-
peated 20 times, following identical data collection procedures
with BW measurements extracted from PCAP files and CWND
data from JSON files. Multi-parameter manipulation in CUBIC
demonstrates combined effects that amplify individual param-
eter impacts. Combined modifications achieve substantial BW
allocation shifts, enabling the selfish client to capture around
59% of available BW resources compared to single-parameter
modification alone (Figure 6¢). The desynchronization creates
persistent advantages rather than transient spikes, with the
selfish client maintaining consistently high BW while the nor-
mal client suffers pronounced oscillations and frequent drops,
contrasting sharply with the synchronized oscillation patterns
observed in single-parameter manipulation cases. This severely
impacts the normal client’s QoS, creating unpredictable per-
formance with dramatic BW fluctuations that would degrade
user experience and application reliability. The underlying
mechanism shows how the selfish configuration amplifies
CWND sizes through complete desynchronization of window
evolution, with window size ratios increasing dramatically
compared to single-parameter modification (Figure 6f). The
dual strategy operates through complementary mechanisms
where reduced loss response maintains larger windows during
congestion, while extended multiplicative increase threshold
enables aggressive expansion during cubic growth. This vul-
nerability demonstrates a critical weakness in CUBIC’s design
within QUIC. While CUBIC provides superior resistance to
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(a) Standard BW: LRF=0.7, MIT=2.0

(d) Standard CWND: LRF=0.7, MIT=2.0

(b) BW: S LRF=0.99 vs N LRF=0.7

(e) CWND: S LRF=0.99 vs N LRF=0.7

(c) BW: S MIT=3.5 vs N MIT=2.0

(f) CWND: S MIT=3.5 vs N MIT=2.0

Fig. 5: CUBIC parameter manipulation analysis showing BW and CWND behavior (S=Selfish, N=Normal)

single-parameter manipulation compared to NewReno through
coordinated flow management, strategic multi-parameter ex-
ploitation systematically disrupts this coordination, creating
sustained unfair advantages that fundamentally compromise
the protocol’s fairness guarantees and severely affect the QoS
of normal client behavior.

E. Cross-Algorithm Performance Comparison

In these experiments, we examine competitive behavior
and synchronization dynamics between CUBIC and NewReno
algorithms operating simultaneously. We investigate inter-
algorithm coordination when different CCA compete for
shared resources using the same four-VM network topology
(Figure 2) with NewReno client (192.168.56.103) and CUBIC
client (192.168.56.102) under identical network constraints (15
Mbps BW, 15 ms delay, 0.3% loss) within the Linux tc with
netem router VM.

1) Normal (Standard) Operation Comparison: In this ex-
periment, we evaluated baseline performance comparison
between CUBIC and NewReno algorithms under standard
configurations. We tested scenarios where one client used
CUBIC congestion control while the other used NewReno,
both maintaining default parameters. Each configuration was
repeated 20 times using the same established experimental
(VM) setup with the same data collection methodology of
capturing PCAP files for BW measurements and JSON files for
CWND analysis. In standard configurations, CUBIC achieves
improved BW performance compared to NewReno due to
CUBIC’s more efficient polynomial growth function against
NewReno’s linear growth approach (Figure 7a). Both algo-
rithms converge rapidly but exhibit asynchronous oscillations,
indicating different congestion response characteristics that
result in asynchronous behavior. The underlying mechanisms

reveal NewReno showing aggressive growth with sharp reduc-
tions, while CUBIC maintains more moderate windows with
smoother transitions (Figure 7b). The independent window re-
ductions confirm the absence of inter-algorithm coordination,
with each algorithm responding independently to congestion
events, establishing clear baseline performance differentials
between the two approaches.

2) Selfish Behavior (LRF=0.99): In this experiment, we
evaluated the impact of aggressive parameter settings by
configuring both NewReno and CUBIC clients with LRF=0.99
while maintaining all other parameters at default values. Each
configuration was repeated 20 times using the same VM setup
with the same data collection methodology, capturing PCAP
files for BW measurements and JSON files for CWND data.
Aggressive LRF values for both algorithms demonstrate that
CUBIC’s algorithmic advantages are neutralized when both
protocols employ equally aggressive strategies (Figure 7c).
This creates intense resource competition where neither pro-
tocol gains significant BW advantage, substantially reducing
the performance gap compared to standard conditions. The
corresponding CWND behavior shows both algorithms exhibit
sustained growth patterns, eliminating traditional sawtooth os-
cillations, with both reaching substantially larger window sizes
(Figure 7d). Despite CUBIC maintaining larger congestion
windows, network bottleneck saturation prevents meaningful
BW advantages, resulting in balanced competition where ca-
pacity limitations dominate over algorithmic differences.

IV. DISCUSSION

This section discusses a comprehensive vulnerability analy-
sis, future defense mechanisms & evaluations, and limitations.
Vulnerability Analysis: Our empirical study reveals a ma-
jor security vulnerability in QUIC’s congestion control archi-
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(a) LRF avg BW (N LRF=0.7) (b) MIT avg BW (N MIT=2.0) (¢) S combined vs N standard

(d) S BW advantage (LRF)
Fig. 6: CUBIC statistical validation and combined manipulation effects on BW and CWND (S=Selfish, N=Normal)

(e) S BW advantage (MIT) (f) S combined vs N standard

(a) N BW (b) N CWND (c) S BW (d) S CWND

Fig. 7: NewReno vs CUBIC performance comparison with normal and selfish configurations (S=Selfish, N=Normal)

tecture, enabling coordinated multi-parameter manipulation of
CCAs (NewReno and CUBIC) that produces amplified effects
and compromises protocol fairness. The most significant find-
ing is the compounding effect when multiple parameters are
manipulated simultaneously in both algorithms. While indi-
vidual parameter manipulation creates measurable unfairness,
combined manipulation reveals that QUIC’s modular con-
gestion control design becomes a critical liability. NewReno
exhibits extreme vulnerability with severe BW monopolization,
while CUBIC shows greater resilience but remains signifi-
cantly exploitable with substantial BW monopolization by self-
ish clients, accompanied by severe QoS degradation for normal
clients through BW instability and unpredictable performance
drops. Furthermore, this vulnerability exposes a design as-
sumption failure in QUIC’s CCAs, which assume honest
endpoint behavior under cooperative networking principles.
When one endpoint manipulates parameters while the other
remains cooperative, persistent unfairness emerges. However,
when both clients use different algorithms, no clear winner
emerges but overall network efficiency degrades, suggesting
that widespread adoption of selfish behaviors could trigger
a scenario where escalating client aggressiveness systemat-
ically degrades network performance. Importantly, the ob-
served bandwidth measurement differences between NewReno

and CUBIC reflect underlying internet connectivity variations
rather than experimental inconsistencies. The same laptop
was deployed across multiple physical locations with different
internet connectivity using identical virtual topologies. Since
the virtual topology remained fully controlled and isolated
across all locations, these variations in absolute bandwidth
measurements demonstrate the robustness and reproducibility
of the CCPM phenomenon across different internet connectiv-
ity environments, thereby validating our findings under diverse
network conditions.

Feasible Defense Mechanism and Extended Large-Scale
Evaluation: To fight the CCPM attack, several potential
approaches are possible. QUIC implementation libraries could
enforce stricter parameter bounds to prevent manipulation,
while server-side applications can implement connection-level
monitoring to detect and restrict flows exhibiting monopolistic
behavior patterns. These solutions can be implemented with-
out requiring protocol modifications while providing effective
defense capabilities. Our future research will focus on de-
veloping and evaluating prototype implementations of these
detection and mitigation strategies across multiple QUIC im-
plementations, including Google’s guiche, Microsoft’s msquic,
and Meta’s mvfst. Furthermore, we will extend vulnerability
analysis to large-scale multi-client scenarios beyond two-client
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configurations in various QUIC implementations and evaluate
additional CCA including BBR [31].

Limitations: Our study has several limitations that might
constrain the generalization of our findings. We focused ex-
clusively on the aioquic implementation and only examined
the NewReno and CUBIC algorithms, while other QUIC
implementations and CCAs such as BBR remain unexplored.
Our controlled Linux VM environment with TC netem router
occasionally allowed BW to exceed the configured limits,
potentially affecting the precision of measurement.

V. CONCLUSION

In this paper, we systematically investigated CCPM attack
in QUIC, revealing critical vulnerabilities that enable selfish
clients to monopolize network resources. Through compre-
hensive experimentation with aioquic, we demonstrated that
NewReno exhibits a severe vulnerability to compound param-
eter manipulation enabling substantial BW monopolization,
while CUBIC shows greater resilience but remains exploitable
with significant resource capture and QoS degradation for
normal clients. Our empirical analysis reveals that QUIC’s
user-space implementation is subject to a new attack vector
where compound parameter modifications produce substan-
tially greater unfairness than individual parameter changes.
This CCPM attack pose significant risks to network fairness
and internet infrastructure stability, potentially enabling sys-
tematic BW theft in shared environments. While limited to
aioquic within controlled environments, our findings highlight
an urgent security concern that requires immediate attention.
Future work should validate this vulnerability across diverse
implementations and develop practical defences.
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