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Abstract—In modern Open RAN architectures, the traditional
gNB protocol stack is disaggregated into virtualized components,
Centralized Unit (CU), Distributed Unit (DU), and Radio Unit
(RU), which are flexibly deployed across the infrastructure to
meet diverse QoS requirements. This paper proposes an energy-
aware model that jointly optimizes user association and virtual
network function (VNF) placement to minimize total system
energy consumption. By dynamically consolidating workloads
and selectively activating radio and compute resources, the model
reduces energy usage without compromising service constraints.
We formulate the problem as an integer linear problem (ILP) to
obtain optimal solutions and introduce a Graph Neural Network
(GNN)-based heuristic that closely approximates optimal place-
ments in real time. Simulation results demonstrate up to 75%
energy savings at low loads and show the GNN reduces execution
time by over 99% while maintaining near-optimal performance.

Index Terms—Open RAN, resource allocation, UE association,
CU/DU placement, ILP, GNN, energy efficiency.

I. INTRODUCTION

As 5G and Beyond 5G (B5G) technologies emerge, new
architectural paradigms are required to meet increasingly strin-
gent demands for high data rates, low latency, and massive
device connectivity. In this context, the Open Radio Access
Network (O-RAN) initiative has emerged as a transformative
approach, grounded in the principles of openness, disaggrega-
tion, and intelligence [1].

O-RAN decomposes the traditional base station into Cen-
tralized Unit (CU), Distributed Unit (DU), and Radio Unit
(RU), deployed flexibly over the O-Cloud at edge and regional
levels 1. This introduces new orchestration challenges, notably
energy-aware VNF placement and UE-RU association under
strict QoS. A key issue is the efficient placement of virtual
network functions (VNFs) on edge and regional cloud servers,
as well as users to RU association, while ensuring that strict
Quality of Service (QoS) constraints are satisfied for various
service types such as enhanced Mobile Broadband (eMBB),
Ultra-Reliable Low-Latency Communication (URLLC), and
massive Machine-Type Communication (mMTC).

While maximizing user satisfaction is critical for efficient
O-RAN operation, the ever-growing energy demands of dense,
cloud-native RAN deployments now make sustainability a
first-order concern for operators. With the RAN domain re-
sponsible for up to 80% of network-wide energy consump-
tion [2], [3], improving energy efficiency has become a key
objective in the design and orchestration of future Open
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RAN systems. Reducing energy consumption in O-RAN has
gained attention at both the computing and transport layers.
GreenRAN [4] introduces a scalable placement framework
using metaheuristics, while [5] and [6] tackle compute and
transport energy optimization under QoS constraints using
ILP and DRL. The recent model in [7] proposes a com-
prehensive MILP framework incorporating VNF migration,
server, and transport energy, yet it lacks user-level association.
In this paper, we fill this gap by integrating energy-aware
server and RU management within a full-stack QoS-compliant
orchestration framework. We address the problem of joint
energy-aware placement and association in O-RAN by jointly
optimizing CU/DU placement and User equipment (UE)-to-
RU association to minimize the overall system energy con-
sumption. Our model incorporates both computing (CUs, DUs)
and radio (RUs) power costs, providing a holistic framework
for sustainable O-RAN deployments. We exploit (i) workload
consolidation at the O-Cloud layer to reduce the number of
active servers and idle resources, and (ii) Physical Resource
Block (PRB) blanking at the radio access level, which al-
lows RUs to deactivate unused RBs and enter energy-saving
sleep modes without compromising user QoS. We formulate
the joint energy minimization problem as an Integer Linear
Programming (ILP) model that captures the interdependencies
between placement, association, resource allocation, and en-
ergy consumption, subject to slice-specific QoS constraints.
To overcome the high computational complexity of optimal
ILP solutions and support scalable, real-time orchestration, we
propose a Graph Neural Network (GNN)-based heuristic that
closely approximates optimal performance at a fraction of the
execution time.

The rest of the paper is organized as follows: The system
model and our proposed ILP-based solutions are described in
Section IT and III, respectively. Section V details the simulation
framework and illustrates the performance evaluation of the
proposed algorithms. Finally, Section VI concludes the paper.

II. SYSTEM MODEL

Let R denote the set of RUs deployed across a geographical
area of side L, where each RU r € R is positioned at
P, = (X,,Y,) € [0,L]%. UEs, denoted by the set U, are
arbitrarily distributed within the same area, each located at
P, = (X4,Y,) € [0,L]%. The O-Cloud network is modeled
as a graph G = (H, E), with vertex set H representing cloud
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Fig. 1: O-RAN Cloud deployment scenarios [8]

hosts and edge set £ the physical links. Hosts are classified
into edge-cloud (Hg) and regional-cloud (Hz) nodes, such
that X = Hg U Hgr. Each host A has a location Py, a
computational capacity G, and a static power consumption
Ps}faﬁc. Each UE w requests a service from the set S (e.g.,
eMBB, uRLLC, mMTC), with slice-specific Quality of Service
(QoS) requirements: required data rate Ay, and maximum
tolerable end-to-end delay DE?E. The system ensures the

requested QoS for admitted UEs.

A. UE-RU Association
Let 2RY € {0, 1} denote the association of UE u to RU 7.

Each RU 7 has M, physical resource blocks (RBs) available,

partitioned among slices via integer variables p, s € Zj,

representing the RBs allocated to slice s at RU r. The RB

demand of UE u when linked to RU 7 is in (1), with 7, , the

rate per RB. The total RBs assigned to a UE is in u (2).
As(w)

RBu,r = ’7—‘ ) (1)
N,r

RB,(x"V) = Y "RB,, - 2},
reER

B. DU-CU Placement

We adopt a per-service, per-RU, per-host placement granu-
larity. For each RU r, service s, and host h:

o )Y, € {0,1}: 1 if a DU instance for service s at RU
r is placed on host h; 0 otherwise. (DUs can be placed
only on edge-cloud hosts.)

o 2€Y, €{0,1}: 1 if a CU instance for service s at RU r
is biaced on host h; 0 otherwise. (CUs may be placed at
either edge or regional cloud hosts.)

Yu € U. )

C. O-Cloud Computation Model

Each cloud host has limited computational capacity and
can host a finite number of functional unit instances. The
computational cost of each DU and CU instance is measured

in GOPS, as in [9], and depends on system parameters such as
modulation, coding rate, antennas, and MIMO layers as shown
in equation 3. Based on 3GPP functional splits and workload
distribution, we assign 50% and 10% of the processing load to
DU and CU, respectively. The total computational utilization
per host is computed by aggregating the GOPS required by
all active functionalities placed on it.

pujcu _ @pujcu(BA+ A%+ M- C- L/3)
10
cu

N pr,sa (3)

where a“VYand PV reflect the split of processing load
based on functional split 7.2x and 2, as in [10]. We denote by
M the modulation bits (i.e., the number of bits per symbol), C'
the coding rate, L the number of MIMO layers, A the number
of antennas, and RB,, the number of resource blocks assigned
to user u.

The total computing load on host h is:

gn(x) =D (9ealin+oriatin) . @
reER s€S
D. End-to-End (E2E) Delay Model
The end-to-end (E2E) delay experienced by a given UE
is mainly determined by the propagation delay between the
deployed functional units, which comprises two major com-
ponents: Midhaul (MH) delay and Fronthaul (FH) delay.

For each UE wu, associated to RU r and requesting service
s, we define the E2E delay as:

Ay =yt o+ dy, 5)

where, for each UE u, the FH delay, i.e., from the DU to the
RU, is defined as:

= >

h€HE

P, — P,
Hrin . %I?EM (6)
UFiber

Similarly, for each UE u, the MH delay is measured between
the CU to the DU, and is given by:

L Sl [P —Pwll  pu  cu
du = s "Ly s h " Lr skl )
heHp h'eMd Tiber

where vriper 1 the propagation speed of light in fiber.

E. Computing-level Energy Model

To capture server-level energy consumption, we introduce
binary activation variables I, € {0,1} for each host h,
denoting whether the server is powered on or off. The total
computing power consumption Fomp comprises both dynamic
and static energy components as in [4]:

1
_ § : edge § : § : DU ,.DU cu,.CcU
Pcomp - P Gf (gr,s xr,s,h + gr,s mr,s,h)
heH h rerses

. 1
al ZZ cuU,.cU E : h
+ § : PR th ' Gr.s Trs,h T Patic * Ih

heHr reR seS heH
®)
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where, Ped¢and Prgiondl represent the dynamic energy con-
sumption per GOPS of processing load at edge and regional
servers, respectively, and P . is the static power consumption
term that accounts for the baseline energy required to maintain
host h operationally active. It is worth noting that in (8),
the placement is per-service, which better reflects deployment.
For instance, xfijh denotes the placement of a CU instance

handling service s at RU 7 on host h.

F. RU-level energy model

At the RAN level, we extend the energy model by integrat-
ing RU activation. A binary variable I, € {0,1} is defined
for each RU r, indicating whether it is active. RU activation
depends on the association of at least one user to RU r. The
RU energy model is formulated, inspired by [11], as follows:

Pu=Y (ng}fve T+ P (1 Ir)) .
reR

G. Transpot-level Energy model

We model the transport network’s energy consumption con-
sidering both midhaul (MH) and fronthaul (FH) links, which
are essential in disaggregated O-RAN deployments. Specif-
ically, the energy consumption includes two components: a
fixed component due to link activation, and a variable com-
ponent proportional to the actual bandwidth (BW) utilization
of each activated link [12]. The total transport network energy
consumption, Bk, is defined as follows:

bMH
Pym = Z Z

MH fix h,h’ max
(uh,h’ net,h,h! T COMI net,h,h/> , (10)
heHE hEHR h,h’

bFH
PFH—Z Z <rh nelrh—"_CFHPnrel?)(rh)

reER heHE
PBink = Py + Pra,

(1)

12)

where u;, },Il, and utH are binary variables equal to 1 if the

midhaul and fronthaul links are activated, respectively. The
terms Pfe’; hoh's Pfe’;) n P 4, and Plfelf’;l represent the fixed
and maximum load-dependent power consumption of midhaul
and fronthaul links. The midhaul and fronthaul bandwidth
utilizations b)'y}, and b}, are determined as in equations (13)
and (14), respectively, where, considering Option-2 split, we

model the MH link capacity required by UE u as follows

(IP + HPDCP) - TBS - NTBS . RBu(X)
(IP + Hppcp + Hric + Huac) - 1000

where, TBS represents the transport block size, Ntgs is the
number of TBs per TTI, IP is the datagram size, and lastly,
Hppcp, Hric and Hyac are the header size of PDCP, RLC,
and MAC layers, respectively.

and considering Option-7.2x split, we define the FH link
capacity required by UE u as

Nsym - Nsc - Nig - RB,,(x)
1000 ’

MM (x) = (13)

o (") = (14)

where Ngyy is the number of symbols per sub-frame, Ngc is
the number of subcarriers per RB, and Njq is the number of
I and Q bits.

III. PROBLEM DEFINITION

Our goal is to optimize O-RAN orchestration by minimizing
the total energy consumption of the system, jointly considering
the activation and placement of RUs, DUs, and CUs, subject to
service requirements, resource capacities, and QoS constraints.
We formulate the optimization problem as follows:

min Ptotal - PCOmp + PRU + -Plink (15)
x,p,In, Ir,u
C Y A =1 Vueu (16)
reR
ersh_ Z CCBE}L:LVTER, Vse S
heH heHp
(17)
x”h—OVrs heHr (18)
e <L, VueU,VreR (19)
Zpr,s < MMVT' ER (20)
seS
Z :LRU RBu r < Pr,s,VT S R, Vse S (21)
u€EU,
gn(x) < Gy, Vh € H (22)
dE2E < DEZE Vu e U 23)
In>apl, +aly,, v, s h (24)
L=y @/l vr (25)
uel
TshE{Ol} xrshe{Ol}Vrsh (26)
Iru Iha ura uhME/ h S {07 1}7V’I’7h,h/
(27)
pr,s € Ly, VT, s (28)

First, constraint (16) guarantees that each UE is associated
with exactly one radio unit (RU). The uniqueness of network
function instances is assured by constraint (17), which ensures
that for every RU and service pair, there is exactly one CU
(placed on any host) and one DU instance (placed on an
edge host). Constraint (19) requires that a UE may only be
associated with an RU if that RU is active. Radio resource
allocation is guaranteed by two constraints: (20) ensures that
the total number of physical RBs allocated to all network
slices at each RU does not exceed the RU’s capacity, while
(21) enforces that the RBs used by UEs in a particular slice
do not exceed the RB allocation for that slice at each RU.
Constraint (22) enforces that the aggregated computing load
from CU and DU instances placed on any host does not surpass
the host’s processing capacity, and this is only considered
if the host is active. Constraint (18) restricts DU placement
to edge-cloud hosts, reflecting architectural requirements. The
system must also guarantee that the end-to-end delay for each
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UE does not exceed the user-specific maximum, as imposed
by constraint (23). Host activation logic is formalized in
constraint (24), where a host is considered active if any DU or
CU is placed on it. Similarly, constraint (25) ensures that an
RU is marked as active if it serves at least one UE. Variable
domains are enforced by constraints (26), (27), and (28),
specifying that placement, activation, and link usage variables
are binary, while RB allocation variables are integer variables.

IV. GRAPH NEURAL NETWORK BASED HEURISTIC

We design a Graph Neural Network (GNN) model to predict
energy-efficient user associations and server placements in an
O-RAN system [13]. The motivation for using a GNN comes
from the natural graph-like structure of O-RAN networks
[14]. In our setup, users are connected to RUs, and these
RUs are connected to servers that can host their CU and
DU functions. This creates a system of nodes and edges that
is well-suited for a graph-based learning approach. he graph
has UE, RU, and server nodes, connected via UE-RU and
RU-server edges. Each node is assigned a feature vector.
User nodes include features like location, service type, delay
requirement, and computing demand. BS and server nodes
include their location, server type (edge or regional), and com-
puting capacity. To enrich each node with global information
about the whole network, we include values from the graph’s
Laplacian spectrum as part of every node’s input features.

The GNN consists of a single heterogeneous convolution
layer that updates each node’s features based on its neighbors.
We use the SAGEConv operator to allow flexible and scalable
learning across the different types of nodes. After the convolu-
tion, we apply batch normalization and a non-linear activation
to each node’s updated features. The model is trained to
solve three tasks: (1) predict which RU each user should
connect to, (2) predict the placement of CU for each service
at each RU, and (3) predict the same for the DU. For these
tasks, we use separate linear classifiers. The training dataset
is obtained from our optimal solutions, having the objective
of energy consumption minimization. This GNN learns to
approximate the optimal resource allocation policy with much
lower computation time. Thanks to the graph structure and the
use of spectral features, it can generalize well across different
user distributions and network loads, making it a practical tool
for energy-aware orchestration in Open RAN [15].

V. SIMULATION FRAMEWORK AND EVALUATION

We build our simulation setup based on the same network
topology proposed in [16], [17], while ensuring that both radio
and computing resources are provisioned to have an under-
loaded system, where all UEs can be admitted. Otherwise, no
energy gains can be achieved. It consists of 4 RUs, distributed
across a square area of side 1 km. The UEs are scattered within
the defined area uniformly at random. The system employs a
20-MHz bandwidth, resulting in 100 RBs available per TTI at
each RU. Additional radio parameters include four antennas,
two MIMO layers, and 64-QAM modulation. The number of
UEs varies from 20 to 100. Users belong to different slices,

TABLE I: Power Consumption Parameters

Parameter Value (W)
Static power per edge server (PSo) ) 120
Static power per regional server (Psrtea%i'f"al) 200
RU power (active mode) (Pave) 397
RU power (sleep mode) (Pei;™) 40

including enhanced Mobile Broadband (eMBB), ultra-Reliable
Low Latency Communication (uURLLC), and massive Machine
Type Communication (mMTC), following the distribution in
[10] for an industrial area where 25% of users are eMBB users,
25% are uRLLC users, and 50% are mMTC users, with data
rate requirements of 20 Mb/s, 5 Mb/s, and 1 Mb/s, respectively.
The MH delay bounds DM are drawn from [100, 300] us for
uRLLC, 500 ps for eMBB, and 1000 p for mMTC. The FH
delay bounds are set to 100 ps for all service types [10]. We
consider a set of 3 edge-cloud nodes, such that the distance
between any pair of edge-cloud nodes and RUs is between 5-
10 km. Moreover, we consider 1 regional-cloud node randomly
located within 40-80 km away from the edge-cloud nodes. The
O-Cloud setup is in line with the specification in [18]. The
computational capacity G, is set to 350 GOPS for edge-cloud
servers, and 1000 GOPS for the regional-cloud node. We use
parameter values inspired by [4] and [11]. The power-related
settings are summarized in Table 1.

Initial evaluation results demonstrate significant energy sav-
ings achieved through our proposed energy-aware orchestra-
tion strategies, as compared to a naive baseline where all RUs
and servers (both edge and regional) remain constantly active.

To quantify the benefits of energy-aware orchestration, we
first consider the Optimal model, which jointly optimizes user
association and VNF placement while minimizing total energy
consumption. The energy saving gain is computed as:

EB aseline — Escheme

Gain = 100 - 29)

EBaseline

As shown in Figure 2, the Optimal model achieves substantial
energy savings across all system loads. The Optimal model
achieves significant energy savings, with up to 75% reduction
at low load (20 users). The observed savings decrease with an
increasing number of users, reaching 35% savings even under
full system load (100 users). We then evaluate the performance
of our proposed GNN heuristic by comparing its energy
savings against the Optimal model. The GNN is designed to
approximate the optimal placement and association decisions
in real time, with minimal computational overhead. Figure 2
also shows the percentage of energy savings achieved by
the GNN heuristic. The GNN heuristic effectively mimics
this energy-saving behavior, closely replicating the optimal
performance at all user densities. Specifically, it reaches 67%
saving at 20 users, with only a marginal optimality gap of
under 5%. Even with higher user densities (80-100 users),
the GNN sustains a 25% energy reduction. The GNN model
exhibits a notable increase in energy saving at a number of
users equal to 80. This refers to the fact that the GNN may



2025 21st International Conference on Network and Service Management (CNSM)

—e— GNN
70 4 —— Optimal

60

50 4

40 1

Average Energy Saving (%)

301

T T T T
20 30 40 50 60 70 80 90 100
Number of users in system

Fig. 2: Average energy saving (%) of the Optimal and GNN
heuristic models compared to the baseline

10% § =
—— Optimal
—e— GNN
101 4
2
O lOD -
E
5
<
S
510714
3
3
]
w
1072 4
o] e, | "
20 30 40 50 60 70 80 90 100

Number of Users

Fig. 3: Execution time of Optimal and GNN heuristic models

admit fewer users and underutilize certain RUs and servers
due to suboptimal association or placement decisions. This
phenomenon illustrates a trade-off between energy efficiency
and user admittance, where the GNN sacrifices service per-
formance to favor energy conservation. Despite this, the GNN
model still demonstrates effective energy-aware behavior.

Figure 3 illustrates the execution time in seconds of the
Optimal model versus the proposed GNN heuristic as the
number of users increases. The results show the increase
in computation time for the Optimal ILP solver, growing
from milliseconds at low user counts to over 64 seconds for
100 users. This exponential increase reflects the complexity
of solving the joint optimization problem. In contrast, the
GNN-based heuristic maintains a nearly constant execution
time across all user loads, with inference times order of 2
milliseconds. This lightweight inference cost makes the GNN
heuristic especially attractive for real-time network control in
O-RAN systems. The time reduction exceeds 99.9% compared
to the optimal solver at high loads, confirming the GNN’s
practicality as a real-time dApp for scalable orchestration.
Although the GNN may yield suboptimal or slightly infeasible
decisions, its execution efficiency enables frequent model
updates within the 1-ms TTI interval, crucial for dynamic and
dense network environments.

VI. CONCLUSION

This paper presents an energy-efficient model for Open
RAN, optimizing both placement and user association. Our
ILP-based solution establishes an optimal benchmark, while
the GNN heuristic achieves real-time approximation with
minimal overhead. Simulation results confirm the effectiveness
of our approach, with significant energy savings and fast
execution. These findings support the feasibility of scalable,
energy-aware orchestration in future O-RAN deployments.
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