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Abstract—Existing adversarial Domain Generation Algorithms
(DGASs) often fail to produce realistic synthetic domains because
their sequential models cannot adequately capture complex char-
acter dependencies within domain names. This paper presents
TITAN DGA, a new approach that addresses this limitation
by integrating a Generative Adversarial Network (GAN) with a
Transformer-based autoencoder, enabling the model to effectively
learn long-range dependencies to generate synthetic domains. The
solution incorporates adversarial self-augmentation to enhance
evasiveness through iterative retraining. The model learns from
its own generated samples using two strategies: a broad approach
that improves overall generation quality, and a targeted approach
that specifically leverages previously successful evasions to refine
the model’s adversarial capabilities. Comprehensive evaluation
against multiple state-of-the-art classifiers and competing adver-
sarial DGAs demonstrates that TITAN DGA achieves superior
evasion rates while maintaining realism.

Index Terms—Domain Generation Algorithm, Generative Ad-
versarial Network, Transformers, Adversarial Evasion, Self-
Augmentation, Synthetic Data Generation

I. INTRODUCTION

Domain Generation Algorithms (DGAs) are an important
element of cybersecurity, widely employed by sophisticated
malwares to evade detection. By generating a large and fre-
quently changing list of domain names, DGAs hinder threat
identification and mitigation, thus enabling botnets to main-
tain communication with their Command and Control (C&C)
servers [1]. This technique introduces significant challenges,
particularly in critical environments like datacenter networks,
cloud environments, and operational technology (OT) systems.
The increase in the frequency of Distributed Denial-of-Service
(DDoS) attacks, data exfiltration attempts, and ransomware
- carried out by malware such as GameOver Zeus, Mirai,
and CryptoLocker - highlights the need for more effective
detection and response mechanisms.

A major challenge in detecting DGAs is their rapidly evolv-
ing nature, which renders traditional signature-based methods
like blacklisting ineffective. Attackers continually enhance
their algorithms, integrating sophisticated evasion techniques
and name variation approaches that make malicious domains
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appear indistinguishable from legitimate traffic. This evolution
has driven security teams to adopt machine learning-based
detectors [2], creating a dual arms race [3]. As these detectors
have improved, adversarial DGAs have become increasingly
common. Modern approaches employ models like Generative
Adversarial Networks (GANs) to generate realistic domain
names specifically designed to evade even the most advanced
classifiers, which struggle to identify complex and subtle
character patterns in domain strings.

GANSs generate realistic data through a competitive process
between two neural networks: a generator, which creates
samples, and a discriminator, which distinguishes them from
real ones. In networking, they have been applied to generate
complete packets [4], as well as metadata and traffic flows for
simulations [5]. They have also proven effective for adversarial
DGAs. Early models such as DeepDGA [6] used autoencoders
to compress domains and generators to replicate their features.
Later, DomainGAN employed a Wasserstein GAN with gradi-
ent penalty to produce more diverse and realistic domains that
better evade detection [7]. More recently, Zhai et al. proposed
CDGA [8], a controllable GAN-based framework that enables
fine-grained manipulation of domain attributes for improved
stealth against modern classifiers [8].

However, despite progress, many GAN-based DGAs still
rely on Long Short-Term Memory (LSTM) models that gen-
erate domains one character at a time. While effective for
local n-gram patterns, this approach limits the learning of
global dependencies required for realistic structures. Longer
domains further suffer from context loss due to vanishing
gradients in RNNs [9]. As a result, these DGAs may capture
low-level statistics but fail to preserve higher-order coherence,
leaving artifacts exploitable by advanced detection systems
[10]. Moreover, their performance is often tightly coupled
to the initial training dataset, reducing adaptability against
dynamically shifting adversarial strategies [3]. To address
these challenges, recent work has explored representation tech-
niques beyond raw character sequences, as effective domain
representations are crucial for both generation and detection.
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It is essential for the cybersecurity community to continu-
ously analyze modern DGA techniques in order to understand
and anticipate adversarial strategies that exploit weaknesses
in existing detection systems. Systematic analysis of these
advanced DGAs reveals emerging patterns and identifies gaps
in current defense mechanisms, ultimately guiding the design
of more robust and adaptive detectors. In this context, this
work presents an architecture based on GANs integrated with
Transformer-based architectures to generate realistic malicious
domains, thereby promoting research and development of
more sophisticated classifiers. Our approach leverages machine
learning methods to model complex semantic and structural
relationships in text sequences, enabling the generation of do-
mains that exhibit high evasiveness against various detectors.
Specifically, the main contributions of this research are:

e Novel Architecture. TITAN DGA, a new approach for
generating malicious domains that combines a GAN with
a Transformer-based autoencoder. This approach replaces
traditional LSTM encoders and uses Kullback-Leibler
divergence for stabilization, promoting greater diversity
in the generated samples;

o Enhanced Semantic and Structural Modeling. By
employing SentencePiece tokenization together with a
Transformer architecture, the model effectively captures
both short- and long-range dependencies between tokens.
This results in the generation of domains that are more
difficult to distinguish from real ones;

o Progressive Evasion Enhancement through Self-
Augmentation. One training strategy is investigated
to progressively improve evasiveness: Targeted Self-
Augmentation, which retrains the model on a dynamic
mixture of real domains and synthetic samples generated
in previous stages, but selects synthetic samples exclu-
sively from those misclassified as benign by external
classifiers.

This work is organized as follows: Section II provides the
necessary background and reviews related work, identifying
key challenges in current DGA generation, such as the limi-
tations of sequential models. Section III details TITAN DGA,
which integrates a transformer-based architecture with a novel
targeted self-augmentation training strategy, and discusses
the challenges and considerations inherent in this approach.
Section IV presents the experimental setup and evaluates the
results of the method against established benchmarks. Finally,
Section V offers concluding remarks and outlines potential
directions for future work.

II. THEORETICAL REVIEW

This section covers the basics behind TITAN DGA: first,
a review of the evolution of DGAs from simple seed-based
methods to more complex wordlist and permutation schemes;
next, a discussion of the generative frameworks that enable
today’s adversarial domain creation; and finally, an exploration
of advanced training paradigms such as self-augmentation and
show how TITAN DGA advances the current state of the art.

A. Background

The Domain Name System (DNS) maps human-readable
names to [P addresses and botnets exploit this flexibility
to hide their C&C infrastructure. Early malware used hard-
coded DNS records, but once discovered, defenders could
easily blacklist these endpoints [11]. To address this weakness,
DGAs emerged around 2008, enabling bots to compute daily
lists of pseudo-random domains from shared seeds and contact
whichever domains attackers registered [12].

Traditional DGAs fall into four categories: arithmetic-based,
hash-based, wordlist-based, and permutation-based [13]. These
early generators produced high-entropy domains, but their ran-
domness made them detectable by machine learning classifiers
using statistical distances or models like Random Forests [14],
[15]. LSTM-based architectures further improved detection by
modeling sequential dependencies in legitimate domains [16].
In response, adversarial DGAs began creating domains that
mimic benign linguistic features using two main strategies:
perturbation and generative modeling. Perturbation approaches
like CharBot introduce minimal character substitutions into
known good domains [17], while generative techniques like
DeepDGA and WordDGA use GANs trained on legitimate
domains to produce novel and evasive names [6], [18].

Given the complexity of these adversarial generation tech-
niques and their potential to evade detection, robust evaluation
methodologies are essential to assess both the quality of
synthetic domains and the effectiveness of defense mech-
anisms. Evaluating synthetic data quality and effectiveness
goes beyond simple statistical comparisons; it requires measur-
ing machine learning model performance under four distinct
training and testing protocols: TRTR (Train on Real/Test
on Real), which establishes a baseline by measuring model
performance exclusively on genuine data; TSTR (Train on
Synthetic/Test on Real), which determines whether synthetic
data can replace or augment real data; TRTS (Train on
Real/Test on Synthetic), which assesses how realistic and
evasive the generated samples are; and TSTS (Train on
Synthetic/Test on Synthetic), which measures the internal
consistency of the synthetic dataset itself, detecting issues like
mode collapse or insufficient diversity [19], [20].

A further variant, T(R+S) (Test on Real + Synthetic),
compares a single model against a combined test set of real and
synthetic samples, providing a more challenging assessment of
its resilience across authentic and generated distributions [21],
[22]. Finally, TR+S (Train on Real + Synthetic) examines
mixed-data training: models are trained on a union of genuine
and synthetic samples and then evaluated on a reserved set of
real data [23]. This setting determines whether augmenting
real datasets with synthetic DGAs enhances performance,
robustness, and generalization beyond what real data alone
can achieve [24], [25], a critical consideration for developing
more effective and resilient DGA classifiers.

B. Related Work

GANs have been successfully adapted to create realistic
network-related data at both packet [4] and domain levels. In
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DGAs, several GAN-based architectures produce malicious-
looking yet diverse domain names. DeepDGA compresses
real domains with an autoencoder and uses a GAN gener-
ator, but cannot capture long-range character dependencies
[6]. Subsequent works like CDGA introduce ResNet blocks,
tokenization and LSTM encoders, yet still train autoencoder
and GAN separately [8]. TITAN DGA unifies both stages,
employs transformers to model long-term token relationships,
and incorporates a Kullback—Leibler divergence term to enrich
its latent space. Alternative methods modify existing domains
— DeceptionDGA adjusts vowel—-consonant ratios [3], Char-
Bot randomly swaps characters [17], and MaskDGA uses
adversarial perturbations extracted from substitute classifiers
[10] — but depend on access to detection models or on lim-
ited structural changes. In contrast, transformer-GAN hybrids
like Style Transformer-GAN and TILGAN generate novel
sequences by learning style and content representations or
latent embeddings without parallel data, demonstrating strong
fluency, diversity and control in text generation [26], [27].

As DGAs evolved, so did detection techniques, from block-
list matching to feature-based classifiers and deep models.
Random Forest methods such as FANCI use up to 26 hand-
crafted linguistic features (entropy, n-gram statistics) to de-
liver real-time performance but lag behind deep solutions in
recall and adaptability [15], [28]. LSTM-based detectors like
LSTM.MI address class imbalance and achieve high F1-scores
[29], while hybrid CNN-LSTM architectures (e.g., BILBO)
combine local and sequential feature learning to improve AUC
and temporal robustness [30]. These advances underscore the
strength of end-to-end deep learning for both generating and
detecting adversarial domains, motivating the focus on GAN-
driven DGA synthesis that maximizes diversity and evasion
against heterogeneous classifiers.

C. Discussion

In summary, the evolution of malicious domain genera-
tion has progressed from simple domain manipulations to
sophisticated adversarial methods powered by GANs. Seminal
efforts like DeepDGA [6] and CDGA [8] enhanced realism
by coupling autoencoders with tokenization schemes, yet they
remained limited by distinct encoding/generation stages and an
inability to model long-range dependencies effectively [31].
By contrast, TITAN DGA, presented in the next section,
tightly integrates its autoencoder and GAN components, lever-
aging a transformer architecture and the Kullback—Leibler
divergence. This unified design produces coherent, highly
evasive domains out-of-the-box, without the need for classifier-
specific adjustments, thereby directly addressing the shortcom-
ings of prior approaches.

III. THE TITAN DGA PIPELINE

The work focuses on generating domain names with a
GAN architecture built on transformers and augmented by a
self-augmentation module. This design allows the model to
capture both short- and long-range token dependencies while
leveraging the variability injected by self-augmentation to im-
prove generalization and robustness. Consequently, the model

achieves higher evasion rates and produces domains more
similar to real ones. The proposed TITAN DGA architecture
— shown in Figure 1 — comprises five main stages:

1) Datasets: represents the initial dataset of legitimate
domains used to pre-train the GAN, as well as the adver-
sarial domains selected during TITAN DGA’s retraining
stage. Additionally, the datasets used for training the
classification models are also processed during this step;

2) Preprocessing: in this stage, legitimate domains have
their Top-Level Domains (TLDs) removed and are then
tokenized with SentencePiece — a subword tokenizer
that builds a compact, language-agnostic vocabulary and
handles rare or unseen character sequences by segment-
ing them into statistically derived subword units —
while also inserting special boundary tokens. Domains
generated by TITAN DGA are also tokenized using a
simpler, rule-based tokenizer. Finally, these processed
legitimate and generated domains are merged into a
single dataset, reducing overall vocabulary complexity
and priming the data for the autoencoder;

3) Transformer-based Autoencoder GAN: this module
combines a Transformer-based Autoencoder with a GAN
[27] to learn compact latent representations of domain
names. The encoder projects tokenized domains into
continuous vectors that capture syntactic and semantic
features, which serve as real samples during GAN
training. The generator produces synthetic latent vec-
tors while the discriminator distinguishes them from
encoder-derived ones. The decoder reconstructs domain
names from both real and generated vectors, ensuring
consistency and syntactic validity. The system is trained
end-to-end with a loss function that incorporates Kull-
back-Leibler divergence to regularize the latent space
and enhance generation quality, producing realistic do-
mains that retain the structure of legitimate examples;

4) Post-processing: after the decoder reconstructs the do-
main names, a validation filter ensures compliance with
RFCs 1034 and 1035. Subsequently, a valid TLD from
a predefined list is appended to each domain. This
approach relieves the GAN of TLD generation responsi-
bilities while guaranteeing the structural correctness of
the final domains;

5) Retraining: in this final stage, the structurally valid
domain names from the previous step undergo TLD
removal and are evaluated by three state-of-the-art DGA
classifiers: FANCI [28], LSTM.MI [29], and BILBO
[30]. Only domains that are misclassified as legitimate
by all three classifiers are retained, effectively filtering
out easily detectable DGA samples. These remaining
domains are then tokenized and incorporated into the
GAN’s training dataset for the next iteration.

A. Datasets

Our research uses four datasets for different experimental
purposes. The first dataset, "OB” (Only Benigns), contains
240,000 legitimate domains from the Tranco list [32] for initial
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GAN training and providing real domain samples for self-
augmentation. The second dataset is a collection of ten datasets
that systematically combine the OB dataset with increasing
amounts of TITAN DGA-generated domains, with synthetic-
to-real ratios from 0.10 to 1.00. The third dataset, "CT”
(Classifiers Training), enables classifier training on real-world
data by combining 500,000 legitimate domains from Tranco
[32] with 500,000 DGA-generated domains from DGArchive
[33]. The DGA samples include ten families with diverse
generation methods: two hash-based (Bamital and Dyre), five
arithmetic-based (Banjori, Conficker, Cryptolocker, Nymaim,
and Pykspa), and three wordlist-based (Gozi, Matsnu, and
Suppobox). Finally, dedicated evaluation datasets were con-
structed for each baseline DGA investigated in this study:
CDGA [8], CharBot [17], Deception DGA [3], DeepDGA [6],
and MaskDGA [10]. Each evaluation dataset contains 10,000
legitimate domains from Tranco [32] and 10,000 domains
generated by the corresponding adversarial DGA.

B. Preprocessing

The data preprocessing methodology varies based on
whether self-augmentation techniques are applied. The pre-
processing pipeline begins with the systematic removal of
TLDs from all domains within the OB dataset. These TLDs,
including standardized extensions such as .com, .org, and
.net, represent the highest hierarchical level in domain name
architecture and are derived from a finite, predefined set main-
tained by international standards organizations. Given their
limited variability and adherence to predetermined structural
conventions, TLDs are deliberately excluded from the gener-
ation process, as they do not contribute meaningful diversity
to the GAN training procedure.

Following TLD removal, the processed OB domains are
segmented using SentencePiece [34], Google’s tokenization
framework for neural text processing. This allows defining the
vocabulary prior to training, ensuring consistent tokenization
across the dataset. Among the available methods, the Unigram
Language Model was chosen for its effectiveness in handling
out-of-vocabulary terms and morphological variations com-
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mon in domain names. This process decomposes domains into
subunits, e.g., “facebook’” becomes “face” and “_book”, where
the underscore marks a word boundary.

The preprocessing pipeline concludes with the application
of a streamlined tokenizer that systematically maps the pre-
viously established tokens to corresponding numerical in-
dices, facilitating neural network processing. This tokenization
step incorporates essential special tokens, including start-of-
sequence (sos) and end-of-sequence (eos) markers, which
provide crucial structural information for sequence generation
tasks. Importantly, this unified tokenization process is applied
consistently to both the original OB domains and the syntheti-
cally generated domains produced during the retraining phase
for self-augmentation, ensuring methodological consistency
across all experimental conditions.

C. Transformer-based Autoencoder GAN

The GAN architecture employed in this work consists of
a generator, a discriminator, and a transformer-based autoen-
coder. In the autoencoder, both the encoder and the decoder
are composed by two self-attention layers with 16 attention
heads, followed by a feedforward layer with 512 units and
an embedding dimension of size 512. Both the generator
and discriminator are implemented as single-layer Perceptrons
with 128 neurons. The LeakyReLU activation function is used
to ensure training stability, and the loss function is based
on the Kullback-Leibler (KL) divergence, as it encourages
the generation of diverse samples that closely follow the
distribution of real data. The generator maps noise samples
from a standard normal distribution ¢ ~ N(0,I) through
the MLP gg(e), resulting in an implicit latent distribution
pa(z). The training objective is to align this distribution with
the aggregated posterior of the encoder, defined as g,(z) =
Egp, (2)[q¢(z]2)], by minimizing the KL divergence:

ps(2)

This term is incorporated into the overall loss function with
a weighting coefficient, encouraging the generator to capture

Ly(6,8) = Dxr.(g4(2) ||p5(z)):/%(z)log(%(z))dz
(
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the full diversity present in the encoded distributions. Unlike
traditional variational autoencoders (VAEs), which regularize
each individual latent vector ¢(z|z) to match a fixed prior
(typically N'(0, I)), TITAN applies KL divergence at the level
of the aggregate latent distribution. Specifically, it aligns
the overall distribution of latent vectors produced by the
generator with that of the encoder, promoting compatibility
and diversity in the latent space without imposing a predefined
prior. In addition, a second KL divergence term is introduced
to enhance the decoder’s robustness. This auxiliary term
measures the discrepancy between the encoder’s distribution
over reconstructed samples Z = E(G(g(¢))) and the original
latent distribution g4 (2):

Laec = Dx1.(q4(2) [| Pg(2)) 2)

This additional penalty ensures that the decoder learns to
handle latent representations generated by the GAN, promot-
ing higher fidelity in text reconstruction even when exposed
to latent vectors not seen during training.

D. GAN Training

For model training, the Adam optimizer was used across
all components of the GAN architecture, and the Stochastic
Gradient Descent (SGD) was used on the autoencoder compo-
nent. However, different learning rates were assigned to each
module to address their specific optimization requirements:
the generator was trained with a learning rate of (0.0004), the
discriminator with (0.0001), and the autoencoder with a higher
rate of (0.06). The choice of these values was made based on
an extensive empirical analysis of various hyperparameters,
particularly for the autoencoder, which was trained using
SGD and therefore required a higher learning rate compared
to adaptive optimizers, in order to effectively learn stable
representations of the domains.

The latent input to the generator consists of 100-dimensional
vectors sampled from a standard normal distribution A/(0, I).
A batch size of 256 was adopted for balancing training stability
and efficient memory usage. Additionally, a 30% dropout
was applied at various points in the autoencoder, including
after the attention heads and the feedforward layer. Finally,
controlled Gaussian noise was introduced during both training
and inference within the autoencoder. This technique aims to
improve the model’s robustness by encouraging the learning
of latent representations that remain stable under small input
changes, thereby improving generalization performance. The
training environment was based on Python 3.12.3, running on
a workstation with an NVIDIA RTX 5070 Ti GPU, 128 GB of
RAM, and an Intel Core i5-14600KF processor (3.50 GHz).

E. Post-processing

The post-processing step involves two main tasks: vali-
dating domains generated by the GAN and assigning TLDs.
Generated domains are filtered according to the specifications
defined in RFCs 1034 and 1035, which establish the syntax
rules and naming conventions for domain names in the DNS
system. Beyond removing invalid domains, this validation

process also prevents the generation of structurally similar
variants, improving the overall syntactic quality of the output.

TLD assignment is performed using a fixed list that includes
the 50 most common traditional TLDs registered globally, as
well as the 50 most frequent new gTLDs, based on statistics
provided by [35]. The term “new gTLDs” refers to an expan-
sion introduced by ICANN starting in 2013, which includes
a wide variety of more descriptive or brand-oriented domains
such as .shop, .tech, and .xyz. This selection strategy
ensures structural consistency with real-world distributions and
increases the likelihood that the generated domains resemble
those commonly observed on the public internet.

Unlike other adversarial DGA models in the literature,
TITAN DGA performs a post-processing that enforces com-
pliance with DNS syntax standards and incorporates realistic
TLDs. As shown in Table I, domains generated by TITAN
DGA exhibit greater lexical coherence and semantic plausi-
bility compared to those produced by other models, many
of which generate purely random or malformed strings. This
qualitative advantage directly results from post-processing and
filtering stages, which are more rigorous than those used in
prior approaches.

FE. Retraining

The retraining stage represents the core component of the
self-augmentation mechanism. Two training strategies were
investigated to progressively improve evasiveness: (i) Iterative
Self-Augmentation, which retrains the model on a dynamic
mixture of real domains and synthetic samples generated in
previous stages; (ii) Targeted Self-Augmentation, which uses
the same approach but selects synthetic samples exclusively
from those misclassified as benign by external classifiers.

In this work we opted for Targeted Self-Augmentation, as
it provided a significant improvement in model performance
compared to the iterative method, which introduced higher
noise levels by incorporating data not classified as legitimate
domains. Consequently, the filtered domains generated by the
GAN — initially trained exclusively on legitimate domains —
are evaluated by the FANCI [28], LSTM.MI [29], and BILBO
[30] classifiers. Inference is carried out sequentially, with one
classifier at a time, following an order determined by their
performance on the CT dataset: starting with FANCI, followed
by LSTM.MI, and concluding with BILBO.

After each round of inference, domains that are classified as
true positives (i.e., correctly identified as DGAs) are removed.
Only those categorized as legitimate are passed to the next
classifier in the sequence. At the end of this filtering process,
a dataset containing 240,000 DGA domains that successfully
evaded all three classifiers is created. This dataset serves as the
foundation for constructing the various synthetic-to-real ratio
datasets. Before being reintegrated into the training pipeline,
however, the domains are tokenized using SentencePiece [34]
to ensure consistent segmentation, aligned with the prepro-
cessing applied to the OB dataset.
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TABLE I: Examples of domain names generated by different Adversarial DGA models (TLDs removed)

TITAN DGA CDGA MaskDGA CharBot Deception DGA DeepDGA
quickupsports riwoim aahrdjjrwth provenfvnners  jtrogani—ebuesmeorean-we firiaps
greenservice presyouryouth uoruiddvwdwuihkul kricmbc trtegogonsc sirgivrv
sebeautyproducts ~ numberconditions ggupitmefz bxzlerweb likinkew laner
fitnesslife360 plsystemlegaledu jxhwkhmsza guirpad yalowltiveraf mivognit
timemarketbox Venproevo wwypddbcoodl eicelkran liydchousyorkv qiurdeees

IV. EXPERIMENTS AND RESULTS

The conducted experiments aimed to assess both the per-
formance and adaptability of the synthetic data produced by
TITAN DGA through the targeted self-augmentation process.
The generated domains were evaluated using well-established
classifiers from the literature to measure how effectively they
can evade detection. Additionally, their spatial distribution was
analyzed using dimensionality reduction techniques to exam-
ine dispersion and overlap with legitimate domains, providing
insights into structural similarity and evasion potential. A com-
prehensive dataset was constructed with sufficient representa-
tion from major DGA families to enable robust training of the
classification models. The experimental procedure followed
these steps:

1) Training of classification models: Three classification
models were trained based on solutions from the liter-
ature [28]-[30]. Each classifier was trained individually
using 80% of the CT dataset. This paper implementation
of the FANCI model [28] used 16 features instead of the
original 21 features due to TITAN DGA not generate
TLDs. All classifiers were configured according to the
original architectural and hyperparameter specifications
described in their respective papers;

Classifier inference: After training completion, an in-
ference was performed using domains generated by TI-
TAN DGA, both before and after the self-augmentation
process. This evaluation measured the evasion success
of the generated domains by determining the extent to
which they were misclassified or remained undetected
by the classifiers;

Comparison with other DGAs under adversarial
retraining: To evaluate the robustness of the TITAN
DGA models against existing adversarial approaches,
adversarial retraining were performed using synthetic
domains generated by different DGA techniques. Five
well-established adversarial DGAs were included from
the literature: CDGA [8], CharBot [17], DeceptionDGA
[3], DeepDGA [6], and MaskDGA [10]. For each
adversarial DGA, the classifiers were retrained on a
balanced dataset consisting of 50% real domains and
50% synthetic domains generated by that specific model.
This experimental setup enabled a direct comparison
of evasiveness across different adversarial techniques
and revealed how the inclusion of adversarial domains
impacts detection performance;

Computation of complementary metrics: Additional
metrics were computed to assess the quality and distri-
bution of generated domains. These included the Wasser-

2)

3)

4)

stein distance between generated and real domains, and
the structural distribution of data points in the vector
space. To analyze the latter, two widely used dimen-
sionality reduction techniques were applied: Principal
Component Analysis (PCA) and t-distributed Stochastic
Neighbor Embedding (t-SNE).

The experiments were validated using well-established eval-
uation metrics. Classifier performance was assessed using
five standard metrics: Precision, Accuracy, Recall, F1-Score,
and AUC/ROC (Area Under the Curve), which measures the
probability that a classifier ranks a randomly chosen positive
instance higher than a randomly chosen negative one. All
metrics range from O to 1, with higher values indicating
better performance. Initially, classifiers were evaluated on the
training dataset to validate their ability to distinguish between
legitimate and generated domains.

These metrics were then used to evaluate TITAN DGA’s
evasion performance on datasets generated before and after
the application of self-augmentation. For evasion assessment,
lower metric values indicate better performance, as they re-
flect the classifiers’ inability to detect the generated mali-
cious domains. The performance of the DGA without self-
augmentation was compared against the worst-case evasion
scenario with self-augmentation, as well as against state-of-
the-art DGAs under adversarial retraining. Additionally, PCA
and t-SNE were employed to analyze domain distribution
in the latent space and to illustrate the separation between
legitimate and GAN-generated domains.

TABLE II: Performance of each classifier on CT dataset

Classifier | Accuracy | Precision | Recall | F1-Score | AUC/ROC
FANCI 0.8304 0.8394 0.8170 0.8281 0.8304

LSTM.MI 0.9460 0.9344 0.9594 0.9467 0.9879
BILBO 0.9498 0.9477 0.9521 0.9499 0.9895

As shown in Table II, all classifiers achieved solid perfor-
mance on the CT dataset, although with varying degrees of
effectiveness. Bilbo stood out with the best overall results,
reaching an Accuracy of 0.9498 and an AUC/ROC of 0.9895,
indicating excellent discrimination between benign and ma-
licious domains. LSTM.MI followed closely, also presenting
high performance (AUC/ROC of 0.9879), and balanced pre-
cision and recall as reflected in its F1-Score. FANCI, while
outperformed by the deep learning-based models, still obtained
competitive results, with an Accuracy of 0.8304 and Precision
of 0.8394. These findings reinforce the advantage of neural
networks in capturing complex DGA patterns, while also
showing that traditional classifiers like FANCI remain effective
under certain conditions.
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TABLE III: Demonstration how different levels of self-augmentation affect classification performance. The synthetic-to-real
ratio represents the proportion of synthetic samples added to the real dataset (e.g., 0.10 = 10% additional synthetic data)

Synthetic-to-Real Ratio | Classifier | Accuracy | Precision | Recall | F1-Score | AUC/ROC
0.00 (baseline) BILBO 0.5055 0.5393 0.0754 0.1323 0.5217
0.10 FANCI 0.5206 0.5479 0.2364 0.3303 0.5206
0.20 BILBO 0.5099 0.5725 0.0778 0.1370 0.5354
0.30 FANCI 0.5201 0.5466 0.2352 0.3289 0.5201
0.40 LSTM.MI 0.5014 0.5111 0.0669 0.1183 0.5108
0.50 BILBO 0.5028 0.5226 0.0636 0.1134 0.5261
0.60 FANCI 0.4930 0.4814 0.1811 0.2632 0.4930
0.70 FANCI 0.4722 0.4167 0.1394 0.2089 0.4721
0.80 BILBO 0.5058 0.5454 0.0697 0.1236 0.5245
0.90 FANCI 0.4947 0.4860 0.1845 0.2675 0.4947
1.00 FANCI 0.5108 0.5262 0.2167 0.3070 0.5108

Table III shows that classifiers exhibited lower detection
performance against domains generated by self-augmented
GANs compared to the baseline (0.00 ratio), where GANs
were trained solely on benign domains. In this step, classifiers
were trained on the same CT dataset as in Table II, and the
best AUC/ROC was reported for each synthetic-to-real ratio.
For example, Bilbo’s AUC/ROC dropped from 0.5217 in the
baseline to 0.4930 with self-augmentation using FANCI at a
0.60 ratio. Although these decreases appear modest (5.5%),
they represent meaningful gains in evasion capability given the
baseline difficulties. FANCI consistently achieved the highest
recall and F1-Score across ratios, indicating broader detection
but at the cost of increased false positives. AUC/ROC was used
as the main metric since it evaluates classifier discrimination
independently of thresholds, enabling consistent comparison
across classifiers and ratios while revealing subtle shifts in
model confidence.

The motivation behind self-augmentation extends beyond
simply increasing training data volume to enabling feedback-
oriented refinement of the generator’s latent space. By in-
corporating its own successful outputs back into training,
the GAN iteratively explores regions of the latent space that
produce harder-to-detect domains. This process creates a form
of evasion-driven self-adaptation that would be difficult to
achieve through conventional data augmentation with benign
domains alone. Self-augmentation therefore acts as a mecha-
nism for incremental discovery of evasive structures, guided by
the classifier’s own detection weaknesses rather than relying
on manual data expansion.

Table IV summarizes the evasion performance of different
adversarial DGA models against adversarially retrained clas-
sifiers. Bilbo was selected for this evaluation due to its consis-
tently superior AUC/ROC performance on the CT dataset. De-
spite targeting a more robust classifier, TITAN DGA achieved

more effective evasion than all the other adversarial DGAs
from the literature. Even at its least evasive configuration (0.20
synthetic-to-real ratio), TITAN outperformed its baseline (0.00
ratio) in Recall and F1-Score, demonstrating improved evasion
while maintaining realism. Compared to CDGA and CharBot,
TITAN with self-augmentation at 0.20 achieved respectively
up to 30.0% and 23.7% lower recall, and up to 18.8% and
17.6% lower Fl-score. These reductions indicate stronger
evasion performance, even in adversarial retraining scenarios,
where most models tend to overfit to detection patterns.

To assess the similarity between domains generated by
each adversarial DGA and legitimate domains, the Wasserstein
distance was computed per model. A Word2Vec Skip-gram
embedding of 256 dimensions was first trained on legitimate
domains, and tokens from each DGA were mapped into
this space. For each embedding dimension, the Wasserstein
distance was calculated between legitimate and adversarial dis-
tributions, and the final value was obtained by averaging across
dimensions. As shown in Table V, TITAN DGA achieved the
lowest distance (0.00122), indicating that its synthetic domains
are not only structurally coherent but also semantically aligned
with legitimate domain patterns.

TABLE V: Wasserstein distance from legit dataset

Adversarial DGA | Wasserstein Distance
TITAN 0.00122
CDGA 0.00527

DeepDGA 0.04157
DeceptionDGA 0.00309
MaskDGA 0.00989
CharBot 0.00241

This result highlights TITAN’s capability to generate do-
mains that are highly evasive and difficult to distinguish from
real ones. Such effectiveness is further supported by the recall
analysis presented in Tables III and IV, where TITAN DGA
— with self-augmentation — consistently achieved the lowest

TABLE IV: Performance of the classifier retrained with adversarial retraining in several DGA families

DGA Family Accuracy | Precision | Recall | F1-Score | AUC/ROC
TITAN 0.6570 0.6721 0.6130 0.6412 0.7071
TITAN 0.20 Synthetic/Real ratio 0.6675 0.7099 0.5665 0.6301 0.7389
CDGA 0.7863 0.8137 0.7425 0.7765 0.8744
DeepDGA 0.9995 1.0000 0.9990 0.9995 0.9923
DeceptionDGA 0.7810 0.7461 0.8520 0.7955 0.8647
MaskDGA 0.9555 0.9691 0.9410 0.9548 0.9923
CharBot 0.7515 0.7256 0.8090 0.7650 0.8323
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recall values among all evaluated models. This implies that
the generated domains are more likely to bypass detection
mechanisms, reinforcing the practical impact of TITAN’s
latent space modeling and post-processing strategies.
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Fig. 2: PCA visualization of generated and real domains
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Fig. 3: t-SNE visualization of generated and real domains

To assess the similarity between the domains generated
by TITAN DGA and legitimate domains, two dimensionality
reduction techniques were employed: PCA and t-SNE. The
PCA projection (Figure 2) shows that TITAN DGA domains
overlap substantially with the real domains in the reduced
space, indicating that their global distributional characteristics
are closely aligned. In addition, t-SNE (Figure 3) reveals
that TITAN-generated domains are densely embeded with
legitimate ones, reflecting strong local structure similarity in
the embedding space. Together, these projections confirm that
TITAN DGA is capable of producing highly realistic domains
that mimic both the overall and fine-grained distributional
patterns of legitimate traffic, reinforcing its evasiveness and
the challenge it poses for detection mechanisms.

V. FINAL REMARKS

This work introduces TITAN DGA, a novel architecture that
combines Generative Adversarial Networks, a Transformer-

based Autoencoder, and an adversarial self-augmentation strat-
egy to generate highly evasive domain names that closely re-
semble legitimate ones. By integrating these three components,
TITAN DGA addresses key limitations of prior adversarial
DGA models, including their inability to model long-range
token dependencies and adapt to evolving detection mecha-
nisms. The self-augmentation process enables the model to
iteratively refine its latent space based on its own evasive
outputs, producing domains that are both harder to detect and
more lexically and syntactically aligned with real-world traffic.

The evaluations demonstrate that TITAN DGA achieves
superior evasion performance even under adversarial retraining
scenarios, maintaining low detection rates compared to other
adversarial DGAs, even when classifiers are trained on its
generated domains. The self-augmentation mechanism shows
that TITAN DGA benefits from synthetic sample inclusion,
improving overall performance while remaining highly evasive
against classifiers. The similarity between TITAN-generated
domains and legitimate ones is demonstrated through lower
Wasserstein distances, and analysis of both PCA and t-SNE.
These results indicate that TITAN DGA domains follow a dis-
tribution closely aligned with legitimate domains, confirming
the effectiveness of the proposed approach.

Although TITAN DGA was evaluated in a controlled ex-
perimental setup based solely on domain string analysis, its
applicability extends to real-world cybersecurity pipelines. The
model can be integrated into red-teaming environments to sim-
ulate highly evasive DGAs, supporting the training and stress-
testing of detection systems. Security providers and enterprise
SOCs may leverage TITAN-generated domains to improve
classifier robustness by including them in adversarial retraining
datasets, thus enhancing resilience against future DGA-based
malware campaigns. Furthermore, TITAN DGA can serve as
a benchmarking tool for evaluating the limits of detection
models in realistic Internet-facing scenarios, complementing
other synthetic traffic generation methods.

Future work will focus on enhancing the TITAN DGA archi-
tecture to address current limitations. First, while the current
approach is restricted to domain string generation and does
not incorporate contextual or behavioral information—such
as DNS query timing, resolution patterns, or WHOIS meta-
data—future versions will explore the integration of these
multi-modal signals to better simulate real-world network
scenarios and improve the model’s applicability in enterprise
detection pipelines. Second, TITAN DGA’s effectiveness de-
pends on the quality and diversity of training data (legitimate
domains and classifiers); ongoing research will investigate the
use of additional input datasets, beyond Tranco, to train the
GAN and generate more evasive domains, enhancing gener-
alization across heterogeneous network environments. Third,
an adaptive self-augmentation mechanism will be developed,
capable of dynamically adjusting synthetic domain injection
rates based on feedback metrics such as classifier uncertainty,
allowing more effective refinement of evasive behaviors.
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