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Abstract—Lightweight software containerization solutions exe-
cute multiple payloads from several mutually distrusting stake-
holders on a resource-constrained microcontroller. This paradigm
shifts the accountability model from a single-accountable-actor
model where there is only one integrator responsible for the entire
monolithic code to a multiple-accountable-actor model where
multiple stakeholders share responsibilities. This paper explores
this model through three dimensions: responsibility distribution,
fulfillment of Cloud commitments, and commitment verification
mechanisms along with stakeholders’ access to them.

Index Terms—multi-tenancy, responsibility, micro-controllers,
eSIM, iSIM, Continuum Cloud

I. INTRODUCTION

With the introduction of lightweight containerization solu-
tions such as WebAssembly Micro Runtime [1] or FemtoCon-
tainers [2], the benefits of containerization—enhanced portabil-
ity, isolation, simplified management—are now accessible for
microcontrollers. Thus, commercial solutions for orchestrating
containers on resource-constrained IoT devices, such as Atym
[3] and MicroEJ [4], have emerged. Furthermore, embedded
SIMs and integrated SIMs are also multi-tenant microcon-
trollers as JavaCard provides a runtime environment that allows
the instantiation and management of multiple telecom profiles.
Such microcontrollers no longer have monolithic firmwares
under the responsibility of a single entity.

This paper aims to analyze and evaluate the shift from a
single-actor to a multi-actor accountability model enabled by
lightweight containerization on resource-constrained microcon-
trollers, focusing on responsibility distribution, compliance
with cloud commitments, and verification mechanisms.

Related Work: Surveys such as [5], [6] provide a broad
picture of IoT general architectures with the common protocols,
applications, and components of IoT architecture. Other surveys
provide an overview of aspects of microcontroller security
like remote attestations [7], [8], secure execution environments
using Trusted Execution Environment [9] or virtualization [10].

Accountability has been studied in IoT, however, existing
studies always consider the problem of resources and tasks
allocation in a network of devices rather than resource
allocation to containers on a device. Existing studies concern,
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for instance, data management [11], IoT decision-making in
distributed situation [12], [13], and accountability of Al results
in the context of IoT [14]. Quality-of-Service (QoS) at different
levels of the IoT architecture has notably been studied by Qu
et al. [15] for a network of devices, but they do not analyze
QoS management for a single constrained device. The topic of
accountability management in multi-tenant infrastructures has
already been studied in the context of web services [16] and of
Cloud infrastructure [17], [18]. However, to our knowledge, no
prior study focuses on accountability management in the context
of services from multiple parties hosted on microcontrollers.

Contributions: This paper gives a structured overview of
the multi-tenant microcontrollers paradigm which shifts the
accountability model from a single-actor to a multi-actor
framework involving multiple stakeholders. It explores three
key dimensions: first, how responsibility is distributed among
stakeholders in real-world use cases; second, how existing
lightweight containerization solutions address cloud-related
commitments to extend the Cloud Continuum into the [oT
domain; and finally, the methods for verifying commitments
and stakeholders’ access to these mechanisms.

Outline: Section II presents multi-tenant containerization and
related terminology. Section III analyzes how responsibility is
distributed among stakeholders in real-world use cases. Section
IV compares existing lightweight containerization solutions in
terms of how they address cloud-related commitments. Section
V examines the methods used for verifying commitments and
the accessibility of these mechanisms to stakeholders. Finally,
Section VI presents the next steps for advancing the paradigm
of multi-tenant constrained microcontrollers.

II. MULTI-TENANT CONTAINERIZATION ON
MICROCONTROLLERS

Containers are lightweight, portable units of software that
package an application, its dependencies, and its configuration
together, allowing it to run consistently across different com-
puting environments, effectively decoupling application code
from the hardware and operating system. Zandberg et al. [2]
highlight three categories of use-cases of containerization on
low-power IoT: the hosting and isolation of high-level business
functions, the hosting and isolation of network debugging and
network monitoring code, and the hosting and isolation of
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functions managed by multiple tenants. This paper focuses on
containerization for multi-tenant applications hosting.

Multi-tenancy refers to a single system utilized by multiple
entities, known as tenants. There are two primary types of
multi-tenant microcontrollers. The first one is multi-tenant
network of nodes in which a node can execute software from
multiple entities, but only the applications from one tenant can
run at the same time on a device at a given time. This scenario
is commonly seen in testbeds and decentralized networks of
nodes, such as FIT IoT-LAB'. The second type consists of
multi-tenant devices, where applications from multiple entities
can run simultaneously on one device. The focus of this paper
is on the second type. Thus, in this paper, multi-tenancy
refers to the execution of code from multiple entities on
another entity’s device, while multi-tenant microcontrollers
are shared microcontrollers running services from multiple
tenants. Tenants deploying their services on a microcontroller
are called Service Providers (SP). Typical scenarios we
consider incur from the platformization of services deployable
on microcontrollers and the emergence of a marketplace.

A key aspect needed for multi-tenancy is ensuring isolation
between services from different tenants. On multi-tenant
devices, this isolation can be achieved by software container-
ization, which involves running and isolating software units
by using lightweight virtualization or hardware isolation. A
single isolated software unit with its configuration is referred
to as a container. A typical multi-tenant constrained micro-
controller is represented in figure 1, where multiple service
providers are deploying their containers on a microcontroller
owned by another entity, the Microcontroller Provider (MP).
The MP buy the device to a Device Manufacturer (DM).
The microcontroller and a remote management platform are
managed by the Container Management Operator (CMO),
which operates the deployment and operation of containers.

Containerization can be classified into two types of isolation
guarantees. The first type involves preventing containers from
accessing system resources or resources of other containers.
The second type focuses on restricting applications of the
system and containers to have access to other containers.

When deploying containers on a device, tenants might want
guarantees that their containers will have the appropriate re-
sources to work. One type of guarantee is contracts between the
maintainer of the device and tenants defining the commitments
on the provided hosting service. These contracts, named Service
Level Agreements (SLA), contain metrics and target values
on the service that will be provided. SPs might not entirely
trust MPs and CMOs to respect committed SLA or cannot
always do a legal contract with CMOs. Thus, Service Providers
might want to verify by themselves the provided service-level
by using mechanisms, that we call SLA verification methods,
that are mechanisms used to verify that the SLAs are respected.

III. RESPONSIBILITY DISTRIBUTION

Similarly to the shared responsibility model for Cloud [19],
we define a responsibility model which defines how respon-
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sibilities are distributed among stakeholders involved in the
multi-tenant microcontroller architecture. Table I describes a
general model of responsibilities and its declination in three
use cases of multi-tenant microcontrollers.

A. Use cases description

The first use case “loT-based servitization” is the process
where companies enhance their IoT devices with additional
services which can be provided by third parties. An example of
this use case, presented in [20], is a smart meter manufacturer
allowing utility companies to customize their product with their
own services thanks to a Container Management Infrastructure
proposed by the commercial solution [4]. Through the solution
provided by Container Management Operator (CMO), smart
meters companies become [oT Providers (IoT-P) and utility
companies become Service Providers (SP) for the smart meter.

The second and third use cases are related to embedded SIMs
(eSIM) [21] and integrate SIMs (iSIM) which are relatively
close. The main difference between both is that the eSIM is an
independent Secure Element provided by eSIM manufacturers
and soldered to the Device during the integration of its hardware
components while the iSIM is built into a dedicated Tamper
Resistant Element (TRE) inside the device’s chipset. Similarly
to SP, Communication Service Providers (CSP) deploy their
profiles on eSIMs/iSIMs through a Subscription Manager and
Data Preparation+ (SM-DP+) platform.

B. Responsibility model

In the context of multi-tenant microcontroller architectures,
we define a responsibility model comprising seven key respon-
sibility areas. In this section, we use these areas as criteria to
identify stakeholder roles and responsibilities within the use
cases presented above.

1) Physical Device: This responsibility consists in assem-
bling the physical device by integrating hardware components.
Typically, this role is held by the Device Manufacturer. In IoT-
based Servitization, this role is held by IoT Providers (IoT-P)
such as the smart meter manufacturer who creates IoT devices
before opening them to third-party applications. In the eSIM
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TABLE I
RESPONSIBILITY MODEL OF MULTI-TENANT MICROCONTROLLERS

Responsibility General model Use Cases

Serviiration eSIM iSTM
Application (accounts, data, code) SP SP CSP CSP
Container packaging SP v CMO SP v CMO SM-DP+ A CSP SM-DP+ A CSP
Container deployment CMO CMO SM-DP+ SM-DP+
Container Management Infrastructure CMO CMO SM-DP+ A OEM SM-DP+ A OEM
Microcontroller Firmware MP IoT-P A CMO eSIM-M CPU-M
Network DM IoT-P OEM OEM
Physical Device DM IoT-P OEM OEM

Roles: DM: Device Manufacturer, MP: Microcontroller Provider, CMO: Container Management Operator, SP: Service Provider
Actors: CMO: Container Management Operator, CPU-M: CPU Manufacturer, CSP: Communications Service Provider, eSIM-M: eSIM Manufacturer, [oT-P:
IoT Provider, OEM: Original Equiment Manufacturer, SM-DP+: Subscription Manager and Data Preparation+, SP: Service Provider

and iSIM ecosystem, this responsibility is held by Original
Equipment Manufacturers (OEMs) who build mobile phones
and IoT devices where an eSIM or an iSIM can be used.

2) Network: This responsibility involves ensuring connec-
tivity and network-related functionalities within the device so
that it can interact with the infrastructure where it is ultimately
deployed. This responsibility is primarily managed by the
Device Manufacturer. In the case of the IoT-based Servitization,
IoT-P ensures that the device contains a component for network
connectivity. IoT-P may also set up the network infrastructure
to create a fleet of devices that can communicate with IoT-P
servers. In the case of eSIM and iSIM, the OEM manages this
responsibility by integrating a modem which interacts with the
eSIM or iSIM to provide connectivity.

3) Microcontroller Firmware: This responsibility corre-
sponds to the creation, configuration, and management of
the firmware running on the microcontroller. Typically, this
responsibility is held by the Microcontroller Provider (MP). An
example of Microcontroller Provider is the eSIM manufacturer
in eSIM ecosystems or the chipset manufacturer in iSIM ecosys-
tems. In ToT-based servitization use cases, this responsibility is
shared between IoT-P and the Container Management Operator
(CMO) which provides an agent that must be installed within
the firmware by IoT-P.

4) Container Management Infrastructure: This responsi-
bility involves operating and maintaining the platform and
agents responsible for managing containers within the device.
Usually, this role is assigned to a CMO. In the context of
eSIM and iSIM ecosystems, the Subscription Manager and
Data Preparation+ (SM-DP+) provides the infrastructure to
preparation profiles and store them securely before deploying
them remotely on eSIMs or iSIMs. However, this infrastructure
also relies on the presence of a Local Profile Assistant or
an equivalent software interface deployed in the Physical
Device to streamline downloading, installing, and managing
telecommunication profiles. Therefore, the responsibility is
shared between the SM-DP+ and the OEM.

5) Container Deployment: This responsibility consists in
deploying containers on one or multiple devices, which
is performed by the Container Management Infrastructure
following the instructions of the SP. Thus, this task falls under
the CMO’s responsibility. Our observations across all three use
cases confirm this, as the CMO and the SM-DP+ are responsible
for deploying containers on IoT devices or managing telecom
profiles on eSIMs and iSIMs.

6) Container Packaging: This responsibility corresponds
to packaging the application as one or multiple containers
which can be done either by the CMO or the SP. In IoT-based
servitization, this task is carried out either by the SP or the
CMO depending on the CMO’s offer. The SP can package
its application itself using the CMO’s infrastructure or can
delegate it to the CMO. In the eSIM and iSIM use case, the
preparation of the telecom profile is performed by the SM-DP+.

7) Application: The last responsibility area consists in
developping, maintaining applications to provide the Service
operated by the SPs, such as the utility companies in the smart
meter servitization scenario or telecommunications providers
in eSIM and iSIM ecosystems.

C. Discussion

This section analyzes the responsibility model in multi-
tenant microcontroller architectures, focusing on seven key
responsibility areas.

Our analysis across three distinct use cases—IoT-based
servitization, eSIM, and iSIM ecosystems—shows that re-
sponsibilities in the multi-tenant microcontroller paradigm
depend on context but follow consistent patterns across diverse
use cases. For instance, the physical device assembly and
network integration are primarily managed by DM or OEMs,
depending on the ecosystem, while firmware management and
container orchestration responsibilities are shared or delegated
to specialized entities like the CMO and SM-DP+.

Across all use cases, the task of deploying contain-
ers—whether applications, profiles, or telecommunication
configurations—is consistently performed by the CMO or
equivalent entities following instructions from the SP.
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The responsibility for packaging applications as containers
varies depending on the ecosystem. In IoT-based servitization,
this task can be delegated to either the SP or the CMO,
reflecting different operational models and levels of control.
In contrast, in eSIM and iSIM ecosystems, profile preparation
and packaging are typically handled by the SM-DP+.

With responsibilities being delegated to CMOs, MPs, and
DMs, SPs depend on other parties to fulfill their commitments
to their customers, posing a responsibility risk. As stakeholders
can distrust each other, there is the risk of dishonest or honest
but greedy stakeholders. To mitigate this risk and clarify
the responsibility in the event of an incident, stakeholders
can designate an arbitrator to monitor commitments or each
stakeholder can individually monitor commitments own to it.

IV. COMMITMENTS

In the context of the Cloud Continuum, one might expect the
commitments defined in the Cloud to also apply to multi-tenant
microcontrollers. This section’s objective is to analyze whether
containerization solutions can cover such types of commitments.
To achieve this, we first identify applicable commitments
applicable in Cloud ecosystem. Then, we analyze whether
existing containerization solutions for the three previously
defined use cases can cover the identified commitments. Finally,
we discuss on the need for more guarantees in constrained
microcontrollers solutions to allow Cloud-like commitments.

A. Overview of commitments in Cloud infrastructure

Based on the commitments defined in SLALOM D3.2 [27]
and Cloud Service Level Agreement Standardization Guide-
lines [28], we identify four key categories of Cloud commit-
ments: performance, security, monitoring, and governance.

a) Performance commitments: Cloud hosts typically com-
mit on performance and resources, this is mainly done by giving
exclusive access to physical and logical resources. The main
performance-related commitments are related to availability,
elasticity, network, hardware resources, application capacity,
and energy consumption. Availability is often represented by
the percentage of time the device should be available to be
used, this is linked with functioning of the device, but this
often takes into account the connectivity of the device to
the internet. Elasticity corresponds to the ability of a service
to quickly provision or deprovision resources for a service.
Network commitments are often on one metric as response
time, throughput, and bandwidth. For hardware resources,
Cloud hosts typically commit on available hardware like the
type of CPU, its percentage of time dedicated to the application,
allocated size of memory, size and type of storage, access to
peripherals. While commitments mostly concerns hardware
resource and dedicated execution time, for SaaS (Software
as a Service), the host can commit on application-related
commitments like the number of concurrent connections.

b) Security commitments: Security commitments are gen-
erally taken on backup of deployed applications, access control
used for the management of the service, and authentication
methods to access this service. Cloud hosts can also commit

on the reinforced isolation of its service, and can propose
dedicated hardware such as storage, peripherals, or dedicated
machines to enhance isolation, and proposed secure network
communications and secure storage usable by applications.
¢) Monitoring commitments: Another type of commit-
ment concerns monitoring and certification. Cloud hosts
can provide monitoring services for deployed applications.
Application monitoring often consists of monitoring the
functioning and performance of deployed applications, while
security monitoring consists of monitoring the security and
integrity of the applications. Cloud can monitor security by
monitoring the network traffic with Intrusion Detection Systems
(IDS) or by auditing of the running OS and application.

d) Governance & Policy commitments: The last type of
existing Cloud commitments concern the administrative domain.
This type of commitment ranges from contract-related terms as
reversibility and termination, to data management with data life
cycle, portability, and usage. Another example of administrative
commitment is the Cloud Provider’s support policy, describing
what kind of help its support team is expected to perform. In
the rest of the document, this commitment is not considered
as it does not relate with technical measures.

B. Commitments coverage by containerization solutions

This section evaluates the guarantees provided by con-
tainerization solutions for microcontrollers with regard to the
commitments defined in the previous section. While all solu-
tions we have evaluated are runtime environments, Atym [3],
MicroEJ [4] and Toit [25] also propose a platform to deploy and
manage containers on their target. Our analysis is summarized
in Table II. The governance commitments are not examined
since such commitments are covered by administrative actions
and not by technical capacities of containerization solutions.

1) Partial coverage of commitments on performance:
Containerization solutions use techniques to prevent a container
from monopolizing the device’s resources. This can be achieved
by reserving, either fully or partially, access to specific system
resources for a container. Containerization systems can grant
containers granular access to system resources, such as limiting
amounts of memory and storage per container [22], [23],
providing internet access with data quotas [23], limiting access
to a finite number of peripherals [22], [23], and constraining the
electrical consumption of containers [22]. To prevent a container
from monopolizing execution time, container orchestration
mechanisms are necessary. Such orchestration can be achieved
by delegating container management to the operating system [2],
by implementing priority-based preemptive schedulers for
containers [23], or by implementing a preemptive scheduler
allocating a percentage of CPU time to containers [24].

2) Thorough Security commitments: Containerization does
by definition memory isolation between containers to have
spatial isolation between containers, so all studied solutions
provide it. Containerization solutions can also include security
mechanisms like authentication for management and deploy-
ment of containers [3], [4], [25], over-the-air (OTA) update
[3], [4], [23], [25], [26], reproducible environments to restore
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TABLE II
COMMITMENTS GUARANTEED BY CONTAINERIZATION SOLUTIONS FOR MICROCONTROLLERS

Performances Security Monitoring

Use Case  Avail Elas Net CPU Mem Stor Perip App Ener Back Auth Iso ngrcn I\A/II())lr)l l\élf(:)cn

Aerogel [22]  IoTServ X X X X v X v X v X X v X X X
COMEOL 3] loTServ X X oo/ /X X X X/ /XK X
VeloxVM [24]  IoTServ X X v v v v X v X X v v X X
Toit  [25]  IoTServ X X X X X X X X X v v 4 X

Atym  [3]  IoTServ X X X X X v X X v v v v X

MicroE]  [4]  ToTServ X X X X X v X X X v v v X
JavaCard [26] eSIM & iSIM X X X X X X X X X X v v 4 X X

Commitments on: Iso Type: isolation type, Iso Tech: isolation technique, Avail: availability, Elas: elasticity, Net: network, CPU: execution time, Mem: volatile
memory, Stor: storage, Perip: peripheral access, App: application-related commitments, Ener: energy consumption, Back: service backup and restoration, Auth:
authentication for device management, Iso: isolation, Sec Com: secure communication, App Mon: application monitoring, Sec Mon: security monitoring.

Symbols: V: covered by the solution, X: not covered by the solution,

containers on devices [3], [25], and secure inter-container and
network communication [3], [23], [26].

3) Scarce monitoring commitments: While most runtimes
lack integrated monitoring solution, commercial solutions
coming with a management platform integrate some monitoring.
For example, these solutions can report the running version of
the deployed applications [3], [25], the status of the application
[3], and custom application-defined metrics [3], [4]. Studied
solutions do not integrate security monitoring mechanisms. In
current containerization solutions on microcontrollers, moni-
toring is limited both for security monitoring notably lacking
remote attestation systems, and performance-related monitoring
lacking reporting precise data on application performances.

C. Discussion

Security seems to be the most researched guarantee of
containerization solutions, with for instance numerous research
papers on isolation, authentication, and secure remote updates.
This maturity of the security of containerization solutions is
probably the consequence of the security needs of single-tenant
microcontrollers which have faced numerous attacks due to
the lack of secure authentication for accessing the device, and
vulnerable code that could not be remotely patch.

On the other hand, performance guarantees are only partly
supported with guarantees on memory, storage, peripheral
access, execution time and network bandwidth, but with no
proposition integrating all these guarantees. This is most likely
due to the newness of multi-tenant microcontrollers. With
single-tenant device, a developer can rely on performance
guarantees of devices defined in the datasheet of the device,
but in the context of multi-tenancy, this is no longer possible
as resources are shared between containers.

Similarly to performance and security commitments, moni-
toring mechanisms for multi-tenant microcontrollers are limited.
For security monitoring, this is probably due that existing con-
tainerization solutions, do not yet integrate remote attestation
mechanism. For security monitoring, this is probably due to the

: partially covered by the solution.

fact that with single-tenant microcontrollers, the developers do
not fear performance irregularities as they are the single tenant
of the device, whereas with multi-tenancy, the developer’s app
might not work properly due to apps of other tenants.

This lack of guarantee results from the low maturity of con-
tainerization on IoT that does not yet match cloud commitments.
Ensuring service-centric commitments on constrained devices
is an open research question, which needs to be researched to
have Cloud-like multi-tenant microcontrollers.

V. COMMITMENT VERIFICATION MEANS

This section focuses on the usability of five commitments
verification methods by stakeholders in the use cases. We focus
in particular on the capacity to verify the commitments of the
microcontroller. Table III summarizes the results.

1) Application-level tracing: This method consists in using
data collected by the application to infer information related
to the microcontroller status. For example, in the IoT-based
servitization use case an alert may be raised because the smart
meter sends to SP an out-of-range value. CSPs in eSIM and
iSIM ecosystems can include in their profile an application to
trace events that can be collected later on for analysis. Other
actors usually do not collect data at application-level.

2) Microcontroller-level tracing: This method involves
analyzing data reported by the microcontroller firmware or
the Container Management Agent on the device to assess
system health. For example, it is possible to monitor execution
flow by instrumenting the code and reporting traces of the
execution [29]. Any entity sending data to a backend—such
as the IoT-P, CMO, or SP—can use this approach to monitor
devices or containers provided that they have the permission
to access the traces, which may not be the case of CMO and
SP. In the eSIM and iSIM ecosystems, there is no requirement
from standards to collect or expose such data.

3) Remote probing: Remote probing consists in probing an
exposed endpoint to check its availability and latency. Service-
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TABLE III
COMMITMENT VERIFICATION METHODS

Use cases
Stakeholder ToT-based Servitization eSIM iSIM
Application-level tracing Sp CSP CSP
Microcontroller-level tracing I0T-P, CMO* - -
Remote Probing ToT-P, CMO*, SP* SM-DP+ SM-DP+
Monitoring Agent IoT-P, CMO* CSp* CSp*
Remote Attestation IoT-P, CMO*, SP* - -
Network Monitoring TIoT-P, CMO* OEM, CSP OEM, CSP

Actors: CMO: Container Management Operator, CPU-M: CPU Manufacturer, CSP: Communications Service Provider, eSIM-M: eSIM Manufacturer, IoT-P:
IoT Provider, OEM: Original Equiment Manufacturer, SM-DP+: Subscription Manager and Data Preparation+, SP: Service Provider

*: denotes a limited capacity of action

Level Agreements frameworks like WSLA [30] and ML-SLA-
IoT [31] include monitoring components for this purpose.

In the IoT-based servitization use case, this approach requires
the device to expose a service on an exposed port, which can
be managed by the CMO or the IoT-P via an on-device agent.
SP could also be granted access to open endpoints accessible
from the network. In the eSIM and iSIM ecosystems, remote
probing can theoretically be performed during the provisioning
phase by the SM-DP+ as per SGP22 [32].

4) Monitoring agent: This method requires an analyzing
data reported by the microcontroller firmware or the Container
Management Agent on the device to assess system health. An
on-device agent monitors SLA compliance and reports status
to a server. Mazhelis et al. [33] propose agents that track
information such as battery, memory, and sensor data.

These agents can be used by the CMO or IOT-P in the
IoT-based servitization use case. SPs can embed one in its
container, though container access may be limited. To our
knowledge, such approach generally does not exist in eSIM
and iSIM ecosystems. CSPs may monitor data in an applet
deployed in their profiles provided that they are exposed by
the eSIM-P or CPU-M. The availability of such data is not
standardized and therefore is implementation-dependant.

5) Remote Attestations: Remote attestation allows to re-
motely attest the state of the deployed service and have a
shareable proof based on a Trusted Computing Base (TCB). The
attestation ususally consists in verifying the memory integrity
or control-flow integrity. The memory integrity is used to
verify the integrity of executed services, while the control-flow
integrity is used to verify the proper execution of services.
While remote attestation can be set up by the IoT-P, the CMO
and the SP, usually, only the [oT-P has access to a TCB and
data allowing to perform these verifications.

6) Network Monitoring: It is possible to verify compliance
to commitments by monitoring the network communication
of the devices and analyzing the network traffic. Network
monitoring can be done directly on the device by using a
hardware component which analyzes the network traffic [34],
through a middleware, or through an external component
such as a hub or a gateway which intercepts and analyzes the

network traffic. Hardware components can be set up either
by the IoT-P or the OEM while software components can
be set up by the CMO. CSPs can use their communications
infrastructure (e.g. antennas) to analyse the traffic and behavior
from eSIMs or iSIMs.

Our analysis shows a clear disparity between the access of
stakeholders to commitments verification data. This is due to
the scope of the responsibility each actor has. A particularity
is the eSIM and iSIM ecosystem where SM-DP+ and CSPs
have very limited access to means to verify commitments
of the microcontrollers used. This is due to the fact that
the security model in these ecosystems did not evolve much
from the SIM security model which heavily relies on security-
by-design and where CSPs are SIM providers and therefore
hold the responsibility related to the Container Management
Infrastructure and Microcontroller Firmware.

We identify two avenues of research to improve SLA
verification for multi-tenant microcontrollers. The first one
is to adapt existing techniques for Cloud SLA verification, as
techniques using side-channels to detect unauthorized virtual
machines [35] and shared storage device [36], or techniques
using cooperation between stakeholders to verify of the integrity
of stored data [37]. The second avenue is to take inspiration
from fingerprinting and anomaly detection techniques on IoT
to monitor the execution of containers and detect irregularity
and variations in the behavior of the device to detect diversion
from the negotiated service-level.

VI. CONCLUSION & FUTURE WORKS

This paper explores the paradigm shift from a single-actor to
a multi-actor accountability model enabled by lightweight con-
tainerization for microcontrollers. By analyzing responsibility
distribution, commitment fulfillment, and usability of verifica-
tion mechanisms for stakeholders, this paper highlights some
limitation for responsibility and accountability management in
the multi-tenant microcontrollers paradigm.

We show that while existing containerization solutions
for microcontrollers provide many security guarantees, they
currently offer limited support for performance and monitoring
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guarantees comparing to cloud environments. Furthermore,
the evaluation of commitment verification methods highlights
the need for enhanced mechanisms tailored to constrained
devices, especially for Service Providers who heavily rely on
Microcontroller Providers and Containerization Management
Operators. While responsibility sharing creates a responsibility
risk for Service Providers towards its customers, this risk is
amplified by the limitations of containerization techniques that
cannot guarantee Cloud-like commitments and the lacks of
verification methods enabling service providers to monitor the
provided service-level.

Looking ahead, future research should focus on designing
comprehensive and interoperable SLA frameworks that in-
corporate verification and enforcement mechanisms suitable
for resource-limited environments. Standardization efforts are
crucial to facilitate seamless integration, interoperability, and
trust among diverse stakeholders. Advancing these areas will
help bridging the gap between IoT and cloud paradigms.
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