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Abstract—Intrusion Detection Systems (IDS) rely heavily
on feature-rich data and dimensionality reduction to identify
anomalies in high-throughput networks. However, traditional
approaches to feature selection are often computationally ex-
pensive user-space processes that limit real-time use. In this
paper, we present XFAST, a novel in-kernel feature extraction
and selection framework built using eBPF/XDP and Genetic
Algorithms (GA). XFAST enables low-latency, real-time analysis
of network traffic by efficiently computing and refining flow-level
features entirely within the Linux kernel. Our system introduces a
lightweight, tail-call-based GA execution model that distributes
the evolutionary process across multiple packets, using a hit-
based fitness function to optimize feature subsets. Our evaluation
shows that XFAST improves the F1-score of an Isolation Forest
model from 0.80 to 0.85 while maintaining negligible CPU and
memory overhead, demonstrating its scalability and efficiency for
deployment in edge and cloud-native environments.

Index Terms—eBPF, XDP, Feature Selection, Genetic Algo-
rithm, Intrusion Detection

I. INTRODUCTION

With the continuous evolution of technology, cyberattacks
have become increasingly sophisticated and difficult to detect.
As a result, Intrusion Detection Systems (IDS) play a critical
role in identifying malicious activities within a network and
issuing alerts about potential threats [1]. IDS approaches fall
into two categories: signature-based detection, which identifies
known attack patterns, and anomaly-based detection, which
establishes a model of normal network behavior and detects
deviations from that baseline.

Anomaly-based methods are more complex to implement
due to the challenge of accurately defining what constitutes
normal network behavior. However, because they do not rely
on previously known attack signatures, they are more effective
at detecting zero-day attacks [2]. To establish a reliable profile
of normal network activity, it is essential to extract and
select relevant features from network traffic. These features
serve as the foundation for machine learning (ML) models
to perform accurate classification and anomaly detection. In
particular, feature selection is a techniques that can reduce
high-dimensional traffic while preserving relevant information
[3]. Evolutionary approaches, such as Genetic Algorithms
(GAs), are promising for this task, as they are able to explore
large search spaces and can identify feature subsets that
improve detection performance [4].
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However, efficiency is a key requirement for continuous
and ideally real-time network monitoring. Therefore, both
feature extraction and selection should consume minimal com-
putational resources, ensuring ML-based systems can process
network data effectively. In this context, the extended Berkeley
Packet Filter (eBPF) offers a compelling alternative, enabling
programs to execute safely and efficiently within the Linux
kernel [5]. With eBPF, programs can run with minimal impact
on system performance.

In this paper, we propose XFAST (XDP Feature Adaptive
Selection Tool), a system for high-performance traffic feature
extraction and selection using eBPF with XDP (eXpress Data
Path), designed to enhance anomaly detection capabilities
of ML techniques. XFAST includes configurable parameters
such as the number of features, precision, sampling rate, and
timeout — all adjustable in real time. After extracting the
desired features, a genetic algorithm-based feature selector
identifies the smallest significant subset of features, through
selection, crossover, and mutation, in order to optimize the
model’s performance and yield the highest anomaly detection
accuracy.

The remainder of this paper is organized as follows. Sec-
tion II presents the background and foundational concepts
relevant to the proposed approach. Section III outlines the
design goals, addresses the key challenges, and presents an
overview of XFAST. Section IV describes the system architec-
ture, outlining both user space and kernel space components.
Section V details the prototype implementation, experimental
setup, workload, and discusses the evaluation results. Sec-
tion VI reviews and analyzes related work. Finally, Section VII
summarizes the main findings and presents directions for
future research.

II. BACKGROUND

A. eBPF and XDP

The Extended Berkeley Packet Filter (eBPF) [6] is a Linux
kernel technology that enables safe, in-kernel programmability
without modifying kernel source code or inserting modules.
Introduced in version 3.15, eBPF acts as a Virtual Machine
(VM) that runs user-defined bytecode on specific system or
network events. Prior to execution, programs undergo strict
verification to ensure safety, termination, and memory isolation
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Fig. 1. Architecture of eBPF and XDP.

[7], and then are translated to native instructions by a Just-in-
Time (JIT) compiler.

A key abstraction in eBPF is the use of maps, which support
shared state between the kernel and user space, enabling effi-
cient data exchange. This model underpins many applications
in security, observability, and networking. However, eBPF
imposes constraints such as bounded loops, no floating-point
support, and limited stack space, which can make complex
logic challenging to implement.

An important eBPF-based subsystem is the eXpress Data
Path (XDP) [8], introduced in Linux 4.8. It attaches programs
at the earliest point in packet processing, within the NIC
driver, before memory allocation, as depicted in Figure 1.
This approach minimizes overhead, making it well-suited for
high-performance use cases such as DDoS mitigation and
flow filtering, while being more appropriate for packet header
analysis than for payload inspection [9].

In summary, eBPF and XDP provide a robust foundation
for building safe, efficient, and flexible in-kernel applications,
allowing advanced programmability without compromising
performance or security.

B. Feature Selection

Feature selection (FS) is a key data pre-processing step
aimed at identifying the most relevant features while eliminat-
ing irrelevant, redundant, or noisy variables [10]. By reducing
data dimensionality, FS improves computational efficiency,
enhances model interpretability, and helps prevent overfitting
in machine learning models [11].

FS methods generally fall into three categories: filter, wrap-
per, and embedded approaches [12]. Filter methods apply sta-
tistical criteria independently of the learning model; wrapper
methods evaluate subsets using a predictive algorithm, offering
higher accuracy at a greater computational cost; and embedded
methods integrate feature selection into model training.

The selection task is a combinatorial optimization problem
and is NP-hard [13], making exhaustive search impractical in
large-scale scenarios. As a result, heuristic and metaheuristic

algorithms such as Genetic Algorithms (GA) are frequently
used.

In domains like Internet traffic classification [14], FS is
especially critical due to the large number of available flow
characteristics, not all of which are informative. Selecting a
minimal subset improves generalization, and can even out-
weigh the impact of the classifier choice itself [15].

C. Genetic Algorithm

Genetic Algorithms are adaptive heuristic search methods
inspired by the principles of natural evolution [16]. They
are particularly effective in solving complex optimization
problems, including those involving high-dimensional and
combinatorial search spaces. Based on the concept of “survival
of the fittest”, GAs evolve a population of candidate solutions
over successive generations in order to converge toward an
optimal or near-optimal solution [17].

This evolutionary process is driven by three main operators:
selection, crossover, and mutation, applied repeatedly until a
stopping condition is met (Figure 2). Each candidate solution
is encoded as a chromosome, a binary or integer string
where each gene represents a problem parameter, such as the
inclusion of a feature. A fitness function evaluates the quality
of each solution, guiding the evolutionary process by favoring
individuals with higher scores.

It begins with a random initial population. In each genera-
tion, the following operators are applied:

o Selection: Individuals are chosen based on their fitness,
often using roulette wheel or tournament selection, fa-
voring higher-scoring candidates for reproduction. To
preserve the best solutions, elitism can be applied at this
stage, ensuring top-performing individuals are retained
across generations [18].

e Crossover: Pairs of selected individuals exchange por-
tions of their chromosomes at randomly chosen points,
mimicking biological recombination and promoting the
combination of beneficial traits.

o Mutation: With a low probability, individual genes are
altered to introduce additional diversity and explore new
regions of the search space, helping the algorithm avoid
local optima.

The stopping condition for this iterative process involves
reaching a fixed number of generations or meeting predefined
convergence criteria. The best solution encountered during
evolution is retained as the output.

One of the key strengths of GAs is their population-based
search strategy, which enables exploration of multiple regions
of the solution space in parallel, reducing the risk of pre-
mature convergence. Moreover, GAs do not require gradient
information or continuity in the objective function, making
them suitable for discrete, non-linear, and multi-objective
optimization problems [19].

GAs are particularly suited for feature selection tasks, where
each chromosome encodes a subset of features [20]. The
fitness function can incorporate classification accuracy or com-
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Fig. 2. Genetic Algorithm evolutionary process.

putational cost, allowing the algorithm to balance relevance
and redundancy.

III. XFAST DESIGN
A. Design Goals and Challenges

Achieving efficient feature extraction and selection for real-
time network traffic analysis requires addressing a range of
technical and architectural challenges.

Expressiveness of extracted features. One of the primary
goals of the system is to enhance feature expressiveness to
better characterize traffic flows and improve anomaly detec-
tion. However, extending beyond the basic capabilities of the
XDP framework introduces significant complexity. Collecting
advanced features—such as temporal statistics, inter-arrival
times, or multi-packet behavioral patterns—necessitates more
intensive computation and frequent interaction with eBPF
maps, which can increase system overhead and introduce
performance bottlenecks [21].

Processing efficiency and low latency. As the number and
complexity of features grow, so does the computational burden
on the data plane, requiring a balance between expressiveness
and efficiency. The goal is to design a feature extraction
mechanism that is sufficiently descriptive for machine learning
applications while still maintaining the high throughput and
low latency expected from XDP-based programs.

Dealing with limited set of operations. Another chal-
lenge is eBPF constraints, such as the absence of floating-
point arithmetic, bounded loops, limited instruction sets, and
strict verification requirements. These limitations restrict the
implementation of many common statistical operations and
force the design of optimized, integer-based alternatives. As
a result, complex metrics must be reformulated using fixed-
point approximations or accumulated over multiple packets,
increasing implementation difficulty.

Optimizing GA formulation. The use of GA for feature
selection within the eBPF/XDP environment introduces an
additional layer of complexity. While GAs are well-suited
for exploring large, non-linear, and non-differentiable search
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Fig. 3. XFAST approach overview.

spaces, their iterative and population-based nature is computa-
tionally expensive—especially in environments with strict per-
packet time constraints. A naive implementation of a full GA
loop per packet would violate performance expectations and
could lead to packet drops or degraded throughput.

To overcome the challenges above, the proposed solution
employs a distributed execution strategy based on XDP tail
calls. The next section will describe the overview of our
proposed system.

B. Approach Overview

XFAST (XDP Feature Adaptive Selection Tool) is an ef-
ficient system for real-time network traffic feature extraction
and selection, designed to support IDSes based on machine
learning. XFAST leverages eBPF in conjunction with the XDP
framework—both of which offer excellent performance for
packet header-based feature extraction and simple operations,
thanks to their low-latency and high-throughput characteristics
[6].

To enhance the quality of extracted data and eliminate ir-
relevant or redundant features, XFAST integrates an in-kernel,
GA-based feature selection module, as illustrated in Figure 3.
To preserve eBPF performance and ensure all computation
remains within the kernel, the genetic algorithm is divided
into three separate XDP programs: selection, crossover, and
mutation. Only one of these runs for each packet, thereby
distributing the GA processing across multiple packets. This is
coordinated via a persistent state machine stored and updated
in eBPF maps, allowing the algorithm to progress incremen-
tally with each packet. In this way, every packet advances the
evolutionary cycle, effectively amortizing the computational
cost over time.

A custom fitness function was developed to support this
design, relying on anomaly-related packet activity (e.g., hit
counts) rather than traditional model accuracy metrics or
external supervision. This eliminates the need for user-space
interaction or auxiliary components. However, this approach
introduces specific challenges, such as requiring a minimum
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Fig. 4. XFAST system architecture.

packet rate to ensure timely GA convergence. This trade-off
was made to maintain all computation within the eBPF/XDP
framework, ensuring minimal overhead and real-time perfor-
mance. The resulting architecture supports adaptive feature se-
lection that responds dynamically to the runtime characteristics
of network traffic and IDS alert patterns.

By combining lightweight, kernel-level packet processing
with bio-inspired optimization techniques, XFAST offers a
promising approach for scalable and deployable ML-based
IDS pipelines. The architectural simplicity, native OS integra-
tion, and cost-effective execution make it especially suitable
for edge-computing and cloud-native scenarios where effi-
ciency, transparency, and minimal resource usage are critical.

IV. SYSTEM ARCHITECTURE

The XFAST architecture is divided into two primary compo-
nents: user space and kernel space (Figure 4). The user space
is responsible for configuring the parameters for feature ex-
traction and selection, initializing the GA population, loading
the eBPF program into the kernel via the designated network
interface, and consuming the results of extracted and selected
features. The kernel space, on the other hand, hosts the core
logic of the system, including real-time feature computation
and the execution of the GA-based selection process, based
on the initial population provided from user space.

A. User Space

The user space component of the system interfaces with
the eBPF kernel-space program via BPF maps, utilizing the
map pinning mechanism. A map pinning binds BPF objects
to pseudo-files within the BPF file system, enabling structured
and persistent communication between user and kernel space.
Through this mechanism, the user space can read from and
write to pinned maps in real time, without interrupting the
kernel execution.

The system relies on eight pinned BPF maps, each serving
a specific purpose in the feature extraction and selection
pipeline:

e Flow Map: Stores the extracted features for each iden-

tified flow on each packet iteration.

e Configuration Map: Contains configuration param-
eters that define how features should be extracted and
when the feature selection process should start.

e Population Map: Holds the current population of GA
individuals, where each chromosome represents a feature
subset.

e Metadata Map: Maintains the GA’s persistent state
machine, tracking progress across selection, crossover,
mutation, and fitness evaluation stages.

e Fitness Map: Records the computed fitness value for
each chromosome in the population.

e Feature Max Threshold Map: Stores the upper
threshold values considered “normal” for each feature.

e Feature Min Threshold Map: Stores the corre-
sponding lower threshold values for each feature.

e Feature Hit Map: Accumulates, over multiple iter-
ations, the number of times each feature exceeds its
predefined threshold range.

The user-space application clears all maps on startup, then
initializes the configuration, metadata, threshold, and popula-
tion maps. After setup, it loads the eBPF program into the
kernel and attaches it to the target network interface via the
XDP hook.

From there, the kernel program processes packets in real
time, updating the maps with feature data and GA results. User
space can access these maps at runtime to monitor outputs or
adjust configurations dynamically.

More specifically, the configuration map enables the user-
space application to define a set of operational parameters that
govern both feature extraction and selection behavior. These
configurations include:

o Feature mask: A bitmask indicating which features,
among those available in Table I, should be extracted.
Each bit corresponds to a specific feature, allowing dy-
namic selection without modifying the kernel program.

o Feature extraction interval: A time interval, in nanosec-
onds, that determines how frequently features should be
recalculated for active flows.

e Timeout: The flow timeout value, also specified in
nanoseconds, defines the maximum period of inactivity
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allowed for a flow before it is reset from the flow map
when a new packet arrives.

e Precision factor: A scaling multiplier used to represent
decimal values in an integer-only environment. Since
eBPF does not support floating-point operations, this pa-
rameter enables fixed-point approximations. For example,
a precision factor of 103 implies that three decimal places
are encoded, and values must be divided by the same
factor in user space to retrieve their actual representation.

o Enable feature selection: A binary flag that indicates
whether GA-based feature selection should be activated.

This configuration mechanism allows the kernel-space pro-

gram to remain generic and reusable, while enabling flexible
and context-specific control from user space. Additionally, the
use of bitmasking and fixed-point encoding ensures compat-
ibility with the restricted eBPF instruction set, maintaining
safety and efficiency in the data path.

B. Kernel Space

The kernel space component is responsible for the core logic
of XFAST, implemented entirely using the eBPF infrastructure
and attached to the network interface via the XDP hook. Once
loaded by the user space application, the eBPF program begins
processing incoming packets at the earliest point in the Linux
networking stack—directly within the NIC driver, even before
memory allocation structures are created.

TABLE I
FEATURES AVAILABLE TO BE EXTRACTED.

Type

Scalar

Features

packets

bytes

max packet size

min packet size

flow duration (s)

packets per second

bytes per second

inter arrival time (s)

max packets per second
min packets per second
max bytes per second
min bytes per second
max inter arrival time
min inter arrival time
average packets per second
average bytes per second
average bytes per packet
average inter arrival time
variance packets per second
variance bytes per second
variance inter arrival time

Statistical

Each incoming packet triggers the execution of the eBPF
program, which carries out the core tasks illustrated in Fig-
ure 5. These tasks encompass flow identification, feature ex-
traction, and anomaly tracking, which are executed whenever
at least one feature is enabled in the bitmask. The feature
extraction mechanism in XFAST is based on our previous
work [22]. The execution of the GA is conditionally triggered,
requiring both the selection-run flag to be set and the stop
parameter in the GA metadata map to remain unset.

Feature selection via GA is implemented entirely within the
eBPF/XDP kernel context. To address the inherent limitations
of the eBPF environment, it relies on tail call chaining and
persistent state tracking. Each GA stage is encapsulated in
a separate eBPF program stored within a program array map,
allowing execution to progress across stages through tail calls.
Continuity is maintained by a state machine in the metadata
map, which records the current stage and generation number.

The configuration of the GA is governed by a set of
predefined constants that control its behavior and convergence
process. These parameters are shown in Table II and must be
chosen by the user to balance convergence speed, search space
coverage, and processing overhead per packet.

The operation of each GA stage is described in the following
items.

1) Selection stage: In this stage, the fitness of each in-
dividual (chromosome) in the current population is evaluated
based on its ability to detect anomalous activity, determined
by features that exceed pre-configured maximum or minimum
thresholds. Each chromosome is represented as a bitmask
encoding a subset of features. The fitness function is defined
as:

n—1 .
) mask; (C) x hits; w
Fitness(C') = E + x P
“ (i:O Z:':ol hits; A(C) + 1) 0
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TABLE II
GENETIC ALGORITHM PARAMETERS

Parameter
Population Size

Description

The number of individuals (chromosomes)
maintained in the population. Each individ-
ual encodes a candidate subset of features.
Represents the total number of extractable
features, determining the length of each
chromosome. Each gene is stored as a single
bit, packed into a byte array.

Controls the likelihood (in percentage) that
a non-elite individual will undergo the
crossover process during each generation.
Specifies the probability (in percentage) of
applying a random gene flip mutation to a
non-elite individual after crossover.
Defines the goal fitness value that, if reached
by any individual, triggers early termination
of the evolutionary process.

Limits the total number of generations the
GA will execute to avoid indefinite execu-
tion.

A constant used to apply a penalty function
that discourages individuals from selecting
too many features.

Number of Features

Crossover Probability

Mutation Probability

Fitness Target

Maximum Generations

Feature Weight

where C represents a chromosome, # is the total number of
features, and mask;(C'), which takes the value O or 1, indicates
whether feature i is selected in chromosome C. hits; denotes
the number of times feature i has exceeded its configured
threshold (either minimum or maximum), as recorded in the
feature hit map. W is a constant weight applied to features
to reward compact chromosomes by penalizing those with
too many selected features. A(C) represents the total number
of active (selected) features in chromosome C, and P is the
precision parameter used to retain decimal information.

This fitness equation was designed to balance two ob-
jectives: maximizing anomaly coverage and minimizing the
number of selected features. The first component represents
the fraction of anomaly hits captured by chromosome C. Since
it is normalized by the total number of hits, this term is
bounded between 0 and 1, serving as a normalized anomaly-
coverage score. The second component is the parsimony term,
which penalizes individuals with too many active features. The
balance between these two terms is explicitly controlled by the
constant W, ensuring that parsimony does not dominate unless
intentionally configured to do so. The precision factor P is
applied solely for fixed-point representation inside eBPF and
does not affect the relative scaling of the terms. Consequently,
the higher the number of anomalies captured by a chromo-
some’s selected features, the higher its fitness. One generation
of individuals is evaluated per packet.

Once all fitness values are computed, the system applies
elitism, a strategy well-suited to eBPF’s deterministic and
resource-constrained model. The two individuals with the
highest fitness scores are identified as elite chromosomes and
selected as parents for the next generation. Their indexes are
stored in the metadata map for use during crossover, and a
control flag (done_selection) signals that the selection
stage is complete, allowing the next packet to trigger the
crossover stage.

2) Crossover stage: The crossover step generates new
individuals by recombining the genetic material of two pseudo-
randomly selected parents from the population, while preserv-
ing the two elite individuals identified during the selection
phase. These elites remain unmodified and are excluded from
crossover operations to maintain the best-performing solutions.

For the remaining individuals, the crossover operator is
applied probabilistically. A pseudo-random condition, deter-
mined by system time and the constant Crossover Probability
(CP), decides whether crossover occurs. When an individual is
selected, its chromosome is replaced with a new one produced
from two distinct parent chromosomes, ensuring that neither
parent coincides with the offspring index.

A single-point crossover mechanism is employed, with the
crossover point deterministically derived from a hash of the
system time and the individual index. Genes from the first
parent are copied up to this point, and genes from the second
parent are copied from the crossover point to the end of
the chromosome, promoting the inheritance of mixed traits
while ensuring reproducibility in the deterministic eBPF/XDP
environment. The resulting chromosome is stored directly in
the population map, and a control flag (done_crossover)
is set in the metadata map to signal readiness for the mutation
phase.

3) Mutation stage: The mutation step introduces random
variations into the population to maintain genetic diversity and
prevent premature convergence. Mutation is applied proba-
bilistically and only to non-elite individuals, ensuring that the
best solutions from the previous generation are preserved.

For each individual, a pseudo-random condition based on
system time and the constant Mutation Probability (MP) deter-
mines whether a mutation is applied. When selected, a single
feature (gene) within the chromosome is randomly chosen and
flipped (toggled from O to 1 or vice versa), introducing new
traits that enable exploration of regions in the solution space
potentially unreachable by crossover alone.

After all potential mutations are processed, the generation
counter is incremented, and the control flags in the metadata
map are reset to prepare for the next GA cycle. This ensures
synchronization across the distributed execution model using
tail calls, allowing the GA to operate incrementally across
subsequent packet arrivals.

Takeaway: Each packet processed by XDP triggers only
one step of one GA stage. After processing it, a tail call
transitions to the next appropriate program. The current state,
generation count, and per-packet offset are stored in the
metadata map. This design ensures amortized processing cost
per packet and scalability to large populations or feature sets.
To complete a full GA selection, a minimum number of packets
must be received (typically > 3 x number of generations).

V. IMPLEMENTATION AND EXPERIMENTAL EVALUATION

This section details the implementation and experimental
evaluation of XFAST. First, we describe the system prototype
and the experimental setup. Subsequently, we present the
evaluation workload and discuss the experimental results.
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A. Prototype and Setup

The XFAST prototype was developed using the C pro-
gramming language and deployed in a virtualized environment
running Ubuntu 24.04.2 LTS. All source code is publicly
available on GitHub'.

The user space component was designed to initialize the sys-
tem, configure the feature extraction and selection parameters,
and retrieve the results printed directly to the terminal. To sup-
port the GA-based feature selection process and demonstrate
its applicability in ML contexts, an Isolation Forest model
was trained using Python and the scikit-learn library [23].
Isolation Forest was chosen for its efficiency, unsupervised
nature, and ability to handle high-dimensional data without
assumptions about feature distribution [24]. It was used to
establish minimum and maximum threshold values for each
feature, which were then used by the fitness function during
the GA execution within the eBPF/XDP environment.

An auxiliary tool in C was also implemented to generate
the initial population (i.e., the first generation of individuals)
for the GA, which was stored in an eBPF map and used by
the kernel-space logic.

The experiments were conducted on a VM hosted on an
Intel Core i7-11700 (11th Gen, 8 cores) with 12 GB of RAM,
running on Oracle VM VirtualBox. This setup validated the
system under controlled, near—real-world conditions.

B. Workload

To evaluate XFAST, we relied on the CIC-IDS-2017 dataset
[25]. This dataset emulates realistic traffic generated by 25
users over five consecutive days and contains more than
80 flow-level features extracted with CICFlowMeter. Mon-
day’s trace is purely benign, whereas Tuesday through Fri-
day include a wide range of attacks (Brute-Force (FTP and
SSH), DoS, Heartbleed, Web exploits, Infiltration, Botnet, and
DDoS) recorded in both morning and afternoon sessions.

All five days were first merged into a single file. Infinite
values, NaNs, and duplicate rows were removed, after which
only benign flows were retained to train the Isolation Forest
that provides per-feature minimum and maximum thresholds.
Using solely benign traffic allows the model to characterize
“normal” behavior without bias toward specific attack signa-
tures. The trained model was subsequently applied to the full
dataset, including all attack instances, to supply ground-truth
threshold violations for GA fitness computation.

For an in-depth assessment of the GA-based feature selector,
we used the trace of Wednesday, 5 July 2017, which is
dominated by high-volume DoS attacks and therefore stresses
the anomaly-detection logic.

The dataset provides over 80 flow-level features, while the
XFAST prototype currently supports 21 extractable features.
Among these, only 12 are comparable with the dataset, con-
sisting of 9 direct equivalents (Total Fwd Packets, Total Length
of Fwd Packets, Fwd Packet Length Max, Fwd Packet Length
Min, Fwd Packets/s, Flow Duration, Fwd IAT Mean, Fwd IAT

Thttps://github.com/geinsfeldt/XFAST.git
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Max, Fwd IAT Min) and 3 derived features (Bytes/s, Bytes per
Packet Mean, IAT Variance) constructed from existing fields to
approximate the dataset’s byte-rate and variance metrics. For
evaluation, we trained an Isolation Forest on this 12-feature
set and compared it against the reduced subsets produced by
the GA, reporting the resulting F'y-Score.

To quantify runtime overhead, the Wednesday trace was
replayed ten times for 60s per run while varying the number
of active features by XFAST (7, 14, and 21). During each
run, we measured the average per-packet eBPF execution time
(nanoseconds), CPU (%) and memory (%) utilization. During
these windows, 680 flows were sent with more than 12k
packets and 8000 KBytes in total with 214 packets per second.

C. Experimental Results

The Isolation Forest model trained with the 12-feature set
achieved an Fl-score of 0.80. After applying the GA-based
feature selection with a population of 32 chromosomes during
300 generations, only four features were retained (min forward
packet length, flow duration, forward packets per second,
and max forward inter-arrival time). Despite the reduced
dimensionality, the model achieved an improved Fi-Score of
0.85. This result highlights the effectiveness of the GA in
eliminating redundant or noisy features while preserving and
even enhancing model performance.

As shown in Figure 6, the average execution time of XFAST
for different numbers of extracted features (7, 14, and 21) was
measured with and without the GA. Increasing the number of
extracted features had only a small impact on latency (less
than 50 nanoseconds). However, enabling the GA increased
the execution time by more than 200 nanoseconds per packet,
due to its complexity and map interactions.

Figure 7 shows a deeper look at a single execution with
all 21 features enabled during GA execution. The system’s
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per-packet latency could temporarily spike up to nearly 2
microseconds. After the GA completes its selection, the exe-
cution time returns to normal. This confirms that the additional
overhead introduced by the GA is temporary and distributed
over the processed packets.

In Figure 8, CPU usage remained below 5% of a single core
during feature extraction and increased by less than 2% when
the GA was active. This slight increase remained consistent
regardless of the number of selected features. The low and
stable CPU usage demonstrates the system’s lightweight nature
and its suitability for real-time environments.

Figure 9 demonstrates that the memory usage increased
slightly with the number of extracted features due to larger
map structures, but the variation remained within the expected
system baseline. The overall increase was minimal, even in
the worst case. This shows that XFAST maintains a very low
memory footprint, which is important for deployment on both
edge devices and servers.

These results demonstrate that XFAST can improve detec-
tion accuracy while reducing the number of features and main-
taining low computational overhead. The system is efficient,
scalable, and suitable for real-time network traffic analysis
using in-kernel feature selection.

VI. RELATED WORK

Numerous approaches have been proposed for network traf-
fic feature extraction, playing a vital role in applications such
as intrusion detection systems (IDS), traffic classification, and
performance monitoring. Traditional solutions like NetFlow
[26] and IPFIX [27] provide predefined packet-flow-based
metrics that support detailed traffic analysis. However, these
methods face challenges in high-performance environments,
including high resource consumption and limited adaptability
due to their rigid architectures.

The emergence of programmable data planes, particularly
technologies such as eBPF and P4, has enabled more dy-
namic and lightweight feature extraction strategies. Recent
works have explored these technologies to improve monitoring
efficiency and reduce performance overhead. For instance,
Magnani et al. [28] proposed an adaptive monitoring system
using eBPF, allowing for dynamic metric selection. However,
their approach is limited in terms of feature diversity and
flexibility. Zhang et al. [29] leveraged eBPF and XDP to
extract six flow features and use them for an offloaded neural
network IDS, achieving low overhead but facing scalability
limitations imposed by eBPF stack size constraints.

Other research efforts have focused on programmable archi-
tectures for in-network feature extraction. Silva et al. [30] in-
vestigated feature selection techniques for traffic classification
in Software-Defined Networks (SDN), while Cugini et al. [31]
and Sonchack et al. [32] developed advanced traffic monitoring
solutions based on P4. Despite offering high flexibility, these
approaches often rely on specialized hardware, limiting their
widespread adoption.

Feature Selection techniques have shown significant
promise, particularly in scenarios involving large datasets and
multi-objective optimization problems [33]. Halim et al. [19]
proposed an enhanced GA-based Feature Selection (GbFS)
method to improve IDS classifier accuracy. The method was
evaluated using three benchmark traffic datasets—CIRA-CIC-
DOHBrw-2020, UNSW-NB15, and Bot-loT—demonstrating
superior performance compared to traditional FS techniques,
achieving a maximum accuracy of 99.80%.

Similarly, Almaiah et al. [34] conducted a comparative study
of FS techniques including GA, Sequential Forward Selection
(SES), and Sequential Backward Selection (SBS), applied to
IDS tasks. Their experiments using the NSL-KDD, CIC-IDS
2017, and CIC-IDS 2018 datasets showed that combining GA
with classifiers such as SVM and MLP led to higher accuracy
and lower false positive rates.

These studies demonstrate the effectiveness of GA in feature
selection for intrusion detection, highlighting their ability
to improve classifier accuracy while reducing computational
complexity. However, most existing feature selection tech-
niques operate outside the data plane, introducing potential la-
tency and limiting real-time applicability. Our work addresses
this limitation by integrating a GA-based feature selection
mechanism directly into the data plane using eBPF and XDP.
This design enables in-kernel, real-time feature selection with
minimal overhead, without reliance on external hardware or
user-space processing, providing a low-cost and configurable
solution suitable for high-performance environments.

VII. CONCLUSIONS AND FUTURE WORK

This paper introduced XFAST, a real-time, in-kernel system
for network traffic feature extraction and selection using
eBPF/XDP and Genetic Algorithms. By embedding the feature
selection process directly in the data plane, XFAST eliminates
the latency and overhead associated with traditional user-space
approaches. The system employs a hit-based fitness function
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and a state-machine—driven GA that executes incrementally
across packets, maintaining low per-packet cost while evolv-
ing feature subsets. Experimental evaluation on a real-world
dataset demonstrates that XFAST enhances anomaly detection
accuracy while preserving low CPU and memory utilization
under varying configurations. Future work will extend support
to more complex feature types, incorporate mechanisms to
handle low-volume traffic periods, and provide a richer eval-
uation of detection quality alongside computational costs. We
also plan to broaden experimental validation by leveraging het-
erogeneous datasets and diverse traffic conditions to strengthen
the generalization of the approach.
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