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Abstract—Integrated Sensing and Communications (ISAC) en-
hances traditional mobile network capabilities by enabling the
detection of passive, non-connected objects. Latency-sensitive ve-
hicular applications such as Augmented Reality (AR), Virtual
Reality (VR), and High Definition Maps (HD Maps) can be
integrated with ISAC to improve the utilization of limited wireless
resources. The Configuration Grant (CG) mechanism, in 3GPP
Release 16, reduces signaling overhead in Uplink (UL) by pre-
assigning resources to UEs (vehicles). However, employing CG for
ISAC can lead to incorrect assignment of transmission slots due
to the aperiodic nature of ISAC sensing traffic. To address this
issue, we propose a CG allocation scheme that models the inter-
arrival times of aperiodic traffic using a Weibull distribution.
A probability distribution model, implemented and evaluated
using the NS-3 5G-LENA CG module, assists the radio resource
scheduler by analyzing sensing arrivals within a configuration
window to predict future bursts and proactively reserve UL
resources for UEs (vehicles). This prediction-driven allocation
significantly improves Packet Delivery Ratio (PDR) and spectral
efficiency in vehicular scenarios.

Index Terms—Integrated Sensing and Communications, Con-
figured Grant, Vehicular Applications, Machine Learning, Radio
Resource Scheduling.

I. INTRODUCTION

Vehicular applications such as High Definition Maps (HD
Maps), Augmented Reality (AR), Virtual Reality (VR) maps,
and services enabled by Vehicle-to-Everything (V2X) networks
hold great promise for enhancing road safety, reducing traffic
congestion, and improving overall traffic flow efficiency. In
support of these advancements, the 3GPP Release 19 work item
has emphasized the integration of Integrated Sensing and Com-
munication (ISAC) with traditional communication services [1].
ISAC enables the detection of passive objects—those not
connected to the network—while maintaining broad coverage,
thereby supporting a wide range of vehicular applications. In
this context, 6G communication systems aim to tightly integrate
V2X networks with ISAC to meet the demands of ultra-fast,
highly reliable, and low-latency applications that process and
exchange large volumes of data [2]. ISAC has been extensively
studied in autonomous and assisted driving systems, where
real-time environmental perception is essential for safety and
operational efficiency.

The Society of Automotive Engineers (SAE) categorizes
driving automation into six levels, ranging from fully manual
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to fully autonomous systems [3]. Vehicles' at Level 3 and
above require HD Maps with spatial resolutions of 10-20 cm
or better. HD Maps provide centimeter-level accuracy of the
road and surrounding environment, enabling core autonomous
driving functions such as perception, localization, navigation,
and decision-making [4]. The dissemination of HD Maps is
facilitated through content-centric networking services, which
are subject to stringent latency constraints [5]. Companies such
as HERE Technologies [6], Volvo [7], and the Toyota Research
Institute—Advanced Development have introduced the concept
of dynamic HD Maps, referring to frequently updated real-time
mapping information. Autonomous vehicles are equipped with
various onboard sensors such as cameras, radars, and lidars to
enhance situational awareness further. These are complemented
by Onboard Units (OBUs) that enable V2X communication,
allowing vehicles to interact with infrastructure (i.e, RoadSide
Units (RSUs)) and each other. While these sensors provide
detailed information about a vehicle’s immediate surroundings,
they are limited in detecting distant or occluded objects. Thus,
combining advanced sensing and communication capabilities is
essential for comprehensive perception.

Achieving reliable perception often requires fusing data from
multiple sensors in real-time, which demands high compu-
tational power. However, OBUs typically have limited pro-
cessing capacity. To overcome this, Mobile Edge Computing
(MEC) has emerged as a viable solution, providing low-latency
computing resources at the network edge. Unlike traditional
cloud-based systems, MEC is better suited for time-sensitive
vehicular applications. Recent research has explored the inte-
gration of ISAC and MEC to enhance vehicular intelligence.
For example, the authors in [8] proposed an ISAC-assisted
edge-intelligent V2X communication framework where vehi-
cles offload computation tasks to edge servers co-located with
RSUs, with the objective of minimizing long-term service
delay through joint optimization of offloading decisions and
resource allocation. Similarly, [9] introduced a collaborative
sensing architecture wherein vehicles and ISAC-equipped RSUs
cooperate to expand sensing range, modeled through stochastic
task arrivals and communication dynamics. However, these
studies primarily focus on homogeneous task offloading. In
contrast, [10] investigated scenarios involving heterogeneous

"Throughout this paper, we use vehicles and User Equipments (UEs)
interchangeably.
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tasks with different priorities and optimized delay-sensitive
offloading strategies for MEC. While significant, these works
did not explore Configured Grant (CG)—a semi-persistent
scheduling method to reduce control signaling overhead in
5G based V2X systems. Recently, [11] conducted the first
investigation of CG in 5G based vehicular networks, evaluating
how periodic task offloading and UE mobility influence Packet
Delivery Ratio (PDR) and radio resource efficiency under CG
scheduling.

To the best of our knowledge, no prior work has explored
the integration of CG with ISAC and HD map data offloading
in vehicular networks. Our key contributions are listed below.

« Periodic HD Map Data Offloading: We study periodic HD
map data offloading and analyze the impact of vehicular
mobility on CG resource allocation. A Long Short-Term
Memory (LSTM) model is trained to predict the most
appropriate Modulation and Coding Scheme (MCS) of
UEs, which are used for dynamic CG assignment in UL.

o Aperiodic Sensing Data Modeling: Sensing data is mod-
eled as aperiodic traffic using the Weibull distribution
to predict future occurrences based on historical obser-
vations. These predictions are combined with the LSTM
model’s output to improve CG allocation accuracy.

o Joint Scheduling of Heterogeneous Traffic: We simulate
joint scheduling for periodic and aperiodic traffic and
evaluate performance using PDR as the primary metric.

II. RELATED WORK

There has been significant research [10]-[13] focused on
optimizing offloading decisions, as well as radio and comput-
ing resource allocation, in ISAC-enabled vehicular networks.
Both optimization-based and Machine Learning (ML)-based ap-
proaches have been proposed and evaluated. In [10], the authors
developed a Multi-Agent Deep Deterministic Policy Gradient-
based Offloading Optimization and Resource Allocation Al-
gorithm (MADDPG-O2RA?2) to address a mixed-integer non-
linear programming (MINLP) problem. Their solution jointly
optimizes offloading decisions and resource block allocation.
Similarly [12], Deep Reinforcement Learning (DRL) approach
to optimize resource allocation in 6G V2X networks, focuses
on enhancing energy efficiency and transmission reliability. The
DRL agent dynamically adjusts resource allocation based on
real-time network states and vehicular mobility, helping reduce
energy consumption while maintaining high Quality of Service
(QoS). Simulation results demonstrate that the DRL-based
strategy outperforms traditional baseline methods regarding
energy usage, latency, and network throughput. In [13], the
authors formulated a joint optimization problem for resource
allocation and beamforming design aimed at minimizing system
delay in the presence of heterogeneous tasks, while satisfying
the quality requirements for sensing. They decomposed the
original problem into two sub-problems and proposed an ef-
ficient solution approach based on alternating optimization and
successive convex approximation. More recently, [11] examined
the use of CG in a vehicular scenario. The study introduced

a CG allocation algorithm that leverages ML techniques to
predict the MCS of vehicles, thereby improving CG scheduling.
Their results demonstrated notable enhancements in PDR and
spectrum utilization efficiency.

Despite the contributions of these studies, none have ad-
dressed the joint use of CG for both periodic and aperiodic data
offloading in high-mobility vehicular networks. In such envi-
ronments, the rapid variation in channel conditions due to vehi-
cle mobility poses a significant challenge for real-time resource
allocation. To the best of our knowledge, this complex issue has
not been studied in the literature. Hence, our work proposes
a novel framework that applies CG-based scheduling to both
HD Map (periodic) and sensing data (aperiodic) offloading in a
unified manner. We aim to ensure low latency communication
and efficient utilization of radio resources, while accounting for
the dynamic nature of channels in vehicular networks.

III. SYSTEM MODEL

To assess the impact of CG transmission on the PDR in
a 5G NR V2X network, we consider a scenario involving V'
vehicles, each equipped with state-of-the-art ISAC systems,
operating within the coverage area of a single gNodeB. A
general spectrum-sharing model is adopted, where all ISAC
devices perform both radar based sensing and data transmission
over the same frequency channel. Each ISAC-enabled vehicle
offloads radar-sensing data to an MEC server via short-packet
transmission. This enables ISAC-equipped RSUs to access
real-time environmental data, thereby extending the effective
sensing range of the vehicles. Each vehicle simultaneously
generates two types of data in Uplink (UL): aperiodic radar-
sensing data and periodic HD Map data. The multi-source
perception data from vehicles and their ISAC systems are pro-
cessed through data fusion, yielding comprehensive situational
awareness. Cooperative perception between the gNodeB and
vehicles helps eliminate sensor blind spots and reduce traffic-
related risks. Vehicles generate HD Map data at fixed intervals,
denoted as inter-packet arrival time (IPAT), while radar-sensing
data is generated aperiodically, with a fixed data size. The gN-
odeB plays a critical role in efficiently allocating CG resources
by leveraging traffic information and Channel State Informa-
tion (CSI) received from vehicles. This information exchange
occurs through Radio Resource Control (RRC) signaling, where
vehicles report data characteristics—such as periodicity and
packet size—allowing the gNodeB to make informed CG
allocation decisions. To manage UL radio resource allocation,
the gNodeB employs a scheduling algorithm and transmits
configuration details to the vehicles via RRC messages. These
include Resource Block (RB) assignments, MCS values, and the
starting and ending slot indices for Type-1 CG allocations, in
accordance with 5G NR specs [14]. Furthermore, the gNodeB
can dynamically update RB and MCS allocations through RRC
reconfiguration messages at predefined intervals (i.e., CGy).
This dynamic reallocation capability allows the system to adapt
to varying UL demands, which are influenced by vehicular
mobility and channel conditions, as illustrated in Fig. 1. Such
adaptive scheduling of CG resources optimizes radio resource
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utilization and improves communication reliability in highly

dynamic vehicular networks.
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Figure 1: The training and execution process of the LSTM-
based prediction module utilizes a dataset to forecast MCS
values, which support the MAC scheduler in managing both HD
Map data (periodic traffic) and ISAC data (aperiodic traffic).
An initial CG configuration message is used to allocate CG
resources, while CG reconfiguration messages periodically up-
date transmission parameters—such as UL MCS and assigned
RBs—for each vehicle at defined intervals of CG,,.

IV. CG SCHEDULING FOR SENSING DATA

This section proposes a radio resource scheduling mechanism
for CG allocation to minimize packet drops in vehicular envi-
ronments for aperiodic ISAC traffic. The proposed Algorithms 1
and 2 model the arrival pattern of aperiodic sensing data
and estimate a discrete value that approximates a pseudo-
period. The CG scheduler then uses this estimated period
to allocate radio resources more effectively for sensing data
transmission. Packet drops can occur because the gNodeB pre-
assigns transmission slots for aperiodic traffic using CG. If a
scheduled CG slot coincides with the arrival of an ISAC data
packet, the transmission proceeds; otherwise, the packet may be
dropped due to the absence of a matching resource allocation.
In this context, the parameter C'G,, is crucial in balancing PDR
and radio resource efficiency. A smaller CG,, may lead to more
frequent reconfiguration and increased control overhead, but
can also result in a higher packet drop rate due to less accurate
period estimation. On the other hand, a larger CG,, reduces
control signaling but may cause significant resource wastage
due to the allocation of unused slots. Therefore, selecting an
optimal C'G,, is key to maintaining high PDR while conserving
radio resources.

A. Algorithm 1: Predict Aperiodic Arrival Times using Weibull
Distribution

The Algorithm 1 predicts the future arrival times of aperiodic
sensing events based on observed event arrivals within a defined
CG,,. Algorithm 1 begins by computing the inter-arrival times
(InterArrivals) as the differences between consecutive entries
in the arrival list (Line 1). As demonstrated in the case
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study presented in [15], the Weibull distribution can effectively
model the inter-arrival times of aperiodic events. Accordingly,
in Line 2, the computed inter-arrival times are fitted to a
Weibull distribution, and the resulting parameters are stored in
WeibullParameters, capturing the statistical characteristics of
the observed data. Using these parameters, the Algorithm 1
proceeds to generate the same number of predicted inter-
arrival times as those observed (Line 4). To construct the
corresponding arrival timestamps, the algorithm initializes an
empty list, PredictedArrivals (Line 4), and appends the last
known sensing event time from the input data (Line 5). Then,
from Lines 6 to 8, the algorithm cumulatively adds the predicted
inter-arrival times to the last known arrival time to obtain the
future sensing event arrival times. Finally, the algorithm returns
PredictedArrivals, which contains the predicted future arrival
times of aperiodic sensing events. This approach leverages
statistical modeling to forecast event timings based on historical
data patterns.

Algorithm 1 Predicting Aperiodic Arrival Times using
Weibull Distribution

Input : Arrivals = [a1,a2,...,an] // Aperiodic event arrival
times for previous time window
Output PredictedArrivals // Predicted arrival times for

next window

InterArrivals <— CalculateDifference(Arrivals)

// Compute differences between consecutive arrivals
WeibullParameters <— FitWeibullDistribution(InterArrivals)

// Fit Weibull distribution to inter-arrival times
ArrivalsLength <— CalculateLength(Arrivals)

// Calculate Length of Aperiodic event
PredictedInterArrivals <— Predict(WeibullParameters, ArrivalsLength)
// Generate predicted inter-arrival times
PredictedArrivals < Arrivals[ArrivalsLength]

// Initialize list for predicted arrival times

foreach t € PredictedInterArrivals do
Last + CalculateLength(PredictedArrivals)
PredictedArrivals < PredictedArrivals|Last] + t
// Append the next predicted arrival time

return PredictedArrivals

B. Algorithm 2: Find the Best Period with Allowed Thresholds

This algorithm aims to determine an efficient CG period
that aligns with the majority of predicted sensing event ar-
rivals, while satisfying two key constraints: the Hit Ratio
Threshold (HitRatioThresh) and the Resource Block Wastage
Threshold (RBwastageThresh). It takes as input the sensing
arrival times from a previous observation window, the CG
window duration, and the threshold values for hit ratio and
resource block wastage. The algorithm begins by invoking
Algorithm 1 on the input Arrivals data to generate the set
of predicted future arrivals (PredictedArrivals) (Line 1), based
on a learned model from historical data. Initially, the variable
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BestConfiguredGrantPeriod is set to None (Line 4), indicating
that no valid period has yet been selected.

Algorithm 2 Computing the Best Period with Allowed

Thresholds

inputs : Arrivals = [a1, a2, ..., an], HitRatioThresh, , CG.,

output : BestConfiguredGrantPeriod // Optimal period
satisfying constraints

PredictedArrivals <— PredictAperiodicArrival(Arrivals)

// Predict Aperiodic Arrival Times using Weibull
Distribution

N - CcalculateLength(Arrivals) // Total number of events
140 // Initialize index for alignment search
BestConfiguredGrantPeriod «+— None // Initialize best period

AlternatePeriod <~ None // Initialize Alternate Period

PredictedArrivalsSet <« set(PredictedArrivals) // Convert to set
for faster membership checks
for period < 1 to 9 do

// Reset aligned count for current period
alignedCount < 0

// Locate the first data point aligning with the
current period
while i < N and (PredictedArrivals[i{] mod period) # 0 do

| i+i+1

if 2 > N then
continue // No aligning data point found, skip
this period

// Initialize starting point for alignment
temp « PredictedArrivals|i]

// Count aligned events
or off by 1)

while temp < PredictedArrivals[N] do
if temp € PredictedArrivalsSet then
L alignedCount «+ alignedCount + 1
else if temp — 1 € PredictedArrivalsSet then
L alignedCount «+ alignedCount + 1

(multiples of the period

temp <« temp + period

// Calculate metrics

RBAllocated « £1loor(S¢u)

RBAllocated —alignedCount
RBLoss « RBATlocated

; . alignedCount
// Evaluate constraints for the current period

if HitRatio > HitRatioThresh and RBLoss < then
L BestConfiguredGrantPeriod < period

if HitRatio > HitRatioThresh then
L AlternatePeriod <« period

// Final selection
if BestConfiguredGrantPeriod = None then

BestConfiguredGrantPeriod <« AlternatePeriod // Fallback to
backup period

return BestConfiguredGrantPeriod // Return the best period

For faster lookup during alignment checks, PredictedAr-
rivalsSet is initialized as a set (Line 6). A loop then iterates

over possible period values from 1 to 9 milliseconds. For each
candidate period, the algorithm attempts to identify the first
arrival time that aligns with it (Lines 9-10), and this aligned
time is stored in the temporary variable temp (Line 13). Starting
from this point, a while loop (Line 14) checks whether future
predicted arrivals occur at integer multiples of the candidate
period. Each successful match increments the alignedCount
variable (Lines 15-16), representing the number of sensing
events that can be offloaded exactly at CG transmission oppor-
tunities. Lines 17-18 extend this logic by allowing for limited
buffering: if a sensing event does not align exactly with the CG
slot, the algorithm permits it to be uploaded within the next
scheduling slot, assuming free radio resources are available.
This improves offloading efficiency and minimizes wasted
transmission opportunities. Following this, the algorithm com-
putes performance metrics such as Resource Block Loss and
Hit Ratio (Lines 20-22). If both metrics satisfy their respective
threshold constraints, the current period is marked as valid
(Lines 23-24) and stored as BestConfiguredGrantPeriod. If
only the hit ratio meets its threshold, the current period is
stored as AlternatePeriod (Lines 25-26). If no period satisfies
both constraints by the end of the loop, the algorithm selects
AlternatePeriod as the final BestConfiguredGrantPeriod (Lines
27-28), prioritizing hit ratio over RB efficiency. The returned
period thus represents the most suitable CG interval that
approximates aperiodic sensing traffic with minimal resource
loss. The algorithm effectively extracts a quasi-periodic pattern
from a set of aperiodic arrivals, supporting efficient CG-based
scheduling. Its overall time complexity is O(n), where n is the
number of sensing task arrivals in the observed time window.

V. SIMULATION AND PERFORMANCE EVALUATION

This section outlines the simulation environment, details the
dataset used for training the LSTM model, and presents the
resulting performance evaluation. It also examines the various
CG allocation strategies utilized in this study.

A. Simulation Setup

As a case study, we evaluate the performance of the proposed
scheme using the HD Map application and ISAC jobs within
the 5G-LENA module of NS-3 [16]. The simulation is based on
a highway scenario derived from real-world road segments in
Winnipeg, Canada, specifically a 250-meter stretch of the two-
way Pembina Highway. To generate realistic vehicular traffic
patterns, we employ the Rapid Cellular Network Simulation
Framework (RACE) [17], which integrates Simulation of Urban
Mobility (SUMO)? and OpenStreetMap® for mobility modeling.
Additionally, real-world cellular infrastructure data provided
by Canada’s Innovation, Science and Economic Development
(ISED) department* is incorporated into the simulation. Ve-
hicles in the simulation generate Constant Bit Rate (CBR)
traffic with fixed periodicity (for HD Map App) and packet

Zhttp://www.sumo.dIr.de/userdoc/SUMO.html
3http://www.openstreetmap.org/
“https://sms-sgs.ic.gc.caleic/site/sms-sgs-prod.nsf/eng/h_00010.html
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sizes, and aperiodic traffic (for ISAC jobs) in the Uplink. The
key simulation parameters are outlined in Table I. Parameters
related to ISAC jobs follow the settings defined in [18], while
the remaining settings are adopted from [16]. Each simulation
scenario is repeated 10 times by varying seeds, and the results
are reported with 95% confidence intervals. For training the
LSTM model, we used the Berlin V2X dataset [19] and set the
parameters according to [11].
Table I: Simulation Parameters

Parameter Value
Number of vehicles [V| 15

Mobility model Krauss
Average vehicle speed (Vspeed) 20 - 80 kmph
5G NR gNodeb/Vehicle TX power 46/23 dBm

5G NR gNodeb antenna tilt 15°
5G NR gNG/Vehicle antenna height 25/1.5 meter

Carrier frequency 5.9 GHz
Channel model UMa_LoS

5G NR gNodeb antenna model OmniDirectional
Vehicle antenna model Isotropic
Channel bandwidth 30 MHz

5G NR numerology (1) 1,2

LSTM-5GL-OFDMA
LSTM-RB-OFDMA

MAC scheduler

SR-Based-RR
Packet Size (L) of HD Map App 60 bytes
Packet Periodicity (IPAT) of HD Map App 10 msec
Data Size (L_isac) of ISAC Jobs [2,6] k bits
CPU cycles required to compute ISAC Jobs | [3,5] k cycles/bit
Latency Requirement of ISAC Task 23 msec
Slot Configurations 1ID13U
CG Configuration Window (CG ) 5-15 seconds
Simulation Time 50 seconds

B. Comparison Schemes

We consider the following state-of-the-art, proposed, and
baseline CG radio resource scheduling schemes:

o LSTM-5GL-OFDMA: 1t is an enhanced version of the
5GL-OFDMA [16] scheme, where the resource allocation
is guided by MCS values predicted by an integrated LSTM
model.

o LSTM-RB-OFDMA: 1t is a variation of the RB-
OFDMA [16] scheme that incorporates an LSTM-based
prediction model, using the predicted MCS values to guide
RB allocation.

e SR-Based-Round Robin (SR-Based-RR): It allocates a fixed
number of RBs to each UE in turn, following a round-robin
approach to ensure fair and equal access to the available
resources.

Among the existing CG resource allocation strategies, SGL-
OFDMA and RB-OFDMA represent the current state-of-the-art
approaches. In contrast, LSTM-5GL-OFDMA and LSTM-RB-
OFDMA are the proposed models in this work, which integrate
LSTM-based prediction to enhance scheduling efficiency. Addi-
tionally, the SR-Based-RR scheduler is employed as a baseline
for comparison. The performance of these schemes is evaluated
using the following metrics:

e Packet Delivery Ratio: It measures the proportion of

successfully received packets relative to the total number
of packets sent within the network.

e RLC delay: RLC delay refers to the time elapsed from
when a packet is created at the RLC layer of the UE to
when it is successfully received at the RLC layer of the
gNodeB.

o Average RBs Allocation: This metric evaluates how ef-
ficiently RBs are utilized by different CG allocation
schemes. It is expressed as the percentage of RBs assigned
by each scheme as compared to the total RBs consumed
under the SR-Based-RR scheduler.

C. Simulation Results and Analysis

1) Effect of CG,, on PDR: To analyze how the (CG,)
length affects the PDR, we varied the CG,, from 5 to 20 secs
in 5 secs increments for both LSTM-5GL-OFDMA and LSTM-
RB-OFDMA under the HD-Map and ISAC-Jobs workloads.
Figure 2 shows the resulting PDR at a vehicle speed of
Vspeea = 60 Emph, numerology pu = 1, and packet size
of L = 60 bytes. PDR climbs with longer CG,, and levels
off near 15 secs for both LSTM variants. The PDR increase
occurs because the gNodeB, via RRC reconfiguration, adapts
transmission parameters {UL MCS, RBs} more effectively
when the LSTM model sees a window length that captures
the prevailing channel dynamics—here, the mobility pattern
of vehicles traveling at Vspeeq = 60 kmph. Specifically, the
LSTM predicts each vehicle’s uplink MCS from its recent
history; the gNodeB then allocates the required RBs based on
that prediction, packet size, and periodicity. Given that the best
performance appears at CG,, =~ 15 secs, we fix CG,, to 15
secs for the remainder of our experiments at Vipeeq = 60 kmph.
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Figure 2: PDR for HD Map application and ISAC-Jobs with
i =1 by varying CG,, for V = 15 with Vypeceq = 60 kmph
where L = 60 bytes.

2) PDR and RLC delay: Figures 3(a) and 3(b) illustrate the
PDR and RLC delay for the scheduling schemes LSTM-5GL-
OFDMA, LSTM-RB-OFDMA, and the SR-based-RR (i.e., dy-
namic scheduling) under two numerologies, i = 1 and p = 2,
with a vehicle speed of Vypeeq = 60 kmph. The performance
is evaluated for both HD-Map traffic (periodic) and ISAC
Jobs (aperiodic). As shown in the plots, both LSTM-5GL-
OFDMA and LSTM-RB-OFDMA achieve higher PDR than
their traditional counterparts, with performance approaching
the SR-based-RR method. This validates the effectiveness of



2025 21st International Conference on Network and Service Management (CNSM)

g (HD-Map+ISAC—-Jobs) LSTM-RB-OFDMA
s (HD-Map+ISAC-Jobs) LSTM-5GL-OFDMA
® 100 | (HD-Map+ISAC-Jobs) SR—-Based-RR
a)
&
o
-+ 80
iu)
]
47
260
o
>
-
—
0 40
[a)
e}
2
5 20
©
[a¥]
0
1 2
Numerology (W)
((a)) PDR.

2 | e (HD-Map+ISAC-Jobs) LSTM-RB-OFDMA 8
£CoS (HD-Map+ISAC-Jobs) LSTM—-5GL-OFDMA
(HD-Map+ISAC-Jobs) SR-Based-RR

1.5
0
g
51
—
(]
a
@]
a0.5
a4 Ly
O X
1 2

Numerology (W)

((b)) RLC delay.

Figure 3: Result observed for HD Map application and ISAC-
Jobs by varying numerology for V' = 15 with Vspeeq =
60 kmph where L = 60 bytes and CG,, = 15.
predicting ISAC task arrivals using the Weibull distribution.
Among the two LSTM-assisted methods, LSTM-RB-OFDMA
demonstrates lower RLC delay due to its more precise and
efficient resource block allocation, highlighting a trade-off
between latency and delivery ratio. However, LSTM-5GL-
OFDMA offers improved robustness in high-mobility scenarios,
since it operates in the frequency domain, making it less
sensitive to time-domain variations. This allows it to maintain
a higher PDR compared to LSTM-RB-OFDMA. Although the
SR-based-RR method delivers the best PDR overall, it suffers
from significant RLC delays due to increased control signaling
between the gNodeB and vehicles. Furthermore, all methods
show a reduction in PDR for p = 2 relative to p = 1, primarily
because the shorter slot duration in g = 2 leads to greater
packet fragmentation. Notably, LSTM-5GL-OFDMA shows a
steady improvement over LSTM-RB-OFDMA, with observed
PDR gains of 14% for ¢ = 1 and 44% for ; = 2 when
compared to SGL-OFDMA.

3) Speed of vehicles: To analyze how varying vehicle speeds
affect the PDR across different radio resource allocation al-
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Figure 4: Result observed for HD Map application and ISAC-
Jobs by varying speed of vehicles for V' = 15 where L = 60
bytes and CG,, = 15.

gorithms, vehicle speed is adjusted in SUMO by modifying
the acceleration and maximum speed parameters. The result-
ing mobility traces are then imported into NS-3 to simulate
different numerology settings. As illustrated in Figures 4(a)
and 4(b), there is a noticeable decline in PDR as the av-
erage vehicle speed increases from Vspeed = 20 kmph to
Vspeed = 80 kmph, for both x = 1 and p = 2, across all
evaluated algorithms. Notably, LSTM-5GL-OFDMA maintains
performance levels comparable to the SR-based-RR approach
under both numerology settings, demonstrating its resilience
under high-mobility conditions.

4) Average RBs Allocation: Figure 5 shows the average ra-
dio resource consumption of LSTM-5GL-OFDMA and LSTM-
RB-OFDMA under numerologies ;4 = 1 and p = 2, with
a vehicle speed of Vypeeq = 60 kmph and L = 60 bytes.
The results indicate that LSTM-RB-OFDMA consumes ap-
proximately 20% more RBs for 4 = 1 and 19% more for
1 = 2 compared to LSTM-5GL-OFDMA, while offering lower
RLC delay. This trade-off arises from the difference in how
the two schemes allocate resources, despite both leveraging
LSTM-based predictions of transmission parameters such as
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Figure 5: RBs allocation ratio with respect to SR-based-RR
scheme by varying numerology for V' = 15 with Vspeeq =
60 kmph where L = 60 bytes and CG,, = 15.

uplink MCS and RB requirements. These predictions also
rely on modeling the arrival patterns of ISAC jobs using
the Weibull distribution, which has shown to be effective in
capturing aperiodic traffic behavior. Based on these predictions,
the gNodeB updates transmission parameters dynamically via
RRC reconfiguration messages at a periodic interval defined by
the CG window (CG,, = 15), resulting in improved efficiency
in radio resource utilization.

VI. CONCLUSIONS

This paper introduced a novel approach to applying Con-
figured Grant (CG) scheduling in Vehicle-to-Everything (V2X)
networks for handling both periodic HD Map data and aperi-
odic sensing traffic of ISAC systems. Through a case study
involving vehicles running HD Map applications alongside
real-time ISAC sensing tasks, we demonstrated the need for
efficient CG-based resource allocation in the uplink of 5G based
V2X networks to meet the stringent latency and reliability
requirements of autonomous driving applications. To support
aperiodic traffic, we proposed a Weibull distribution-based CG
scheduling algorithm, which models the inter-arrival times of
sensing events to predict future traffic patterns using an estimate
of a discrete value that approximates a pseudo-period. This
estimated period is then used by the CG scheduler to allocate
radio resources more effectively for sensing data transmission.
Simulation results confirmed that this method improves Packet
Delivery Ratio (PDR) and reduces radio resource wastage,
compared to baseline and non-predictive CG strategies. This
work serves as a foundational study on CG-based resource al-
location for aperiodic traffic in V2X networks. Future research
will focus on extending the proposed framework to support
more complex and interactive use cases, such as Virtual Reality
(VR) traffic, which imposes even stricter latency and reliability
constraints in next-generation vehicular applications.
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