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Abstract—Communication bottlenecks remain a key challenge
in Federated Learning (FL), particularly in dynamic and resource-
constrained environments. While compression strategies such as
sparsification and quantization reduce communication overhead,
they are typically agnostic to runtime variability and the semantic
relevance of updates. This paper introduces SCALP (Selective
Compression via Adaptive Lightweight Protocol), a novel hybrid
communication compression mechanism that jointly considers
local gradient variance and uplink bandwidth to guide adaptive
filtering decisions. Each worker dynamically selects a compression
level mapped to a tunable filtering ratio, balancing communication
reduction and update relevance. The selected compression level
is encoded as a 2-bit signal embedded in the Explicit Congestion
Notification (ECN) field of the IP header, enabling stateless,
lightweight signaling without modifying transport-layer protocols.
Experimental results on CNN and CNN-LSTM models over the
CMAPSS dataset show that SCALP reduces transmitted data
by over 25% while maintaining convergence time within 2%
and achieving up to 2.15% higher final accuracy compared to
baseline methods. Comparative analysis against Deep Gradient
Compression (DGC) and bandwidth-aware filtering confirms
SCALP’s ability to integrate gradient-level relevance and network
conditions for robust, efficient training in bandwidth-constrained
FL scenarios.

Index Terms—Networks for Learning, Gradient Compression,
Bandwidth Adaptation.

I. INTRODUCTION

Network operators and major Internet companies increasingly
deploy distributed learning tasks across their infrastructures
to optimize internal services such as load balancing, content
delivery, and anomaly detection, as well as for user-facing ap-
plications like targeted advertisement. Federated Learning (FL)
has emerged as a key enabler for training machine learning
models without centralized data aggregation, allowing clients
to collaboratively train shared models across heterogeneous
nodes. However, efficiently executing FL on the edge-to-cloud
continuum presents significant challenges due to dynamic
network conditions, resource heterogeneity, congestion, and
limited coordination [1]–[4].

In such environments, communication bottlenecks often
prolong training convergence, resulting in increased energy

consumption and latency [5], [6]. Conventional FL architectures
typically assume static placement of parameter servers (PS),
which exacerbates inefficiencies when network variability
affects communication links. To solve these issues, prior work
has proposed model compression techniques such as Deep
Gradient Compression (DGC) [7] and FedZip [8], which reduce
uplink traffic through sparsification and quantization. However,
these strategies typically apply static compression policies,
making them agnostic to runtime network conditions.

In heterogeneous edge deployments, static compression can
lead to information loss under degraded links, exacerbate strag-
gler effects when clients operate with asymmetric bandwidth,
and increase convergence time when multiple jobs compete
for limited resources [9], [10]. Moreover, existing techniques
often treat all gradient updates equally, regardless of their
contribution to model convergence, resulting in inefficient
bandwidth usage. Recent advances in semantic communication
have emphasized the importance of transmitting task-relevant
information over raw gradients. By extracting semantically
meaningful components, these approaches aim to retain only
the most relevant updates [11], [12]. Adaptive compression
strategies have also emerged to improve communication effi-
ciency and fairness. For instance, AdaGQ [13] adjusts gradient
quantization based on local variance and device capabilities,
while Caesar [14] employs data-aware heuristics to improve
update quality under non-IID conditions. FedCG [15] jointly
optimizes client selection and compression to mitigate straggler
effects, and AdapComFL [16] predicts uplink bandwidth
capacity to dynamically adjust sketch sizes. While these
approaches advance the state of adaptive compression, they
remain largely agnostic to the semantic relevance of updates
and their direct impact on model convergence.

To address these challenges, SCALP (Selective Compression
via Adaptive Lightweight Protocol) is introduced as an adaptive
gradient compression mechanism that improves communication
efficiency and training robustness in FL. SCALP employs a
hybrid decision policy that enables each worker to select a
compression level based on both the statistical variance of

2025 21st International Conference on Network and Service Management (CNSM)

978-3-903176-75-1 ©2025 IFIP



its local gradient updates and the current uplink bandwidth
condition. This strategy allows the system to prioritize the
transmission of semantically relevant updates under constrained
network conditions, reducing communication overhead without
compromising learning performance. Importantly, SCALP is
agnostic to the underlying model and dataset, since it relies
only on measurable parameters, gradient variance and uplink
bandwidth. This makes the mechanism broadly applicable to
diverse FL tasks such as anomaly detection, recommendation
systems, and predictive maintenance, provided that gradient
updates and network conditions can be monitored. The selected
compression level is encoded using a 2-bit signal embedded
into the Explicit Congestion Notification (ECN) field of
the IP header, supporting lightweight, stateless coordination
with the PS. Although ECN-based signaling primarily targets
intra-domain deployments (e.g., edge-cloud infrastructures
or managed data centers), the adaptive compression policy
itself is general and can be coupled with alternative signaling
mechanisms to support broader applicability in FL scenarios.

II. SYSTEM DESIGN

To improve communication efficiency and training robustness
under variable network conditions, SCALP introduces an
adaptive compression mechanism that reacts to both learning
dynamics and real-time bandwidth observations. In contrast
to static schemes that map bandwidth quartiles to fixed
compression levels, SCALP jointly considers the statistical
relevance of local updates and current link quality to inform
compression decisions.

Each worker n ∈ N begins by computing the variance of
its local gradient vector, used as a proxy for the diversity
and magnitude of its update. This variance, defined in (1),
is computed over the gradient components gi with respect
to their mean µ. A low variance indicates minimal deviation
from the current global model, suggesting limited contribution,
while high variance reflects a more substantial update likely
to influence convergence.

σ2
g =

1

|I|
∑
i∈I

(gi − µ)2, (1)

Simultaneously, the node monitors its uplink bandwidth Bn

through passive throughput sampling and telemetry. As defined
in (2), the compression level Cn ∈ {0, 1, 2, 3} is selected using
a rule-based policy that combines gradient variance σ2

g and
low-bandwidth threshold Tlow.

Cn =


0, if σ2

g < θ and Bn < Tlow,

1, if σ2
g < θ and Bn ≥ Tlow,

2, if σ2
g ≥ θ and Bn < Tlow,

3, if σ2
g ≥ θ and Bn ≥ Tlow.

(2)

The variance threshold is set to θ = 10−3, a value
selected based on convergence behavior observed during
preliminary experiments and consistent with prior variance-
guided compression studies [17]. This threshold provides an
effective separation between low and high-impact updates
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Fig. 1. SCALP overview: Each worker independently selects a filtering ratio
based on local gradient variance and observed uplink bandwidth. Line width
reflects link capacity, and the PS decodes ECN values to interpret each worker’s
filtering level.

without degrading accuracy. The low-bandwidth threshold is
defined as Tlow = 5 Mbps, reflecting congestion levels com-
monly reported in edge deployments [18], particularly under
contention or near cell boundaries. Choosing Tlow = 5 Mbps
ensures that compression is triggered only under constrained
realistic operating conditions. The impact of both θ and Tlow on
training performance and communication efficiency is further
quantified in Section III, confirming their practical relevance.

Moreover, the selected compression level Cn is mapped
to a filtering ratio p ∈ {0.1, 0.25, 0.5, 1.0}, where lower
values of Cn correspond to more aggressive filtering, thereby
reducing the communication payload. In this work, the term
“compression ratio” follows the convention adopted in sparsi-
fication studies [7], [19], [20], where it denotes the fraction
of gradient components retained after compression rather than
the proportion discarded. While this definition may differ from
the more intuitive interpretation used in data compression, it is
consistent with prior work in adaptive gradient sparsification
and ensures comparability of results. These specific ratios
are informed by established sparsification studies, which
investigate the effect of retaining various proportions of gradient
components. These works demonstrate that retention fractions
as low as 10% can still preserve convergence under certain
conditions, while enabling substantial communication savings.
Although this exact progression is not standardized, it provides
a balanced range from highly constrained to unconstrained
settings, supporting flexible adaptation to bandwidth availability
while preserving gradient significance. Alternative distributions
(e.g., p ∈ {0.2, 0.4, 0.8} or p ∈ {0.25, 0.5, 0.75, 1.0}) could
also be considered, shifting the trade-off between communica-
tion savings and accuracy. While not exhaustively evaluated in
this work, these variations highlight the flexibility of SCALP’s
design in accommodating different operating configurations.

To communicate the compression level to the PS without
coordination overhead, each worker encodes the 2-bit value
of Cn into the ECN field of the IP header [21]. This stateless
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mechanism avoids protocol changes or explicit control mes-
sages and is well-suited to controlled deployments such as edge
clusters and data centers, where ECN semantics are preserved
and middlebox interference is minimal. Prior studies [22] report
that fewer than 1% of ECN-capable paths experience stripping,
supporting its feasibility in such environments. More recent
Internet-scale measurements, however, reveal that ECN support
is inconsistent in the wild, with only a small fraction of QUIC
hosts (a UDP-based multiplexed and secure transport protocol)
preserving or validating ECN flags under impairments [23].
This reinforces the view that ECN-based signaling is best
restricted to controlled domains. In scenarios where ECN reuse
is not feasible, alternative channels can be employed, including
DSCP markings [24], TCP option fields [25], or explicit control-
plane signaling. Each option involves trade-offs: DSCP requires
domain-wide coordination, TCP options suffer from limited
deployment support, and control-plane messages add signaling
overhead. SCALP is agnostic to the specific signaling method,
and the adaptive compression policy remains valid independent
of the channel used.

As illustrated in Fig. 1, each worker dynamically selects
a compression level based on its local gradient variance and
uplink bandwidth conditions. This level is encoded as a 2-
bit value embedded in the ECN field of the IP header and
transmitted with the gradient updates. The line width in the
figure reflects the available link capacity. On the receiver side,
the PS decodes the ECN field to infer the filtering ratio applied
by each worker, enabling bandwidth-aware and variance-
sensitive aggregation. This stateless signaling mechanism
avoids explicit coordination or protocol modifications and
supports consistent model convergence under heterogeneous
network conditions.

III. EVALUATION

This section presents a comprehensive evaluation of SCALP
under realistic FL conditions using the CMAPSS dataset [26]
and the hybrid Convolutional Neural Network (CNN) Long
Short-Term Memory (LSTM) architecture proposed in [27].
The evaluation is structured in three phases. First, SCALP
is evaluated against the training baseline from [27] to assess
its impact on training time, communication overhead, and
model accuracy. The default thresholds used throughout the
evaluation are θ = 10−3 and Tlow = 5Mbps, selected based on
observed convergence behavior [17] and common congestion
levels in edge networks [18], respectively. Next, a parameter
impact analysis quantifies how variations in SCALP’s two
compression parameters, the gradient variance threshold θ and
the low-bandwidth threshold Tlow, influence performance trade-
offs. Finally, SCALP is benchmarked against two representative
compression strategies: bandwidth-aware filtering [28] and
DGC [7], to validate the advantages of its dual-adaptive
design. The accuracy target is set to 90% across all training
iterations to enable fair convergence comparisons. To ensure
statistical robustness, each performance metric is averaged
over ten thousand independent cycles and reported with a 95%
confidence interval.

TABLE I
COMPARISON OF TRAINING TIME AND TRANSMITTED DATA BETWEEN

SCALP AND THE BASELINE [27] FOR CNN AND CNN-LSTM MODELS.

Metric Baseline [27] SCALP
CNN Model

Training Time to
90% Accuracy (s) 2165.91± 31.96

2210.02± 21.44
(+2.0%)

Total Data
Transmitted (KB) 498.66± 4.28

374.75± 2.80
(−24.9%)

CNN-LSTM Model
Training Time to
90% Accuracy (s) 4544.23± 33.27

4579.66± 22.14
(+0.8%)

Total Data
Transmitted (KB) 394.44± 1.81

292.76± 1.62
(−25.8%)

TABLE II
EVALUATION SCENARIOS FOR SCALP THRESHOLD PARAMETER IMPACT.

Scenario Parameter Metrics Values

1 θ - Final Accuracy
- Transmitted Data

10−4, 10−3, 10−2

2 Tlow
- Training Time

- Transmitted Data
2, 5, 10 Mbps
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Fig. 2. Effect of the Gradient Variance Threshold θ on SCALP Transmitted
Data and Model Final Accuracy.

Table I compares SCALP with the baseline [27] using the
default thresholds θ = 10−3 and Tlow = 5Mbps. SCALP
reduces the total data transmitted by 24.9% for CNN and
25.8% for CNN-LSTM, while training times remain within
2.0% and 0.8% of the baseline, showing that communication
savings are achieved without compromising convergence.

Due to its sequence modeling capabilities and favorable
trade-off between communication efficiency and training per-
formance, the CNN-LSTM model is selected to evaluate
SCALP under deployment-specific configurations. The analysis
examines the two main compression triggers: the gradient
variance threshold θ and the low-bandwidth threshold Tlow.
Both parameters are selected based on empirical convergence
behavior and prior studies [17], [18]. Their influence on training
dynamics and communication overhead is quantified, with the
evaluation scenarios, corresponding metrics, and parameter
ranges summarized in Table II.

Figure 2 analyzes the impact of the gradient variance
threshold θ on SCALP’s communication efficiency and model
accuracy. This parameter determines how each worker assesses
the statistical significance of its local gradient update. Specifi-
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Fig. 3. Effect of the Low-Bandwidth Threshold Tlow on SCALP’s Training
Time to Reach 90% Accuracy and Transmitted Data.

cally, when the variance of the gradient vector falls below θ, the
update is considered to have low impact and is subject to more
aggressive filtering. As θ increases, the condition σ2

g < θ,
defined in (1), is satisfied more frequently, resulting in a
larger fraction of updates being classified as insignificant and
filtered locally instead of being transmitted. This behavior
leads to a significant reduction in communication volume, with
over 20% difference observed between the lowest and highest
threshold values. However, this gain in bandwidth efficiency
involves a trade-off. At the most aggressive setting (θ = 10−2),
compression removes gradient components that, despite their
low variance, still contribute to model convergence. This effect
results in a modest decrease in final accuracy.

Figure 3 illustrates the effect of the low-bandwidth thresh-
old Tlow on SCALP’s training time to reach 90% accuracy and
the total data transmitted. This threshold does not represent
the actual measured bandwidth, but rather serves as a decision
criterion used by each worker to determine whether the current
uplink condition should be treated as congested. When the
observed bandwidth Bn falls below this threshold, compression
is triggered. Lower threshold values, such as 2Mbps, imply
that only severely degraded links activate compression, leading
to more frequent full-gradient transmissions and higher overall
data exchange. In contrast, higher thresholds, such as 10Mbps,
cause workers to classify even moderately loaded links as
congested. Consequently, compression is applied more aggres-
sively, resulting in a substantial reduction in transmitted data.
However, this increased compression sensitivity can impact
training dynamics: excessive filtering may discard semantically
relevant updates, resulting in delayed convergence. This effect
is reflected in a slight increase in training time at the highest
threshold setting.

These results indicate that θ and Tlow provide tunable control
over SCALP’s behavior. Lower values prioritize fidelity by
limiting compression, whereas higher values enhance commu-
nication efficiency. In both cases, mid-range configurations,
specifically a variance threshold of θ = 10−3 and a low-
bandwidth threshold of Tlow = 5Mbps, are used as robust and
empirically validated default values. Therefore, these values
are adopted in the subsequent evaluations to ensure a balanced
trade-off between accuracy and communication cost.
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Fig. 4. Performance comparison between SCALP, Bandwidth-Aware Filter-
ing [28], and DGC [7]. The top subplot reports the training time to reach 90%
accuracy, the middle subplot shows the total data transmitted, and the bottom
subplot presents the final model accuracy. All metrics are measured using a
CNN-LSTM model trained on the CMAPSS dataset [26].

The final stage of the evaluation compares SCALP with
two representative compression strategies: a bandwidth-aware
method [28] that filters gradients based solely on uplink
capacity, and DGC [7], which retains only components exceed-
ing a global magnitude threshold. These baselines highlight
the difference from SCALP’s dual-adaptive approach, which
jointly considers gradient variance and bandwidth to guide
compression decisions.

Figure 4 reports the comparative performance of SCALP
against two representative baselines. The top subplot shows the
training time required to reach 90% accuracy. All three methods
converge at comparable speeds, with SCALP completing
training in 4579.66 seconds, which is 0.38% slower than
DGC and 0.31% faster than the bandwidth-aware approach.
These small deviations confirm that SCALP’s compression
policy does not introduce additional delays in convergence.
The middle subplot illustrates the communication cost. SCALP
achieves the highest efficiency, reducing transmitted data by
11.36% compared to the bandwidth-aware method and by
1.86% relative to DGC. These savings reflect the advantage of
combining variance-driven filtering with bandwidth awareness,
which avoids transmitting low-impact updates under constrained
links. The bottom subplot presents the final accuracy of the
trained models. SCALP attains 98.62%, improving over DGC
by 1.16% and over the bandwidth-aware strategy by 2.08%.
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This consistent gain indicates that compression strategies rely-
ing solely on gradient magnitude or bandwidth risk discarding
statistically relevant updates, whereas SCALP preserves such
contributions. Taken together, the results demonstrate that
SCALP balances communication efficiency and model fidelity
more effectively than single-factor compression schemes.

IV. CONCLUSIONS

This paper presented SCALP, a lightweight, network-aware
gradient compression mechanism for federated learning that
combines adaptive filtering with stateless signaling via the ECN
field. By allowing each client to adapt its compression level
based on both local gradient variance and uplink bandwidth
conditions, SCALP reduces communication overhead with-
out compromising convergence accuracy. Evaluations on the
CMAPSS dataset using CNN and CNN-LSTM models show
that SCALP consistently improves over baseline strategies in
both efficiency and model quality, demonstrating robustness
across different architectures. Its dual-adaptive design, which
integrates statistical relevance and link quality, proves effective
in maintaining performance under constrained network con-
ditions, showing that strategies relying exclusively on either
gradient magnitude or network state risk discarding statistically
relevant updates. These characteristics make SCALP applica-
ble to real-world scenarios such as predictive maintenance,
anomaly detection, and collaborative edge analytics, where
both communication efficiency and reliable convergence are
essential requirements. As part of future work, alternative
distributions of the filtering ratio (e.g., p ∈ {0.2, 0.4, 0.8}
or p ∈ {0.25, 0.5, 0.75, 1.0}) will be investigated to further
explore and refine the accuracy–efficiency trade-off.
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