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Abstract—Virtual Network Functions (VNFs) are essential
components in modern networking that decouple network func-
tions from dedicated hardware, thereby enhancing flexibility,
scalability, and cost-efficiency. The inherently dynamic nature
and fluctuating loads of networks, combined with evolving
network demands, often lead to the over-allocation or under-
provisioning of VNF resources, posing a significant challenge
in optimal VNF resource usage. This issue becomes even more
challenging when VNFs are connected in a specific sequence
to fulfill a functional need—Service Function Chain (SFC).
A promising solution to this challenge is proactive resource
management—predicting resource demands of VNFs in advance.
In this paper, we present a performance metrics prediction
framework designed to anticipate multi-step resource demands
for VNFs. The framework employs machine learning models,
including RNN, LSTM, GRU, and Transformer models, within
a robust meta-learner to capture complex usage patterns, ac-
counting for both short-term and long-term dependencies in
VNF resource consumption. This approach allows for precise
prediction of critical key performance indicators (KPIs), includ-
ing CPU usage, memory usage, processing latency, and traffic
load for each VNF within an SFC. The evaluation results show
that the proposed framework achieves a 75% reduction in mean
absolute error (MAE) compared to the Transformer model and
over 84% compared to RNN, LSTM, and GRU models. These
results demonstrate the framework’s substantial improvement
over state-of-the-art approaches.

Index Terms—5G Networks, Virtual Network Function (VNF),
Cloud-Native Network Function (CNF), Service Function Chain
(SFC), Performance Metrics Prediction

I. INTRODUCTION

Resource management within Network Function Virtual-
ization (NFV) refers to the efficient resource allocation and
orchestration of VNFs [1]. Managing these resources is essen-
tially challenging due to the inherent dynamic nature of the
network environment and workload demands. This may lead
to over-allocation or under-provisioning of VNF resources.
For example, over-provisioning may cause inefficient resource
utilization, while under-provisioning can lead to degraded
performance and reduced service quality.

To overcome these issues, an approach is to continuously
monitor and predict the resource demands of VNFs, enabling
the system to proactively react and adapt to changing con-
ditions [2]. This helps prevent bottlenecks, ensure smooth
operation, and meet service level agreements (SLAs) [3].
Resource prediction becomes even more important in light of
the SFC, which defines how VNFs are connected to fulfill
specific functional needs. The reason is that the performance
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of the entire SFC is tightly coupled with the efficiency and
availability of resources across all VNFs in the chain.

Previous studies have addressed VNF resource demand
prediction [4]-[8], but most rely on single algorithms that
capture either short- or long-term dependencies, falling short
of reflecting the full complexity of real network environments.
Analyzing long-term trends reveals extended load and resource
fluctuations, while short-term volatility analysis, enables rapid
response to immediate variations [9]. Moreover, these studies
predict a subset of key KPIs, such as CPU usage, memory
usage, processing latency, and traffic load. Forecasting all these
KPIs is crucial for a comprehensive understanding of VNFs
resource and performance requirements.

To address these issues, this paper presents a prediction
framework that combines multiple machine learning algo-
rithms to predict all the VNF KPIs mentioned above. This
synergistic method would harness the strengths of different
algorithms, allowing for better capture of complex patterns
and dependencies within VNF resource usage data.

The framework is designed to collect KPIs from all VNFs
within an SFC and predict their values for future multi-step
intervals. The framework integrates two primary components:
a KPIs Collection Component for real-time acquisition of
critical metrics and a Prediction Component that leverages
advanced machine learning techniques. The proposed predic-
tion component utilizes ensemble learning to integrate multiple
machine learning algorithms, including RNN, LSTM, GRU,
and Transformer models, into a robust meta-learner.

The implementation of the proposed prediction framework
demonstrates a significant improvement in prediction accuracy
when compared to single models. For example, our prediction
framework achieved a 75% reduction in MAE when compared
to the Transformer model. Additionally, it outperforms other
models, including RNN, LSTM, and GRU, with a reduction
of over 84% in MAE.

This paper is organized as follows. Section II reviews related
work on VNF resources prediction. Section III presents the
system model. Section IV introduces the proposed prediction
framework, and Section V outlines the experimental setup.
Section VI discusses the evaluation results. Finally, Section
VII concludes the paper and highlights future directions.

II. RELATED WORK

Extensive research, summarized in Table I has been ded-
icated to addressing the resource prediction challenges for
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VNFs. Works focusing on short-term dependencies include
[4], [6] and [7]. Luo et al. [4] proposed a framework built
on deep learning to enhance the scalability of geo-distributed
VNF chains. They employed a traffic model based on a RNN
to predict upcoming flow rates, and a DRL agent to determine
the optimal placement of VNFs in a chain. Mijubi et al. [6]
presented a graph neural network (GNN) based algorithm
that uses VNF forwarding graph topology information to
predict future resource requirements for each VNF compo-
nent (VNFC). The topological information of every VNFC is
obtained by aggregating its historical resource usage with the
predicted impact on it from neighboring VNFCs.

Another work focusing on short-term dependencies is pre-
sented in [7], where a deep learning model combining GNNs
with multi-task learning (MTL) is used to predict VNF re-
source demands. The process involves offline and online learn-
ing. Offline learning computes initial neural network weights
for input, intermediate, and output layers. Online learning then
predicts VNF delay, CPU, and storage requirements. Pandey
et al. [8] by considering long-term dependencies proposed
an automated scaling and placement method for SFCs using
GRU. The autoscaling module sets up the SFC for incoming
requests by predicting the VNFs KPIs. Similarly, Wu et al.
[5] captured long-term dependencies by implementing a multi-
layer perceptron (MLP) network, where the prediction module
consists of an input layer, multiple hidden layers, and an output
layer to predict traffic load of VNF.

TABLE I: Related Works

Work Prediction KPI Dependencies
CPU Memory Traffic Precessing Latency  Short Long

Luo et al. [4] v v

Mijumbi et al. [6] v/ v v

Zhang et al. [7] v v v v

Pandey et al. [8] v/ v

Wu et al. [5] v v

This paper v v v v

Existing research relies on single machine learning algo-
rithms, capturing either short-term or long-term data depen-
dencies, limiting their ability to address real-world network
complexity. These studies typically predict a subset of KPIs,
such as CPU usage, memory usage, traffic load, and processing
latency. Comprehensive prediction of all KPIs is essential for
understanding VNF resource and performance requirements.

This study presents a prediction framework for VNFs in an
SFC, forecasting CPU usage, memory usage, traffic load, and
processing latency. It integrates short-term and long-term tem-
poral features to capture immediate variations and extended
trends in time series data, enabling responsive scaling and
proactive resource planning. It can further support resource
and service orchestration [10] in edge and fog networks.

III. SYSTEM MODEL

This section provides an overview of the system model,
depicted in Figure 1, which is used to evaluate the proposed
performance metrics prediction framework for VNF resource
management in 5G networks. The Data Generation Layer
comprises a distributed network of software IoT devices

communicating via software gateways, emulating large-scale
IoT ecosystems with thousands of interconnected devices [11].
Sensors send messages to their gateways, which buffer and
batch them by size to reduce transmission overhead before
forwarding to the VNFs for processing.
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Fig. 1: System Model

The Radio Access Network (RAN) facilitates the trans-
mission of data from IoT gateways to the Mobile Core
over a wireless communication network. Depending on the
deployment requirements, the network supports both LTE (4G)
and 5G technologies, ensuring compatibility with diverse IoT
environments. The Mobile Core then routes the data to the
Fog Layer, where computational tasks and service function
execution take place.

In the Fog Layer, the data is processed through VNFs,
which are organized into an SFC. The SFC can be tailored to
apply various VNFs based on specific use-case requirements
as shown in the Figure 1. In this scenario, the SFC comprises
a sequence of security and optimization functions designed
to meet application-specific demands, such as Firewall, Deep
Packet Inspection(DPI), data encryption, and traffic compres-
sion. In this SFC, the sequence ensures that security is applied
at multiple layers, FW for basic protection and DPI for ad-
vanced inspection. Data confidentiality is maintained through
Enc and network efficiency is optimized by compressing the
data. The Network Controller depicted in the system model
is a central component that acts as a decision-making entity,
interacting with various layers to ensure efficient utilization
of available resources. Based on its responsibility for dynam-
ically scaling the resources of VNFs, the Network Controller
leverages the proposed prediction framework to enhance the
efficiency of this process.

The proposed prediction framework consists of two main
components: the KPIs Collection Component and the Predic-
tion Component. The KPIs Collection Component monitors
VNFs and gathers several KPIs for each VNF. The Prediction
Component leverages machine learning algorithms to predict
these KPIs for subsequent time steps of each VNF.

IV. PERFORMANCE PREDICTION FRAMEWORK

The proposed prediction framework comprises a KPIs Col-
lection Component and a Prediction Component, detailed
below for their roles within the framework.
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A. KPIs Collection Component

The framework’s efficacy depends on the accuracy of its
predictive model, which is driven by the quality and timeliness
of training data. By continuously collecting up-to-date VNF
resource and traffic telemetry for retraining, it adapts to
evolving network conditions and maintains effectiveness in
real deployments. The KPIs Collection Component comprises
modules that gather specific VNF performance metrics (cf.
Figure 2). These modules continuously monitor VNFs and
store the data in a centralized database for predictive analysis.
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The collected metrics are categorized into two groups: VNF-
specific metrics and network-related metrics.

VNF-specific metrics: These metrics focus on the com-
putational and memory resource consumption of VNFs. The
following are the key metrics in this category:

« CPU Usage: Monitoring and predicting CPU usage al-
lows for proactive scaling of resources, preventing over or
under utilization while maintaining optimal performance.

e Memory Usage: Like CPU usage, accurate predictions
of memory usage ensure efficient resource allocation,
avoiding potential shortages or excessive provisioning.

« Average Processing Latency: This metric is a critical
indicator of system responsiveness and efficiency, helping
to minimize delays by dynamically adjusting resources.

Network Metrics: These metrics are tied to network perfor-
mance and resource demands:

o Traffic Load: Measures the total amount of data trans-
mitted through the VNF, typically in megabits per second
(Mbps). Predicting traffic load provides insights into
resource requirements, allowing the framework to prepare
for fluctuations and maintain uninterrupted performance.

B. Prediction Component

The proposed Prediction Component uses ensemble learning
to integrate multiple machine learning algorithms into a robust
meta-learner, enhancing prediction accuracy by combining the
strengths of diverse models. Ensemble methods are widely
recognized for their ability to improve overall performance by
aggregating the predictions of individual models [12].

A notable technique employed is stacked ensemble learning,
which combines the output from multiple base models to
improve predictive performance. This process begins with
training various base models on the same dataset using cross-
validation. The base models, which may utilize different
underlying algorithms, are trained independently [13].
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Fig. 3: Prediction Component

Figure 3 illustrates the hierarchical Prediction Component,
designed to estimate critical performance metrics for VNFs
in an SFC. The Prediction Component consists of two layers
that work together to ensure accurate and reliable predictions
for resource management. The first layer focuses on the
preparation of the data and the generation of preliminary
predictions using advanced neural network architectures. To
ensure consistency, the input data undergoes a normalization
process that scales the feature values to a standard range
between 0 and 1 using the min-max normalization method. In
addition to normalization, the data preparation phase employs
a sliding window approach to generate input-output pairs.
Using a fixed number of past observations as input to predict
a sequence of future values, the system captures temporal
dependencies in the data.

The prepared data is then processed by four distinct neural
network architectures, each chosen for its ability to handle
sequential data and capture varying dependencies. These neu-
ral networks are trained independently, producing separate
prediction models for collected metrics across VNFs.

Recurrent Neural Networks (RNNs) serve as a baseline
model for identifying short-term dependencies, while Long
Short-Term Memory (LSTM) networks and Gated Recurrent
Units (GRUs) are utilized for their efficiency in capturing
long-term dependencies, with GRUs offering a more computa-
tionally efficient alternative. Transformers complement these
models by employing self-attention mechanisms to identify
global patterns and complex dependencies within the data.
Leveraging the unique capabilities of RNN, LSTM, GRU, and
Transformer models, which offer diverse architectures and the
ability to capture both short-term and long-term dependencies,
the first layer generates accurate predictions for key metrics
while enhancing overall prediction accuracy.

The second layer integrates the outputs of the base models
to produce a unified prediction. During this phase, the MAE
of each base model is calculated and the weights are assigned
inversely proportional to the MAE, ensuring that models with
lower errors have a greater influence on the final prediction.
A stacking approach is then employed, where the weighted
outputs are combined and fed into a higher-level meta-model
trained to synthesize these predictions into a single, accurate
predict. Finally, the stacked ensemble model combines the
outputs of the base models, trained on the entire dataset,
using a meta-model that is specifically trained to integrate
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these outputs into a unified and accurate final prediction. This
approach generates precise forecasts for all key metrics across
VNFs in the SFC.

V. EXPERIMENTAL SETUP

This section presents the experimental setup using a real
testbed with real data to emulate dynamic network environ-
ments. As shown in Figure 4, the testbed consists of an SFC
deployed on four fog servers, each running a Kubernetes-
orchestrated VNF. The setup also incorporates software IoT
devices and gateways. The testbed emulates 4G and 5G net-
work behaviors using data from a real-world dataset collected
from monitoring the performance of the main Mobile Network
Operator (MNO) in Norway.
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Fig. 4: Experimental Testbed
A. Data Generation

The performance evaluation was based on four IoT deploy-
ment scenarios small, medium, large, and very large varying
in device types, data volumes, and key parameters such as
number of IoT devices, IoT gateway, and sensor rate, to
accurately model diverse real-world environments.

Our experiments use Software IoT Devices and Gateways
to emulate real hardware. Devices generate sensor data, while
gateways aggregate and forward it to the SFC. This software-
based approach enables scalable, flexible testing of diverse IoT
scenarios without physical hardware [14].

The scenarios in Table II reflect real-world IoT use cases.
The small scenario models a residential setting with one
gateway and 1,000 devices (e.g., appliances, security, sensors)
[15]. The medium scenario reflects commercial deployments
with 10 gateways and 10,000 devices. This setup models retail
stores, offices, or public spaces, where IoT solutions are used
for inventory management, customer analytics, and facility
optimization [16]. The large scenario simulates industrial
environments with 25 gateways and 25,000 devices in factories
or logistics hubs [17]. The very large scenario, representing a
smart city deployment, scales up to 50 gateways and 50,000
devices, incorporating IoT applications for urban planning,
transportation management, and environmental monitoring.

IoT sensor data streams were modeled as JSON-encoded
measurements containing fields such as sensor ID, name, type,

TABLE II: Summary of the IoT experimental settings

Parameter Scenario

Small Medium TLarge Very Large
Software ToT Gateway (g) 1 10 25 50
Software IoT Devices (d) 1000 10000 25000 50000
Sensor Rate (s,-) 4,12,25,50
Data batch size (bs) 4000

unit, value, and timestamp. Each sensor generates data at
predefined rate ranging from 4 to 50 messages per second.
These configurations align with those used in prior research
[11], designed to simulate diverse IoT environments with
progressively increasing volumes of sensor measurements.

B. Data Transmission Emulation Using NNE Dataset

To ensure the experiments reflect realistic network condi-
tions, we utilized a specific dataset derived from the NortNet-
Edge (NNE) measurement platform, deployed across Norway
[18]. Collected between November 2023 and February 2024,
this dataset provides detailed performance metrics from 4G
and 5G networks.

The dataset focuses on bandwidth-related KPIs, specifically
downlink and uplink data rates aggregated from speed tests
to represent the available bandwidth. In our experiments, the
traffic rate—which determines the volume of data transmitted
to the mobile network over time—was configured based on
the upload speed metrics from the dataset. These metrics were
instrumental in shaping the test traffic to emulate realistic net-
work conditions, ensuring the experiments accurately mirrored
the dynamic behaviors of 4G and 5G environments.

This dataset provides a robust basis for evaluating resource
prediction and placement strategies, as it captures diverse net-
work conditions and KPIs observed in real-world deployments.

C. Service Function Chaining

In this setup, the network functions (NFs) are implemented
as CNFs, leveraging containerized applications for enhanced
flexibility, scalability, and portability. Each network function
is deployed as a container that encapsulates its software and
dependencies. The orchestration and lifecycle management of
CNFs in the SFC are handled by Kubernetes. The VNFs
are deployed across a cluster of four servers, each hosting
one container. Collectively, these servers operate as a fog
computing environment.

The testbed includes four specific VNFs, each performing a
distinct role within the SFC. The firewall VNF is implemented
as a module that inspects the headers of incoming packets
by sniffing input traffic at the network interface. This VNF
uses a JSON-based configuration file to define blocking rules
based on the 5-tuple information of packets.The DPI VNEF,
implemented using Snort3 (version 3.1.43.0) [19], examines
the payloads of packets traversing the network. This VNF
enhances security by analyzing network traffic for malicious
content, policy violations, and abnormal patterns.

The encryption VNF utilizes Advanced Encryption Standard
— Galois/Counter Mode (AES-GCM) to secure network traffic
[20]. AES-GCM provides both encryption and authentication,
ensuring that the confidentiality and integrity of packet con-
tents are preserved. The compression VNF reduces the size of
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transmitted data using the Brotli compression algorithm [21].
After compression, the data is encoded in base64 format to
ensure compatibility with text-based transmission protocols.

Each VNF operates as an individual server, within the
testbed, with its application containerized using Docker. This
configuration supports a flexible and efficient evaluation of the
framework in a cloud-native 5G environment.

D. Metrics collector

The KPIs of the VNFs were collected using Prometheus, a
widely adopted open-source monitoring tool. The component
queries each VNF at regular intervals, retrieving their KPIs
and storing them in a centralized database for further analysis.
For network KPIs, a scalable Representational State Transfer
(REST) API was used, providing a standardized interface
for nodes to transmit their KPIs. Each VNF periodically
sends its KPIs to a server listening for incoming requests
on predefined endpoints. These metrics are then stored in the
same centralized database.

The experimental setup was run continuously for approxi-
mately 12 hours, with each scenario lasting 15 minutes. During
this period, KPIs were collected at one-second intervals, gener-
ating a comprehensive dataset. This dataset was subsequently
divided into two subsets: 80% for training the models and 20%
for testing and evaluation purposes.

VI. EVALUATION RESULTS

This section evaluates the proposed prediction framework,
focusing on computational efficiency, accuracy, error analysis,
and multi-step prediction. Its performance is benchmarked
against baseline models: RNN, LSTM, GRU, and Transformer.

A. Evaluation Metrics

To evaluate the accuracy and robustness of the proposed
framework, we use MAE, Mean Squared Error (MSE), and
Root Mean Squared Error (RMSE) metrics. These metrics
assess different aspects of prediction performance. Together,
these metrics provide a balanced evaluation of predictive
accuracy, with MAE highlighting average errors, and MSE
and RMSE emphasizing sensitivity to large deviations.

B. Computational Complexity

The time complexity of the proposed framework and base-
line models was evaluated via their training and testing times
(Table III). The RNN trains in 220.82 s and tests in 2.31
s, while LSTM and GRU take longer to train (529.83 s and
581.30 s, respectively) but GRU tests faster. The Transformer
is the most resource-intensive, requiring 9.264 s to train and
7.39 s to test due to its attention mechanisms.

In the proposed framework, base models are trained inde-
pendently, with the meta-learner adding 520.78 s to fit on their
concatenated outputs. During inference, base models run in
parallel, and the meta-learner then combines their outputs. The
inference time for the entire test set is 7.74 s. The proposed
framework adds a mere 0.35 s to the slowest model’s latency
while delivering a level of robustness and accuracy far beyond
any single model.

TABLE III: The execution time during training and testing phases (in seconds)

Model Training Time (sec)  Testing Time (sec)
RNN 220.82 2.31
LSTM 529.83 5.39
GRU 581.30 2.89
Transformer 9264.06 7.39
Meta-learner 520.78 0.35

C. Prediction Accuracy and Error Analysis

The accuracy of the proposed framework and error charac-
teristics are evaluated using two distinct analyses: residual er-
ror range and MAE. These analyses highlight the framework’s
ability to deliver accurate predictions and minimize deviations
across various models.

1) Residual Error Analysis: Figure 5 provides a compara-
tive visualization of residual errors across RNN, LSTM, GRU,
Transformer, and the proposed framework. The residual range
for the proposed framework is significantly smaller (-0.1 to
0.3) compared to other models like RNN and LSTM (-0.9 to
0.9). This 77.8% reduction in the error range demonstrates
the framework’s improved prediction accuracy and reduced
variance. Furthermore, the median residual error for the pro-
posed framework is near zero, emphasizing its robustness in
minimizing prediction deviations.
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Fig. 5: Residual Analysis of VNF Resource Demand Prediction Methods

2) MAE Comparison: Table IV shows the MAE for dif-
ferent methods in predicting the KPIs of VNFs. The proposed
framework achieves an MAE of 0.0081, representing a 75% re-
duction compared to the Transformer model (0.0318) and over
an 84% reduction relative to RNN (0.0527), LSTM (0.0494),
and GRU (0.0483). These results showcase the capability of
the framework to produce predictions with substantially lower
average errors than baseline models, further emphasizing its
superiority. Together, these analyses highlight the proposed
framework’s strengths in delivering highly accurate predictions
with minimal residual errors and average deviations.

TABLE IV: Mean Absolute Error (MAE) Across Prediction Methods

Model Mean Absolute Error (MAE)
RNN 0.0527
LSTM 0.0494
GRU 0.0483
Transformer 0.0318
Proposed Framework 0.0081

D. Prediction Accuracy Across KPlIs

This section evaluates the prediction accuracy of the pro-
posed framework across various KPIs, including memory
usage, CPU usage, traffic load, and processing latency. The
performance of the framework is benchmarked against tradi-
tional models such as RNN, LSTM, GRU, and Transformer,
highlighting its superior accuracy and efficiency.
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1) Memory Usage Prediction: Figure 6 shows the memory
usage patterns of three VNFs: Firewall, DPI, and Compression.
The memory usage for the Firewall was recorded between 79
MB and 80 MB, while the Enc and Comp exhibited stable
consumption levels at 60 MB and between 60 MB and 61 MB,
respectively. These predictable and stable patterns of memory
usage rendered prediction unnecessary for these VNFs.
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Fig. 6: Memory Usage Across Different VNFs

In contrast, the DPI VNF presented a more dynamic mem-
ory usage profile, warranting prediction analysis. The results of
this analysis, detailed in Table V, reveal that the proposed pre-
diction framework significantly outperforms traditional models
across all error metrics. Specifically, the framework achieved
reductions of 99.16% in MAE, 99.99% in MSE, and 97.60%
in RMSE compared to baseline models. These outcomes
highlight the framework’s capability to accurately predict
memory demands for the DPI VNF, underscoring its potential
to enhance VNF resource allocation efficiency and minimize
the risk of service disruptions caused by resource constraints.

TABLE V: Memory Usage Performance Metrics (DPI)

Model MAE MSE RMSE

RNN 0.027537  0.001732  0.041621
LSTM 0.026278  0.002083  0.045640
GRU 0.025049  0.001204  0.034698
Transformer 0.002731  0.000098  0.009914
Proposed Framework ~ 0.000233 ~ 0.000001  0.001081

2) CPU Usage Prediction: The proposed framework
demonstrates remarkable accuracy in CPU usage prediction,
achieving superior results for the four VNFs considered in
our evaluation: Firewall, DPI, Enc, and Compression. Ta-
ble VI presents the performance metrics—MAE, MSE, and
RMSE—for CPU usage prediction across these VNFs.

The proposed framework consistently exhibits the lowest
error rates among all models, highlighting its ability to ac-
curately predict CPU demands. For instance, in the Firewall
VNEF, the framework achieves an MAE of 0.001570, reflecting
an 80.4% reduction compared to the Transformer model, the
best-performing baseline. Similar improvements are observed
for the other VNFs, further underscoring the framework’s
robustness in CPU usage prediction.

3) Traffic Load Prediction: Accurate traffic load predic-
tion is essential for optimizing VNF performance and reduc-

ing network congestion. Table VII shows that the proposed
framework outperforms baseline models across all error met-
rics—MAE, MSE, and RMSE. For the Enc VNF, the frame-
work achieves remarkable improvements in RMSE, reducing
the error by 37.0% compared to the LSTM model, 45.0%
compared to the RNN, 39.4% compared to the GRU, and
31.8% relative to the Transformer model.

4) Processing Latency Prediction: Processing latency is
vital for evaluating VNF responsiveness in dynamic networks.
Accurate prediction supports proactive resource management
and adherence to service level agreements. Table VIII presents
the processing latency prediction errors across the four VNFs.
The proposed framework demonstrates exceptional perfor-
mance in this task, achieving an MAE of 0.022 a significant
61.5% reduction compared to the best baseline model.

E. Multi-Step Prediction

The framework’s robustness was also evaluated via multi-
step prediction, estimating each VNF’s resource demands over
the next 7 time slots using the last o observed values.

Multi-step predictions were performed for horizons of 2,
15, 30, and 60 seconds, as shown in Table IX. For the shorter
horizons (2, 15, and 30 seconds), the most recent 120 time
slots were utilized as inputs, while the 60-second forecast
relied on the last 240 time slots to enhance accuracy.

The MAE results in Table IX highlight the superior perfor-
mance of the proposed framework across all time horizons.
At shorter intervals, such as 2 and 15 steps, the framework
achieved significantly lower MAE values of 0.007503 and
0.006495, respectively, outperforming the closest competitor
(Transformer) by a considerable margin. This trend continued
for the 30-step forecast, where the MAE remained exception-
ally low at 0.006255. Even for the longest horizon (60 steps),
the proposed framework demonstrated remarkable stability,
with an MAE of 0.007324.

VII. CONCLUSION

This research introduces a performance metrics prediction
framework designed to monitor and predict resource demands
in VNFs, addressing the critical challenge of efficient resource
allocation in next-generation telecommunications infrastruc-
ture. The framework consists of two main components: the
KPI Collection Component and the Prediction Component.
The KPI Collection Component facilitates real-time moni-
toring and acquisition of critical VNFs metrics and network
performance data. The Prediction Component employs a ro-
bust meta-learning approach that integrates multiple neural
network architectures to capture both short-term and long-term
dependencies in the resource usage of each VNF in an SFC.
Experimental evaluations demonstrate substantial reductions
in prediction errors across multiple performance indicators,
including CPU usage, memory usage, processing latency, and
traffic load. Compared to traditional machine learning models
such as RNN, LSTM, GRU, and Transformer, the proposed
approach achieves remarkable improvements, with up to a 75%
reduction in MAE relative to the Transformer model.
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TABLE VI: CPU Usage Prediction Error for Different Models

Model Firewall DPI Encryption Compression
" MAE  MSE  RMSE =~ MAE  MSE  RMSE =~ MAE  MSE  RMSE RMSE
RNN 0.023654  0.001679  0.040970  0.023551 0.002038  0.045146  0.027241 0.001828  0.042753  0.034698  0.002982 0.054612
LSTM 0.031628  0.002593  0.050918  0.028540  0.003350  0.057882  0.025329  0.002333  0.048303  0.026903  0.002940 0.054221
GRU 0.023396  0.001641 0.040504  0.020647  0.002055  0.045334  0.021181 0.001532  0.039139  0.023189  0.001947  0.0441247
Transformer  0.008015  0.000786  0.028038  0.005707  0.000723  0.026890  0.004979  0.000596  0.024411 0.007956  0.000849 0.029139
This Work 0.001570  0.000009  0.003044  0.001701 0.000011 0.003349  0.002015  0.000016  0.004017  0.001721 0.000011 0.003355
TABLE VII: Traffic Load Prediction Error for Different Models
Model Firewall DPI Encryption Compression
MAE MSE RMSE MAE MSE RMSE MAE MSE RMSE MAE MSE RMSE
RNN 0.053706  0.005785  0.076058  0.041144  0.003934  0.062723  0.067434  0.008319  0.091207  0.053743  0.005803  0.076175
LST™M 0.038630  0.003623  0.060193  0.039218  0.004099  0.064020  0.045058  0.004702  0.068569  0.037764  0.003650  0.060411
GRU 0.037530  0.003628  0.060233  0.038614  0.003847  0.062021 0.041197  0.004181 0.064661 0.039727  0.003508  0.059232
Transformer  0.031754  0.002811 0.053020  0.033549  0.002837  0.053262  0.031504  0.002829  0.053185  0.031449  0.002823  0.053127
This Work 0.010401 0.000241 0.015519  0.011533  0.000297  0.017221 0.010826  0.000261 0.016149  0.011174  0.000278  0.016670
TABLE VIII: Processing Latency Prediction Error for Different Models
Model Firewall DPI Encryption Compression
MAE MSE RMSE MAE MSE RMSE MAE MSE RMSE MAE MSE RMSE
RNN 0.073391 0.011722  0.108268  0.115501 0.022741 0.150802  0.082568  0.010147  0.100732  0.060672  0.005747  0.075811
LSTM 0.087132  0.015695  0.125278  0.140657  0.030257  0.173946  0.067524  0.007742  0.087988  0.048014  0.003507  0.059223
GRU 0.088189  0.015462  0.124346  0.131733  0.027020  0.164377  0.083070  0.010052  0.100258  0.054391 0.003886  0.062338
Transformer ~ 0.057184  0.008483  0.092104  0.085373  0.014402  0.120010  0.062943  0.006674  0.081695  0.050608  0.003773  0.061423
This Work 0.021988  0.000942  0.030698  0.025556  0.001277  0.035728  0.007065  0.000108  0.010387  0.002461 0.000012  0.003480
TABLE IX: MAE for Multi-Step Prediction [8] S. Pandey, M. Choi, J.-H. Yoo, and J. W-K. Hong, “Rnn-edgeql: An
Model 2 Steps 15Steps 30 Steps 60 Steps auto-scaling and placement approach for sfc,” International Journal of
RNN 0.054061  0.054736  0.057387  0.051665 Network Management, vol. 33, no. 4, p. €2213, 2023.
LSTM 0.052174 0.056408 0.058931 0.059402 [9] M. Ye, J. LUO, C. XlaO, and F. Ma, “Lsan: Modehng long-term depen—
GRU 0.048055  0.052483  0.055795  0.059153 dencies and short-term correlations with hierarchical attention for risk
Transformer 0.034303  0.044075  0.047421  0.051731 prediction,” in Proceedings of the 29th ACM international conference
Proposed Framework ~ 0.007503  0.006495  0.006255  0.007324 on information & knowledge management, pp. 1753-1762, 2020.

Future work will explore applying the proposed framework
to complex networks and varying traffic patterns, and extend
it to dynamically scaling VNF resources within an SFC for
efficient and adaptive resource allocation based on real-time
traffic demands and network conditions.
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