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Abstract—Fixed-time strategy is a common approach in signal
traffic control, characterized by simple and periodic signal plans
that are easy to implement without detection mechanisms. A
major step in the design of such plans refers to the grouping of the
day hours such that the same plan applies for several consecutive
hours. The efficacy of the plan, measured by vehicle delays,
relies on the matching of traffic with the fixed plan. Accordingly,
the time-of-day breakpoints between plans are selected based
on the variability of the traffic within each group. The paper
studies the selection of time-of-day breakpoints (TODs) based
on real traffic characteristics from two cities. Motivated by the
Google Green Light project, this study presents an approach to
compute TODs based on aggregated traffic statistics computed
from anonymized trajectories from navigation applications. We
evaluate an optimal dynamic programming algorithm to compute
time-of-day breakpoints at an intersection, based on traffic
variability among hours. We analyze typical forms of efficient
time-of-day breakpoints and examine the impact of the number
of daily plans on the ability to predict traffic behavior. We refer
to various metrics to measure the variability of the traffic within
sets of hours concerning the amount of traffic and its distribution
among various movements. We measure the dissimilarity of the
time-of-day breakpoints when computed for the different metrics.
We also address the joint computation of TODs in adjacent
intersections to improve coordination potential.

I. INTRODUCTION AND MOTIVATION

Efficient traffic signal control is key factor to reducing traffic
congestion at intersections [1], [2]. Vehicle movements follow
the indications of traffic signals. A sequence of phases repeats
periodically where a phase allows traffic of a particular subset
of movements. A fixed-time strategy is often applied, where
each phase in the cycle takes a constant time, resulting in
cycles of the same length. Alternatives to fixed plans can
change the plan based on real-time data from infrastructure-
based sensors (actuation) or adaptively, based on updated
predictions for near-future traffic [3]. Such flexibility is often
expensive and challenging to implement due to infrastructure
and computation costs, implying the popularity of fixed plans
and the necessity for their effectiveness. As traffic patterns vary
throughout the day, fixed plans become potentially inefficient
if applied uniformly across all hours.

Accordingly, in the design of fixed-plan signal control there
are two main steps:

(i) Computing plan time periods - Dividing the day into
windows of consecutive hours such that traffic has similar
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characteristics within each hour window [4], [5]. Time-of-
day breakpoints (TODs) define the boundaries between time
windows.

(i1) Plan allocation for each time period - Computing traffic
plans for each of the hour windows by optimizing the time
allocated within a given cycle to each of its phases. In a plan,
each phase only allows a particular subset of the movements
to cross the intersection [1], [2].

This study focuses on the first task, namely on finding
efficient time-of-day breakpoints (TODs). Often, due to im-
plementation costs, the number of daily plans supported at an
intersection is small, typically ranging from 2 to 8 (e.g., plans
for morning peak, afternoon peak, midday, and night) [6].
Optimizing time-of-day breakpoints is important for several
key reasons: (i) As traffic patterns vary throughout the day,
selection of TODs allows matching the plan to the traffic
demand; It can be impossible to do so when the same plan has
to be applied to various hours with different traffic patterns; (ii)
Incorrect selection can lead to saturation at the intersection;
(iii) Overall, efficient TODs allow finding plans that match
the traffic well and can smooth traffic flow, reduce delay, fuel
consumption and carbon emission.

In this study, we develop and evaluate a methodology to
compute time-of-day breakpoints for traffic light plans from
vehicle probe data, considering various traffic characteristics.
Our study analyzes data from two cities over five weeks in
mid 2024, focusing on weekdays (Monday - Friday).

For our analysis, we rely on a dataset reporting statistics on
vehicle count every 15 minutes within the time period. Such a
dataset does not refer to a single vehicle but jointly to values of
all vehicles in the same hour. This aggregated and anonymized
dataset is computed based on the processing of anonymized
trajectories from navigation applications. Collecting such data
does not require expensive measurement equipment such
as cameras. The motivation for this study comes from the
large-scale traffic light planning in our Google Green Light
project [7], [8]. Green Light helps reduce emissions in cities
by analyzing anonymized Google Maps driving trends to
develop intelligent recommendations that optimize traffic light
timing and coordination. The project has been deployed in
over 18 cities including Rio de Janeiro, Seattle, Boston and
Bangalore. Following their computation, recommendations for
changes in plans of selected traffic lights are provided to the
transportation departments of the city. Then, the city traffic
engineers evaluate the recommendation and decide whether
to adopt a change. Following its adoption, the impact of the
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change is measured as part of the project and a detailed
report on the impact is provided to the city. Green Light also
supports recommendations that improve coordination among
intersections. It can also detect and provide indications for in-
tentional and unintentional changes in traffic light plans [9]. To
mitigate the impact of anomalies in traffic patterns, the project
prioritizes selection of intersections with lower variability of
its traffic patterns [10].

Contributions. This paper presents a comprehensive study
of the design of time-of-day breakpoints, based on real traffic
data. The paper makes the following main contributions:

1) The paper presents various variability metrics to examine
traffic characteristics within windows of hours, using
probe data.

2) The paper presents a dynamic programming algorithm
for computing ideal time-of-day breakpoints (TODs),
which can consider various variability metrics.

3) The paper describes an extensive evaluation of the
methodology, based on real traffic data from two cities
and examines typical ideal time-of-day breakpoints.

4) The paper evaluates the impact of the number of daily
plans as well as the impact of the variability metric on
the time-of-day breakpoints.

5) The paper describes a methodology for joint computa-
tion of time-of-day breakpoints for intersections along
corridors, to improve coordination.

We focus on the computation of TODs in a single inter-
section. In Section VII we explain how to jointly compute
a TOD solution for intersections along corridors. In recent
related studies we presented an experimental study of time-of-
day breakpoints [11]. We also studied the impact of day-of-
the-week awareness in the selection of time-of-day breakpoints
that can differ among weekdays [12].

II. THE TIME-OF-DAY BREAKPOINT COMPUTATION
PROBLEM

Formal Problem Definition. We now describe the time-of-
day breakpoint computation problem, the focus of this paper.

The input to the problem consists of traffic characteristics,
often represented as values for every 15 minutes of the day,
for every day over a time period. The variable N denotes the
number of daily plans. The aim is to divide the hours of the
day into N windows of consecutive hours, such that traffic has
similar statistical properties within each window. Consider a
time period of D days and a particular movement. For every
quarter hour ¢ of the day, let X; = (21,2,...,2p) be the
traffic values in that time in each of the D days. A variability
metric S(H;) examines the variability for an hour window H;,
based on the values in {X;|t € H;}.

In the time-of-day breakpoint computation problem, the goal
is to divide the 24 hours of the day {0,1,...,23} into N
(disjoint) windows of consecutive hours H = (Hy, ..., Hy).
A solution should have a minimal total traffic variability,
computed as:

min S(H) = min S(H;).
H=(Hq,...,.HN) ) H_(Hl""’HN)ie[;N] )

Namely, as the sum of variability values for the windows
Hy,...,Hy.

For simplicity, we use the hour value ¢ to denote the
hour between ¢:00 and #:59. An alternative common form to
present a solution H = (Hi,...,Hy) is through the break-
ing time between each hour window which is the minimal
hour in each group di,...,dy = min(H,),..., min(Hy).
For instance, for N = 5 the windows H; = {6,7,8},
Hy, =1{9,10,11,12,13,14, 15}, H3 = {16,17,18,19}, Hy =
{20,21,22}, Hs = {23,0,1,2,3,4,5} refer to five daily
plans with time-of-day breakpoints of dy, . . . , d5 of 6:00, 9:00,
16:00, 20:00 and 23:00.

Hours are considered in a cyclic manner such that for
instance the hours 23 and 0O can be in the same hour window
even when N > 2. In Section IIl we detail several potential
variability metrics S(H) based on traffic demand Sy (H) or
traffic distribution over movements Sp(H).

Types of Traffic Characteristics. The input hourly traffic
values X; = (x1,22,...,2p) can be of various forms and
detail levels. For instance, they can measure traffic or an
estimation of it through sampling, for instance, based on the
number of recorded sessions in some navigation application.
Another important point is the level of data: it can refer jointly
to all vehicles in an intersection or, for instance, be detailed
to each of the intersection movements.

Time Resolution. Computing time-of-day breakpoints aims
to indicate the daily time boundaries of periodic plans in an
intersection. In many cities, such plans can change only at
the beginning of an hour so focus on hourly resolution of the
start time of plans. Similarly, traffic characteristics can also be
described at various time levels and focus on detailed traffic
characteristics measured every 15 minutes.

Related Work and Existing Studies. As finding time-of-
day breakpoints (TODs) is a fundamental problem in traffic
light optimization, it has been well studied and several ap-
proaches have been suggested.

(i) Traditional traffic engineering - By this method a day
is divided into four windows of hours by identifying traffic
pattern with a morning peak-hour window of hours and
evening peak-hour window. Time of the windows are selected
based on traffic data such that two additional hour windows
refer to the time between the peak windows [13], [14].

(i) Clustering methods - This method considers day hours
and aims to iteratively merge several of the hours based on
similarity of their traffic, representing each window of hours
in the time-of-day as a cluster of hours. Two main types of
clustering methods were used: K-means and Fuzzy C-means
(FCM). In the K-means method, each data point (e.g., an hour
of the day or shorter amount of time) is assigned to exactly one
cluster. With K clusters, data points are iteratively assigned
to the cluster that its centroid is of a minimal distance from
the data point [15], [16], [17]. On the other hand, in Fuzzy
C-means (FCM), a data point can belong to multiple clusters
with a varying level of membership [18], [19].

(iii)) Genetic algorithms and Al-based methods - Such
methods consider a space of efficient solutions and compute
additional solutions by modifying existing solutions and merg-
ing several of them. Genetic algorithms have the potential



2025 21st International Conference on Network and Service Management (CNSM)

to avoid locally optimal solutions towards finding globally
optimal solutions [4], [20], [21]. They often result in finding
efficient TOD solutions but there are cases they need to be
modified manually due to convergence issues [21], [22].

III. TIME-OF-DAY VARIABILITY METRICS BASED ON
TRAFFIC CHARACTERISTICS

Towards computing ideal time-of-day breakpoints (TODs),
we describe metrics measuring the inherent traffic variability
within an hour window over the time period of the data.

Variability Metric (i): Variance of Traffic Demand.
The first simple metric examines the variance of the traffic
values. For an evaluated hour window the variability measures
changes in the amount of traffic over days as well as over the
various hours in the window H.

The hourly score S for a movement ¢ € [1,m] simply
examines the normalized standard deviation in the time period
over the days. Let py = % > ; ; be the mean value in hour
t in the time period. Let pz be the mean traffic value over
the hours in H such that py = @ Y icm M¢ serves as a
representing value for the window H. The score is

Sv(H) = (% Do (- MH)Q)O'?

teH z;€X;

The score examines a total of |H| - D values and is weighted
by the number of window hours |H| and accordingly the
denominator refers to D itself. The score itself refers to the
sum of the scores over all the hour windows, one for each of
the daily plans and measures the distance of the hourly value
from the representative value of the window.

Variability Metric (ii): Distribution of Traffic Over the
Intersection Movements. The second metric we consider is
motivated by viewing a dominant property of a signal control
plan: the partial time it allocates to each of the intersection
movements. Accordingly, the metric aims to measure changes
in the distribution of traffic over the movements in terms of
their part among the total traffic in the intersection.

Let X! = (z%,x%,...,2%) be the traffic values in some
time period ¢ over the D days in a movement i € [1,m].
The average distribution P, at time ¢ over all days is
simply computed as the average ratio for each movement
over the days P, = (P}, P?,...,P") such that P} =
(Xjewm )/ (Xiepml e @5 )- Similarly, let Py =
(Pk,P%,...,P™) be the corresponding distribution while
considering traffic from all time periods in H.

Consider an hour window H, representing a set of hours.

The score is
Sp(H) = Z Z [P — Pyy.
teH ie[1,m]

The score for a solution itself refers to the sum of the scores
over all its hour windows, one for each of the daily plans.

IV. A METHODOLOGY FOR COMPUTING EFFICIENT
TIME-OF-DAYS (TODS)

In this section we describe the approach we use in the paper
for finding the time-of-day breakpoints.

Methodology inputs. The methodology we developed to
detect transitions in traffic light plans makes use of traffic
aggregated statistics. Such information does not refer to a
single vehicle but jointly to the values of all vehicles in some
part of the day, such as a particular hour. This aggregated
and anonymized dataset is computed based on the processing
of anonymized trajectories from navigation applications. It
does not require expensive measurement equipment such as
cameras. The statistics refer to traffic demand (number of
vehicles) for every 15 minutes over the day.

Overview. As mentioned in Section II, a solution to the
problem is given as a division of the day hours {0,1,...,23}
into N disjoint windows H = (Hy,...,Hy) of consecutive
hours or similarly as the hours dy,...,dy that describe the
time-of-day breakpoints in which a new window starts. There
are two natural approaches for finding efficient solutions.

An optimal and time-efficient dynamic-programming
approach. As the number of all potential solutions increases
as a function of the number of daily plans and the time
resolution, we present an alternative approach that allows
finding an optimal solution without enumerating all solutions.
The approach is based on dynamic programming and relies
on a simple observation: Whenever the score of a solution is
given as the sum of the values of the variability metrics for
the different hour windows, parts of an optimal solution are
necessarily optimal for the subset of hours they refer to. This
is possible due to the property that in an optimal solution for
hours 0-23 (a total of 24 hours) with N windows that apply for
hi,ha, ..., hx hours (such that hi+ho+...+hy = 24), the
last N —1 windows necessarily also imply an optimal solution
but for the last ho+hs—+...+hyxy = 24— hy hours. The reason
is intuitive as otherwise, these windows could be replaced by
other NV —1 for the same hours with a lower sum of variability
values. Together with the first window of h; hours this can
reduce the score of the optimal solution for hours 0-23.

Overall, the approach is intuitive and relies on a basic
dynamic programming approach that applies for all types of
partitions of an ordered sequence of values with some vari-
ability function (called often also a loss function) computed
for each subset. As it is very natural, such an approach was
described early in the seminal work of Bellman in 1954 [23]
(for a general context) and many times later over the years for
various fields such as signal processing and hydrology [24],
[25]. In the context of time-of-day partitioning, such an
approach was proposed by Ma et al. in [26] that considered
traffic demand. Note that we refer to a generic variability
metric, unlike the particular variability function in [26] that
is based on traffic demand.

Consider a traffic variability metric S(H) and an optimal
solution M°P* = (My,...,My) such that S(M°Pt) =
ming—_ g, .. my) S(H) for some variability metric S(H)
(such as Sy (H) or Sp(H) from Section III). Let ¢; = |M;|,
namely the number of hours in the window M;. The N — 1
windows Mo, ..., My refer to hours ¢,...,23 for some
value ¢; such that together (M, ..., My ) indicate an optimal
solution for such hours with NV — 1 windows of hours. As the
value of ¢; = |M;| for an optimal solution is not known, to
find an optimal solution, we iterate over its value and rely
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(a) Optimal solution with N = 4 daily plans for hours 0-23

01 2 3 45 6 7 8 9 1011 1213 14 1516 17 18 19 20 21 22 23
hour

(b) Examples of partial solutions for N = 3 daily
plans for hours hi,...,23. Solutions for hours h; €
{1,2,3,4,5,6, 7} are shown.

Fig. 1. Illustration of the dynamic programming approach. A solution with N
plans is computed for hours [0,23] based on adding a first solution [0, k1 — 1]
to an optimal solution with N — 1 plans for the hours [h1, 23]. Various values
of hi are considered.

on optimal solutions with N — 1 windows computed for all
24 — {1 hours the first window does not include.

We now define a function ®(n,h) for an integer n > 1
and h € [0,23] as the minimal variability value that can
be obtained for a solution with n hour windows that applies
for hours h,...,23. Similarly, let M°P!(n,h) be an optimal
solution that achieves such a minimal value. By definition, the
variability value of the optimal solution MPt = M°Pt(n =
N, h =0) satisfies S(MPt) = ®(n = N,h = 0).

The above structure of an the optimal solution implies that

o The variability value of an optimal solution satisfies

®(n,h) = (S([h,h+i—1])+<I>(n—1,h+i)).

min
i€[1,23—h]
Let /1 be the (minimal) value of 7 that achieves this
minimal value.
o An optimal solution can be computed as

MOt (n, h) = ([h, htty—1]+ MP(n—1,h +el)).

Note that there can be more than a single optimal solution,
but this method always computes an optimal solution. To
compute an optimal solution M°P* = M°Pt(n = N, h = 0),
in the dynamic programming we compute solutions M Pt =
MP°Pt(n, h) for h € [0,23] by a decreasing order of h, starting
from h = 23 till h = 0. For each value of h, we compute the
solution for all values n € [1, N].

The dynamic programming is illustrated in Fig. 1.

First, Fig. 1(a) shows a solution for N = 4
plans for all day hours 0-23. The solution is
H, = {0,1,2,3,4,5} (shown in blue), Hy, = {6,7}
(green), Hs = {8,9,10,11,12,13,14,15,16,17,18,19}
(lime), Hy = {20,21,22,23} (orange) with windows of

lengths Ay = 6,hy = 2,hg = 12 and hy = 4 hours. With
dynamic programming the solution can be computed by
considering multiple options for the length h; of a first

plan that starts at hour O (till hour h; — 1) along with an
optimal solution with 3 plans for hours [hy,23]. Some of
such solutions are shown in Fig. 1(b) and differ at the hour at
which the second plan starts. The figure shows such solutions
for hy € {1,2,3,4,5,6,7} where h; indicates the length
of the first window of hours. As the optimal solution with
N = 4 plans (shown in Fig. 1(a)) has a first plan with h; = 6
hours, the dynamic programming adopts the solution for
N = 3 plans for hours [hy,23] = [6,23] which is shown as
the sixth (from top) solution for the plans in Fig. 1(b).

Time complexity: Overall, we compute N - 24 values, each
selected by considering at most 24 values based on the value
of ®(n, h). So the solution and its variability value are derived
with a number of 242 - N = 576 - N steps.

V. DISTANCE AMONG VARIABILITY METRICS BASED ON
TIME-OF-DAY BREAKPOINTS IN EACH INTERSECTION

This paper introduces two major variability metrics to
measure the quality of TOD breakpoints for given traffic
characteristics. For a better understanding of the variability
metrics, we aim to examine their dissimilarity. Optimizing the
TODs based on one metric does not take into account the
other metrics. In this section, we aim to better understand that
potential concern by examining levels of dissimilarity between
solutions to the TOD breakpoint problem. We refer to such
metrics as distance metrics and propose a simple method to
measure distance among TODs:

Distance test 1. Examining the distance of any two solu-
tions. An example for such solutions can be the two TODs an
algorithm computes while considering (independently) each of
the variability metrics.

Formally, consider two solutions H = (Hi,...,Hy) and
M = (My,...,My) with the same number of windows N
such that each solution is described as a N windows of hours.
Upon considering two variability metrics, the solutions can
be the optimal solutions that correspond to the two variability
metrics, as derived by the algorithm from Section IV. For sim-
plicity, we also refer to H(-), M(-) as functions mapping the
hours 0,1,...,23 to an index in [1, N] based on the index of
the window the hour belongs to. The intuition for the distance
metric is as follows: We view a solution as grouping hours
into windows. Two solutions would be considered similar if
the pairs of hours that share a window in one solution often
share the same window in the other solution.

Formally, in computing the distance of the solutions, we
refer to all pairs of hours and examine whether the hours
belong to the same window in one solution and also share
a window in the second solution or alternatively in both
solutions the hours appear in different windows. The distance
is simply the ratio of pairs of hours with such property among
all pairs of hours. The distance between the two solutions
H, M is defined as

23 23

RiH M) = 525~ S~ (10H() = HG)LMG) # M()

i=0 j=i+1
+I(HG) # H(j), MG) = M()))-
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Fig. 2. Hamburg - Illustration of the hourly plan index for 10 major intersections. Variability metric is variance of traffic demand in the intersection.
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Fig. 3. Seattle - Illustration of the hourly plan index for 10 major intersections. Variability metric is variance of traffic demand in the intersection.

Here, 276=(%') is the total number of pairs of hours. The
function I(-) is the indicator function that takes the value
of 1 if the condition it receives holds. This distance test is
symmetric such that Ry (H, M) = R;(M, H).

VI. ANALYSIS OF TIME-OF-DAY BREAKPOINTS BASED ON
REAL TRAFFIC DATA OF TWO CITIES

Settings of the Real Data. As mentioned, we refer to
real traffic data of two cities: Hamburg in Germany and
Seattle in the state of Washington. We collect traffic data
between May 2 to June 5, 2024 among which we focus on 25
weekdays Monday through Friday. We refer to an aggregated
and anonymized dataset summarizing the amount of traffic
sampled based on the processing of anonymized trajectories
from navigation applications. The traffic demand data refers
to every 15 minutes in each of the days in the study with four
values per hour. To compute time-of-day breakpoints (TODs),
we rely on the optimal dynamic-programming approach from
Section IV and consider variability metrics from Section III
In this analysis, we study questions such as:

o What is a typical form of ideal TODs in real intersec-
tions?

o What is the impact of the number of daily plans N?

o Are the time-of-day breakpoints influenced by the con-
sidered variability metric?

Results and Analysis. To illustrate the time-of-day break-
points (TODs), we refer to 10 major intersections in each of
the two cities. Intersections were selected based on the number
of observed trajectories at each intersection. As such trajecto-
ries are samples of the traffic, this number does not necessarily
indicate the 10 intersections with the highest amount of traffic
but provides some estimation of those. For each intersection,
we compute the optimal time-of-day breakpoints based on
the dynamic-programming approach from Section IV. As a

variability metric, we refer to the variance of traffic demand
(for the whole intersection, summarized over its movements)
as defined in Section III. The TODs are shown in Fig. 2 -
Fig. 3 for Hamburg and Seattle. For each city, the left subfigure
shows the TODs for the case of N = 5 daily plans and the
right subfigure refers to N = 4 daily plans. A line refers to
an intersection for which an ideal solution is shown with a
different color for each of its plans.

In Hamburg, for instance, consider the case of N = 4
daily plans. The computed TODs for the various intersec-
tions have a similar form: A night plan, a plan for early
morning, a plan for most day hours, and an evening plan.
For instance, the TODs for intersection I are of the form
H = (Hl,...,H4) with H1 = {0,1,2,3,4,5},H2 =
{6},H; = {7,8,9,10,11,12,13,14,15,16,17,18,19} and
H, = {20,21,22,23}. Often, the night plan starts at midnight
and lasts for six hours. The morning plan is either short and
lasts a single hour, or it is longer and lasts till early afternoon,
so the plan for the day hours is shorter. Increasing the number
of daily plans to N = 5 often results in two different plans for
the day hours between 7 and 18. For some intersections, the
five windows for N = 5 can be derived by partitioning into
two one of the windows for N = 4 and maintaining the three
other windows. However, this is not necessarily the case as
the algorithm selects the optimal TOD among all possible ones
without enforcing such a constraint. For instance, for the same
first intersection, for N = 5 the solution has the form of M =
(Ml, cey M5) with M1 = {0, 1, 2, 3,4, 5}, M2 = {6}, M3 =
{7,8,9,10,11,12,13,14,15,16,17,18}, M, = {19,20} and
Ms = {21, 22,23} such that based on the solution for N =4
the first two windows are not changed while a new window
covers the last hour in H3 and the first hour in Hy into a
new window M, = {19,20}. In Seattle, we observe higher
diversity in the form of the solutions such that night plans last
till 4, 5 or 6 for N =5 and till 4, 5, 6 or 7 for N = 4.
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Fig. 7. Hamburg - Illustration of intersections with hourly demand distribution over movements and corresponding TODs with N = 5 daily plans.
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Fig. 8. Seattle - Illustration of intersections with hourly demand distribution over movements and corresponding TODs with N = 5 daily plans.
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Next, we illustrate in Fig. 4-Fig. 5 how the derived TODs
relate to traffic demand. We dive into the first three intersec-
tions in each of the cities. For each of the day hours 0, . . ., 23,
we show the mean demand value over days with four values
per hour, one for every 15 minutes. The values are normalized
with respect to the hour with the largest demand. In addition,
we illustrate in blue the corresponding TODs computed by
the optimal algorithm with N = 5. These are the same TODs,
shown previously in the top three lines of Fig. 2-Fig. 3.

Consider again Intersection I in Hamburg for which
with N = 5 the windows were M = (My,...,Ms)
with My = {0,1,2,3,4,5},My = {6},M3 =
{7,8,9,10,11,12,13,14,15,16,17,18}, My = {19,20} and
M5 = {21,22,23}. We can see that these five windows indeed
match different ranges of values of the traffic demand. The first
window, for instance, for hours 0,...,5 refers to values of
0.074 — 0.296 while the window of the single hour 6 refers to
values of 0.295 —0.647. The next window for hours 7,...,18
includes values of 0.705 — 1.000. Lower demand values are
observed for later hours 19,...,23 with a clear distinction
between the ranges of values in hours 19,20 vs. those of
21,22,23. TODs are not uniform over all intersections.

We also examine the potential impact of the number of daily
plans as supporting a larger number of daily plans N has
higher operation costs. Fig. 6 shows the variability score (for
the variability metric considering traffic demand) in an optimal
solution as a function of the number of daily plans N € [1,10].
For the two cities, the graph shows the maximal (in red),
mean (in blue) and minimal (in orange) values over the 10
intersections. The mean values demonstrate the diminishing
returns of increasing the number of daily plans N in reducing
variability, particularly when N exceeds 6. Overall, values are
similar among the two cities with Seattle observing slightly
higher mean values due to a single intersection with relatively
high variability values for various values of V.

So far we focused on the first variability metric, that
considers the variance of the demand in the intersection as a
sum for its movements. We now refer to the second variability
metric that examines changes in the distribution of traffic over
the intersection movements. Intuitively, a signal plan might
need to be changed even when the total intersection demand
is kept but the demand of some movements increases while of
other decreases. The optimal dynamic programming algorithm
can take into account that variability metric as well.

Fig. 7-Fig. 8 show (in blue) the computed TODs for the
same three intersections in each of the cities. The figures also
illustrate (in orange and green) for each intersection the ratio of
the demand in two of its movements as part of the total hourly
demand in the intersection. The two movements are selected
among the intersection movements as those of high average
demand. As the TODs are computed to reflect changes in the
distribution ratios of all movements, they often closely align
with changes in the demand ratio between the two specific
movements. Note that the TODs for that variability metric
are often different than TODs computed based on the first
variability metric considering the total intersection demand
that were previously shown in Fig. 4-Fig. 5.

Next, we aim to measure the distance of time-of-day break-

104
«n 2 T 12
=
[}
g
[}
2 . STV
g 15| minimal variability in demand i
S minimal variability in distribution
- .
.8
5 1 s
2
i=) 4
:'5 5 14 17 12
=}
2 05 e o |
= "7 ’
B s . .
= Cewe o, B
S ot
0 500 1,000 1,500 2,000

Variability in traffic demand

Fig. 9. Tradeoff of scores for two variability metric scores. Each intersection
has two pairs of variability values: For a plan optimizing variability in traffic
demand and for a plan optimizing variability in distribution over movements.

liHamburg

o Seattle
0.4} 1

0.2

intersections ratio

S I N T S
& il S & 5'@ S S 6’0?( Q’\§
S P A . A . SR

distance value

Fig. 10. Distance of optimal solutions in the same intersection for the
two variability metrics - Distribution of distance values for distance test
I over 10 intersections in each city. Mean values of Rj(V°Pt popt) —
Ry(Port vort),

points computed for two variability metrics from Section III:
(i) Variance of traffic demand; and (ii) variance of distribution
of traffic over the intersection movements. To do so, we use
distance test I from Section V.

We consider the above 20 intersections, 10 intersections
from each city. For each intersection, it computes two TODs:
An optimal solution of minimal variance of traffic demand
and optimal solution of minimal variance of the distribution
of traffic over the intersection movements. For each solution,
we then compute two values as the values of the two variability
metrics. Fig. 9 measures the tradeoff between the values of the
two variability metrics. It shows the two variability values of
the two solutions for each of the 20 intersections, with a total
of 40 solutions. In the figure, the x-axis refers to the variability
in demand and the y-axis to the variability in the distribution
over movements. Each intersection has an index in the range
0-19 and its two points appear in blue (minimal variability in
demand) and green colors (minimal variability in distribution
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over movements). Thus for each intersection index the green
point appears more to the right and lower than the blue point.

To further understand this tradeoff between the variability
metrics, we refer to the distance test from Section V and check
the distributions of its values over 20 intersections based on
the two solutions for each intersection. Fig. VI shows the
values of distance test I for each intersection. The distance
test considers the two solutions and indicates the ratio of
pairs of hours which are within the same window of hours
in one solution while they belong to different hours in the
other solution. We denote its value as Rj. Its values are in
the range of [0,1] and lower values indicate higher similarity.
Over the intersections, the distance value R; ranges between
0.101 to 0.427 and the distribution in each city is shown. The
mean values of the metric are 0.231 and 0.221 for Hamburg
and Seattle, respectively.

VII. JOINT COMPUTATION OF TIME-OF-DAY
BREAKPOINTS FOR INTERSECTIONS ALONG CORRIDORS.

We focused on computation of the TODs based on traffic
characteristics in each intersection. To further enhance the
potential for synchronization of intersections along corridors,
identical TODs can be enforced for multiple intersections.
The proposed methodology can simply jointly consider traffic
characteristics from multiple intersections and derive a single
solution based on all of them. We explain how the dynamic
programming algorithm from Section IV can be tuned to do
so: The variability value for a window of hours S(H) in the
dynamic programming algorithm should be set as the sum of
the variability values of that window in all intersections. Note
that the joint TOD solution is not necessarily one among the
solutions for the intersections along the corridor.

We illustrate the approach of joint computation of TODs
of several intersections for a real corridor in Seattle. The
corridor has 7 intersections. The ideal TOD solutions com-
puted independently for each of the intersections are illustrated
in Fig. 11(a). Upon computing the solutions for the various
intersections, we see high similarity among solutions but
they are not identical. In particular, for this corridor we
observe 6 distinct solutions for the 7 intersections. The joint
TOD solution computed while considering traffic from all 7
intersections is also shown in the bottom part of Fig. 11(a).
In this example, the joint TOD is identical to the TOD of
intersection 5 and intersection 7.

To examine the impact of enforcing a joint solution for all
7 intersections along the corridor, we measure the implied
variability based on the variability in traffic demand. Fig. 11(b)
shows for each intersection the variability of the joint solution
vs. the variability of the ideal TOD of the intersection. The
intersections are numbered 1,...,7 based on the location
in the corridor. The joint TOD always implies higher or
equal variability as the optimal TOD for an intersection. As
intersections 5 and intersection 7 share the same solution
with the joint solution their variability is not increased upon
applying the joint TOD. On the other hand, for the five other
intersections, we observe a small relative increase of 0.5%-
19.7% in the variability when the joint TOD in the corridor is
used rather than the optimal TOD for each intersection.
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Fig. 11. Joint TOD solution along corridor. For a corridor in Seattle with 7
intersection, illustration of the TODs for intersections along a corridor and
the TOD solution computed jointly for all intersections. The variability of the
joint TOD is compared in each intersection (indicated by its number) to the
variability of the TOD of that intersection.

VIII. CONCLUSION

This paper provides a comprehensive study of the problem
of finding time-of-day (TOD) breakpoints in intersections for
the design of traffic light plans. We suggested variability met-
rics based on which time-of-day breakpoints can be computed.
We also define a distance metric to examine the dissimilarity
among solutions for the TOD breakpoints that are computed
for different variability metrics. We evaluated the approach
by analyzing real traffic data from Hamburg and Seattle. We
illustrated the computed TOD breakpoints in the cities and
how they refer to the inputs to the variability metrics. We also
examined the impact of the number of daily plans and the
distribution of the lengths of windows of hours in efficient
solutions. The study observes several key findings such as:

o It is important to consider several traffic characteristics
as solutions for different variability metrics can differ.

o For a variability metric, an optimal solution with ideal
time-of-day breakpoints can be computed based on dy-
namic programming.

¢ Increasing the number of daily plans beyond 5 or 6 often
does not contribute much to reducing variability scores.

o Ideal time-of-day breakpoints often have similarity along
corridors where identical solutions can be enforced.
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