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Abstract—Incorporating intelligent controllers in Open Radio
Access Networks (O-RAN) enables the development of multi-
purpose applications to enhance the RAN’s performance and
bolster its security against new and existing attacks. The Base
Transceiver Station (BTS) Resource Depletion (BTS-RD) attack
is an example of the existing attacks, which aims at exhausting the
BTS resources. To detect this attack in an O-RAN disaggregated
setting, we propose BTS-Band, a novel BTS-RD O-RAN compli-
ant detection solution that leverages a Bidirectional Long Short
Term Memory (BiLSTM) AutoEncoder (AE) (BiLSTM-AE) com-
plemented with the SHapley Additive exPlanation (SHAP) to
further explain its detection results. We test the efficiency of
BTS-Band in detecting three different variations of the BTS-RD
attack that we emulate using a disaggregated Fifth Generation
(5G) testbed based on the open source OpenAirInterface (OAI)
project. Our experimental results show that the BTS-Band is
able to detect BTS-RD variations with an average F1-score of
92.4% through leveraging statistical features that capture the
signaling between O-RAN components. Moreover, the detection
explanations produced by SHAP demonstrate that the BTS-
RD attack variations exhibit different signatures successfully
captured by the BTS-Band.

Index Terms—O-RAN, 5G, BTS resource depletion attack,
Anomaly detection, Machine learning.

I. INTRODUCTION

The transition to an open Radio Access Network (RAN) has
recently gained momentum, with O-RAN being an important
initiative in the field, spearheaded by O-RAN ALLIANCE [1].
With this architecture, openness, intelligence, and disaggre-
gation are key concepts promoted for the Fifth Generation
(5G) and beyond networks. These concepts revolutionize the
RAN by breaking the long-standing vendor lock-in, further
modularizing the RAN components, and enabling intelligent
automation of RAN management [1]. O-RAN architecture,
however, remains susceptible to BTS-RD attack, an attack
which existed in previous generations and which exploits the
lack of integrity check in Radio Resource Control (RRC)
messages communicated between the RAN and the User
Equipment (UE) [2]. These exchanged control plane messages
involve allocating some RAN resources to the UE in the early
steps of the registration procedure without verifying its identity
(i.e., before authenticating it). To perform this attack, attackers
can exploit one or multiple UEs to endlessly restart the initial
registration procedure without properly completing it while
continuously changing the UE’s identity [3]. The attack can

manifest in different variations, depending on the message
within the registration procedure, after which attackers decide
to stop responding to the network. Each variation triggers a
specific timer or network behavior to release hanging con-
nections. However, attackers spawn a large number of fake
connections in a short time period (i.e., less than or equal to
the timer) to ensure the depletion of RAN resources before
the timer expiry and the release of malicious connections [3].

This underscores the role of a timely detection solution to
report such attacks in their early stages. In fact, the authors of
[4] proposed a rule-based detection approach that relies on pre-
defined thresholds to decide whether counters for malicious
events are significant enough to report a BTS-RD attack.
However, such a solution does not account for the intricate
patterns of benign network traffic and requires human exper-
tise and intervention to adjust the thresholds upon changing
network conditions. Other work in the literature attempted to
determine malicious connection’s source based on identifying
the UE’s location and comparing it to a presumably benign
connection [5]. Such approach may not be efficient in the
case of malicious UE mobility. These works do not study the
impact of multiple BTS-RD variations in ORAN components
under a disaggregated RAN architecture and fall short in
presenting an intelligent detection solution to detect BTS-RD
attack variations despite changing network conditions.

To fill these gaps, we study BTS-RD attack variations on
O-RAN components and leverage the O-RAN architecture
benefitting from intelligent radio management and open inter-
faces, to monitor radio signaling and extract related features
for the BTS-RD attack detection. For that, we build BTS-
Band, a novel eXplainable Artificial Intelligence (XAI) BTS-
RD attack detection solution tailored to capture temporal de-
pendencies between O-RAN components’ signaling messages
to efficiently detect different variations of the BTS-RD attack.
Additionally, to increase the trust in its detection results BTS-
Band leverages the SHapley Additive exPlanations (SHAP)
[6], a game theoretical approach to explain its detection results.

To provide a holistic overview of our research, we outline
our contributions as follows:

• We propose BTS-Band, a novel approach for BTS-RD
attack detection with XAI. BTS-Band is composed of a
BTS-Stalker module that monitors RAN signaling and a
BTS-BodyGuard module that leverages features provided
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by the BTS-Stalker for BTS-RD attack detection aug-
mented with results explainability using SHAP. To the
best of our knowledge, we are the first to present an XAI
solution for BTS-RD attack detection.

• Using the OpenAirInterface (OAI) open-source project
[7], we setup an O-RAN compliant 5G testbed and
emulate three different variations of the BTS-RD attack
while modifying their intensities providing an extensive
study on their potential impact in an O-RAN setup.

• Our experimental results show that the BTS-Band
achieves an average F1-score of 92.4% across all BTS-
RD attack variations while detecting most of them with
F1-scores exceeding 94%.

The remainder of this article is structured as follows: we
first review related work (Section II) and explain the UE
registration procedure (Section III). Then we elaborate on
the BTS-RD attack (Section IV), the proposed BTS-Band
solution (Section V), and the testbed with attack emulation
(Section VI). Finally, we analyze attack impacts (Section VII),
present experimental results (Section VIII), and describe BTS-
BodyGuard deployment (Section IX) before concluding (Sec-
tion X).

II. RELATED WORK

While [3] provides a general overview of the BTS-RD attack
in 4G systems, and [2] confirms its persistence in 5G, both
studies focus on the overarching concept of the attack, where
an adversary floods the RAN with registration requests using
random UE identifiers to exhaust its resources. From a practi-
cal perspective, the study in [8] demonstrates the feasibility of
only one variation of the BTS-RD attack in 5G systems. None
of the aforementioned works addresses the need for a BTS-
RD detection solution. In contrast, the work in [5] focused
on distinguishing malicious RRC connections impersonating a
specific UE from legitimate connections initiated by the actual
victim UE. Their detection solution depends on physical and
channel features to create a fingerprint distinguishing transmit-
ting UEs, assuming attackers have procured the 5G Temporary
Mobile Subscriber Identity (5G-TMSI) of a UE and used it
to deny the UE access to the network by exploiting various
RRC messages. Authors of [4] present a rule-based detection
solution for the BTS-RD attack. Their solution depends on
predefined thresholds, which, if violated, will trigger a BTS-
RD attack detection alert. Such a solution fails to adapt to
dynamic network patterns where changing network conditions
can occur, hence making the threshold value obsolete. This re-
quires human expertise to continuously adjust the threshold in
order to limit false positives and negatives. Accordingly, these
shortcomings motivated our aforementioned contributions.

III. BACKGROUND

We focus on the UE’s initial registration in O-RAN, which
attackers exploit for the BTS-RD attack. The process begins
with the UE sending a preamble for uplink synchronization
[9], followed by the RAN granting access via a Random Access
(RA) Response message (msg) ( Figure 1). The UE then sends

an RRC Setup Request, starting the RRC connection [9], which
the RAN monitors using an inactivity timer [10].

The O-RAN Distributed Unit (O-DU) forwards the RRC
Setup Request to the O-RAN Central Unit Control Plane (O-
CU-CP), and if accepted, Signaling Radio Bearer 1 (SRB1) is
established for UE–RAN connection. The O-DU then delivers
the RRC Setup msg to the UE, after which the UE enters
the connected state and can use the Cell Radio Network
Temporary Identifier (C-RNTI). Finally, the UE sends an RRC
Setup Complete msg including its identity and a Registration
Request (i.e., includes the UE’s Subscription Concealed Iden-
tifier (SUCI)). The O-CU-CP, then, forwards this Registration
Request to the Access Mobility Function (AMF) after which
two possible scenarios of interest can occur:

1) Successful Registration: If the SUCI is valid among
other conditions [11], the AMF sends the UE an Authentication
Request containing an authentication challenge and starts the
T3560 timer [12]. The UE must reply with an Authentication
Response before the timer expires, otherwise its connection
is released. If successful, both parties proceed with security
mode establishment, followed by Registration Accept/Com-
plete msgs, finalizing the 5G registration [11].

2) Unsuccessful Registration: In cases where the SUCI
is invalid, or for other specific reasons (e.g., unsupported
requested network behavior or network congestion) [11], the
AMF may send a Registration Reject, after which the UE’s
RRC connection is released.

Fig. 1: Initial registration procedure [10], [11]

IV. BTS-RD ATTACK

As early messages of the initial registration procedure are
unprotected [2], a UE can acquire some RAN resources before
verifying its identity. Consequently, attackers can exploit this
vulnerability by acquiring RAN resources, such as in the RRC
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(a) RRC-Storm (b) Invalid SUCI Flooding (c) Valid SUCI Flooding
Fig. 2: BTS-RD attack variations

Setup msg of the registration procedure, and repeatedly restart-
ing the RA procedure using different CRNTIs and randomized
UE identities (i.e., 39-bit random value) [3]. The number of
RRC connections that the attacker needs to cause a BTS-RD
attack, resulting in a Denial of Service (DoS) depends on the
RAN’s capacity to host RRC connections. In this section, we
detail several variations the BTS-RD attack can manifest in,
while explaining the feasibility of each.

1) RRC-Storm: Attackers continuously initiate the RA
procedure, completing it up to the RRC Setup Request and
then restarting it. By holding these RRC connections, they
can exhaust RAN resources, denying legitimate UEs access
to the network [8]. Here, the difference between the number
of RRC Setup msgs and RRC Setup Complete msgs becomes
key to detect the attack in its early stages. Further, the RAN
releases each malicious connection when its inactivity timer
expires (Figure 2a), making the number of Context Release
Request messages from the O-DU important for the detection.

2) Invalid SUCI Flooding (Invalid-SUCI): Attackers per-
form the initial registration up to the Registration Request,
using a SUCI that does not match any valid UE. The AMF
rejects the request, but the RAN still takes time to release
the hanging resources. Attackers do not wait for the AMF’s
rejection (Figure 2b) and continuously repeat the attack to
congest the RAN and exhaust its resources. Accordingly, the
number of Registration Reject msgs received by the O-CU
becomes an attack indicator, as rejections will occur far more
frequently than under normal network conditions.

3) Valid SUCI Flooding (Valid-SUCI): Attackers send a
valid SUCI in the Registration Request triggering the AMF
to proceed with an Authentication Request. As the Third
Generation Partnership (3GPP) standard does not mandate the
core network functions to check the freshness of a received
SUCI, attackers can reuse previously observed SUCIs in the
registration request to trick the AMF into starting authenti-
cation (a SUCI replay attack) [13]. To cause a DoS, they
ignore the received Authentication Request and repeat the
procedure, leaving connections hanging (Figure 2c). These
hanging connections are only released when the AMF T3560
timer expires [12], delaying resource recovery and poten-
tially exhausting RAN resources. This behavior shows the
importance of tracking the number of sent Authentication
Request msgs and comparing it with the number of received

Authentication Response msgs, which should normally match.

V. BTS-BAND

To efficiently detect BTS-RD attack, we present in this
section our novel BTS-Band solution, comprising a BTS-
Stalker module and a BTS-BodyGuard module (Figure 3).

A. BTS-Stalker: A BTS Monitoring Solution

This module ingests network traffic and computes perfor-
mance metrics from both O-CU and O-DU via the following
units:

1) Data Collection Unit: Uses Tshark to monitor RAN
traffic and capture key protocols associated with the initial
registration procedure and the disconnection of UEs from the
network. Captured traffic is then stored in PCAP files.

2) Data Extraction Unit: Pre-processes collected PCAP
files using Pyshark to extract relevant information associated
with messages transmitted between the O-CU and the O-DU
(i.e., registration and deregistration msgs).

3) Data Segmentation Unit: Counts RRC messages (e.g.,
setup request, setup complete) from pre-processed packets
while keeping their temporal order. For that, a sliding window
approach is adopted to segment packet streams into overlap-
ping intervals where the window size (i.e., set to 3 seconds)
defines the duration for each segment, and the window slide
(i.e., set to 1 second) is the progression step through the data,
dictating the start of a new window. This setting allows captur-
ing dependent sequences and reveals the temporal proximity of
messages. For instance, the sampled packets within a window
can capture the entirety or most of the registration messages.
Furthermore, the 1 second slide provides temporal granularity,
revealing which messages appear in close temporal proximity
(e.g., messages of the RRC connection establishment). The
calculated counters, saved in CSV files, reflect RAN conditions
and are used as statistical features to detect BTS-RD attacks.

B. BTS-BodyGuard: A BTS-RD Attack Detection Solution

The BTS-BodyGuard module hosts an unsupervised Ma-
chine Learning (ML) model, namely a BiLSTM-AE, that
leverages counters collected from the BTS-Stalker to detect
BTS-RD attacks. It encompasses the following units.
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Fig. 3: An overview of the BTS-Band architecture

1) Feature Engineering Unit: Prepares timestamped coun-
ters from BTS-Stalker for the BiLSTM-AE model by indexing
them in temporal order, normalizing with Min-Max scaling,
and shaping them into sequences. It removes low-variance
and highly correlated features to avoid redundancy, retaining
15 key features (Table I) that best capture normal network
behavior and highlight patterns linked to BTS-RD attacks. This
ensures relevant input for effective anomaly detection.

2) Offline Training Unit: Is responsible for training, val-
idating, and testing a BiLSTM-AE model tailored for BTS-
RD attack detection. Given that 5G procedures mostly follow
a strict sequential flow of signaling messages, BiLSTM-AE
becomes a well-suited option as it combines the strength
of AEs in unsupervised anomaly detection with BiLSTM’s
ability to capture temporal dependencies in both forward and
backward directions. This design allows the model to learn
a compact representation of normal network behavior from
benign data, making it effective even when labeled attack
data is scarce [14], and enabling it to distinguish anomalies
such as BTS-RD attacks from legitimate traffic. The BiLSTM-
AE reconstructs inputs based on benign training data. Such
reproduction may be erroneous. In this work, we use the Mean
Squared Error (MSE) to quantify the reconstruction error. If
the reconstruction error exceeds a preset threshold α, the input
is flagged as anomalous. Otherwise, it is benign. The threshold
α is selected to maximize the F1-score as explained later in
Section VIII-B. This unit can be used to retrain the model
and re-select the threshold α whenever the operator deems
suitable. Finally, the retrained model is passed to the online
detection unit with the selected α.

3) Online Detection Unit: Identifies BTS-RD attacks using
the trained model from the offline training unit and input
sequences from the feature engineering unit. It reconstructs
the input, computes the MSE between input and output, and
compares it to the threshold α. This comparison drives BTS-
BodyGuard’s decision. If the evaluated sequence is deemed
malicious, an alert is raised. The network operator may also
request an explanation, provided by the explainability unit

described hereafter.
4) Explainability Unit: Adds transparency to the BTS-

BodyGuard’s classification decisions. We use SHAP with the
KernelExplainer implementation. SHAP is known for its ro-
bust game-theoretic foundation [6]. It requires a benign dataset
to establish a baseline expectation for the model’s prediction
in the absence of specific input features. With this baseline,
the explainer uses the trained model received from the offline
training unit and an input sequence of interest (i.e., obtained
either from the offline training unit or the online detection
unit) to generate instance-level explanations by computing the
given instance’s SHAP values. These values quantify each
feature’s contribution (at a given timestep) to the gap between
the model’s prediction and the baseline. Higher SHAP values
mean stronger influence on the detection decision.

VI. NETWORK EMULATION AND DATA COLLECTION

To detect the BTS-RD attack in its different variations,
we need a suitable dataset. To the best of our knowledge,
there is no publicly available 5G dataset reproduced in a
disaggregated setup that provides BTS-RD attack features
closely aligned with the RRC and network protocols [14].
Also, we want to evaluate the impact of the attack variations
on the RAN under different intensity levels associated with
each variation. Therefore, we leverage the open source OAI
project encompassing a 5G RAN and UEs (version 2024.w43)
along with a core network (version v2.1.0), to deploy a testbed
(Figure 4) in a virtual containerized environment [7]. We
configure a virtual machine with 16 CPU cores, 32 GB of
RAM, and Ubuntu 22.04 to host the testbed. The latter does
not implement the Open Fronthaul split adopted by O-RAN
[1], thus, the O-DU will be referred to as DU. This does not
affect the attack implementation and detection.

A. Benign Network Emulation

We emulate normal traffic with 45 UEs performing RRC-
based operations supported by OAI at the time of the writing
(i.e., registration and deregistration). To account for daily
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TABLE I: Features used by BTS-BodyGuard
Feature Tag Collected

At
Definition

Transmitted RAR F1

O-DU

The number of random access response messages transmitted from the O-DU to the UE.
Received RRC Setup Request F2 The number of RRC setup requests received by the O-DU coming from the UE.
Transmitted RRC Setup Complete F4 The number of RRC setup complete messages transmitted from the O-DU to the O-CU.
Transmitted Authentication Request F5 The number of authentication request messages transmitted from the O-DU to the UE.
Transmitted Context Release Request F12 The number of context release requests transmitted by the O-DU to the O-CU.
Transmitted RRC Release F15 The number of RRC release messages transmitted by the O-DU to the UE.

Transmitted RRC Setup F3

O-CU

The number of RRC setup messages transmitted from the O-CU to the O-DU.
Transmitted Authentication Response F6 The number of authentication response messages transmitted from the O-CU to the AMF.
Received Registration Reject F7 The number of registration reject messages received by the O-CU coming from the AMF.
Received Security Mode Command F8 The number of security mode commands received by the O-CU coming from the AMF.
Transmitted Security Mode Complete F9 The number of security mode complete messages transmitted by the O-CU to the AMF.
Transmitted Registration Complete F10 The number of registration complete messages transmitted by the O-CU to the AMF.
Transmitted Deregistration Request F11 The number of deregistration requests transmitted by the O-CU to the AMF.
Received Context Release Command
with cause = radio

F13 The number of context release commands with cause being ”radio failure” received by
the O-CU coming from the AMF.

Received Context Release Command
with cause = normal

F14 The number of context release commands with cause being ”normal” received by the
O-CU coming from the AMF.

Fig. 4: Emulation testbed architecture
traffic patterns, commonly featuring peak loads around noon
and lower ones during mornings and nights, we consider a
Poisson [15] arrival of UEs under different loads such that no
more than 16 UEs can coexist in the network as OAI’s RAN
is a femtocell. High and low loads are used in the emulation
to introduce some abnormal non-malicious network conditions
(i.e., connections rejection, or incomplete registrations).

B. Attack Emulation

Assuming attackers have access to malicious UEs, we
modify the UE code in OAI to induce malicious BTS-RD
attack behavior (Section IV). More precisely, we emulate the
RRC-Storm attack and three versions (representing different
attack intensities) for each of the Invalid-SUCI, Valid-SUCI
attacks and their mix. We refer to the mixed emulation later
on by Mix-SUCI. The intensity level is defined as the number
of RRC connection attempts per minute. We test three intensity
levels: 4, 5, and 7 RRC connections per minute. For example,
running the Invalid-SUCI attack at 7 RRC connections per
minute is denoted as Invalid-SUCI-7. Our aim of keeping
the intensity levels low (i.e., only 4, 5, or 7 connections per
minute) is to identify the lowest needed level to disturb the
network and the first one to cause a DoS. This is important for
assessing BTS-BodyGuard’s ability to detect stealthier attacks
as it is already expected to easily identify much more apparent

patterns in higher-intensity attacks. For every attack version,
we begin by emulating benign network activity. The attack is
then launched at the start of the second load of this emulation
and continues for the duration of two consecutive loads. The
final dataset and its documentation can be found here1.

VII. ATTACK IMPACT

A. Impact On The DU CPU Utilization

To evaluate the impact of the BTS-RD attack in its different
variations, we collect the CPU consumption of the DU during
the attack emulations every 2 seconds. We average the DU
CPU utilization per network load for each attack version and
present the results in Figure 5.

1) RRC-Storm: The DU CPU usage drops significantly
during the RRC-Storm attack (Figure 5a) which can be at-
tributed to the continuous streams of malicious RRC setup
requests that get allocated SRBs by the DU without requiring
additional computing resources. This is because malicious UEs
do not respond to the RRC setup message; hence, the DU does
not need to perform any processing for additional signaling.

2) Invalid-SUCI: All attack versions of the Invalid-SUCI
attack variation heavily overloaded the DU, even after the at-
tack ended (Figure 5b). Interestingly, during the Invalid-SUCI-
7 version, the extracted network logs showed that the DU went
down midway through the attack, resulting in a complete loss
of context for all established and queued connections. Once the
DU reconnected, the attack resumed and quickly overwhelmed
the DU again, which kept the CPU usage extremely high.

3) Valid-SUCI: The impact of Valid-SUCI varied between
its versions. In Valid-SUCI-4, the attack caused a moderate
increase in the CPU usage (Figure 5c) but the network
recovered shortly after the attack ended. In contrast, in Valid-
SUCI-5 the CPU usage remained very high throughout the
emulation. As for Valid-SUCI-7, again, the network logs show

1https://github.com/assrar/BTS RD Attack Dataset
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(a) RRC-Storm attack (b) Invalid-SUCI attack (c) Valid-SUCI attack (d) Mix-SUCI attack
Fig. 5: Average DU CPU usage per load

that the DU went down twice, once midway through the
attack and once toward the end of the attack, losing context
of all established and queued RRC connections, malicious
and benign. This queue loss relieved the DU from handling
malicious connections, which explains the low average CPU
usage across the loads in Valid-SUCI-7 (Figure 5c).

4) Mix-SUCI: As expected, all versions of this attack
variation overwhelmed the DU (Figure 5d). Similarly, the
network logs showed that the DU went down in Mix-SUCI-
5 and Mix-SUCI-7 and exhibited high CPU usage after its
reconnection.

B. Impact On Benign Users

Fig. 6: Number of denied benign users per attack version

We also examine in Figure 6 the impact of the BTS-RD
attack versions on benign users trying to access the network.

1) RRC-Storm: The RRC-Storm effectively denied 48 be-
nign users access to the network nearly matching the total
number of scheduled benign registration during the attack.

2) Invalid-SUCI: With the increase of this attack intensity,
more benign users were denied access, proving network avail-
ability disruption. Accordingly, 15, 58, and 95 benign users
were denied access to the network for intensity levels 4, 5,
and 7 respectively.

3) Valid-SUCI: The number of denied users, along with
the CPU usage, show network sensitivity to the different
intensity levels of this variation. For instance, at (Valid-SUCI-
4), the network denied access to 20 benign users. However,
it eventually recovered after the attack ended. Conversely, at
(Valid-SUCI-5), the DU remained persistently overwhelmed,
denying network access to 136 benign users, (i.e., the highest
number recorded across all tested attack versions). Yet, a Valid-

SUCI-7 which brought the DU down twice resulted in a total
of 41 denied benign users.

4) Mix-SUCI: The number of denied benign users in-
creased with the increase of the attack’s intensity, resulting in
11, 30, and 122 denied users at levels 4, 5, and 7 respectively.
The network logs showed that the DU went down then
reconnected in both Mix-SUCI-5, and Mix-SUCI-7. however,
the number of denied users in Mix-SUCI-7 was much higher
than in Invalid-SUCI-7.

VIII. EXPERIMENTAL RESULTS

A. Selecting BTS-BodyGuard’s Architecture

After evaluating many architectural configurations of BTS-
BodyGuard, we selected a mirroring structure comprising two
BiLSTM layers with 230 units each, encapsulating a latent
representation of 60 neurons. This code bottleneck filtered
key patterns while discarding noise. We also applied early
stopping as a regularization technique to prevent overfitting
and preserve the model’s optimal state.

B. Selecting The Threshold

We utilize the Receiver Operating Characteristic (ROC)
curve a widely used metric that illustrates the trade-off be-
tween the True Positive Rate (TPR) and the False Positive
Rate (FPR) at different threshold settings [16]. We thoroughly
evaluate each threshold, computing the average F1-score (i.e.,
the harmonic mean between the correctly predicted positives
and the TPR) across all BTS-RD attack variations and versions
(i.e., 10 test datasets) to select the threshold α as the one that
yields the highest average F1-score.

C. BTS-BodyGuard Performance

Fig. 7: F1-score per attack version
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(a) RRC-Storm (b) Invalid-SUCI (c) Valid-SUCI
Fig. 8: Heatmap of SHAP values per feature per timestep

After selecting the threshold, we evaluate BTS-BodyGuard
performance against all 10 attack versions and depict the F1-
scores per attack version in Figure 7. We observe that the
higher the intensity levels are, the better the BTS-BodyGuard
is at detecting the attack, scoring as high as 99% for both
intensity levels 5 and 7. These intensity levels are much lower
than those reported in the literature (i.e., 20 RRC connections
per second [3]), suggesting BTS-BodyGuard may perform
even better under higher attack intensities. At the lowest level
of 4 RRC connections per minute, the model yielded lower
F1-scores, as the high stealthiness increases the chance of
misclassifying attack data as benign.

D. BTS-BodyGuard Explainability

We set up the SHAP explainer using 200 training sam-
ples to calculate the baseline model output. Then we select
representative input sequences from each identified attack
variation and pass them to the explainability unit to compute
the corresponding SHAP values. This unit produces SHAP-
based heatmaps that visually capture the features’ contribution
to the model decision per timesteps (Figure 8). The x-axis
represents the features’ tags and the y-axis depicts the timestep
from the latest to the earliest where the red tones highlight
features that significantly increase the prediction error, thereby
pushing the model toward identifying anomalous behavior.

We observe in Figure 8a, explaining RRC-Storm detection,
that early timesteps dominated by F1 and F2 contribute
significantly to the prediction error. Also, features F12 and
F13 emerge in dark red as key contributors toward the end
of the sequence. Knowing that it was an RRC-Storm, the ex-
plainability unit accurately highlighted the features critical to
its detection which aligns with the attack indicators identified
in Section IV-1. For the Invalid-SUCI variation (Figure 8b),
F1-F4 and F12-F13 contributed to the error. Yet, F7 had the
highest impact, aligning with the discussion in Section IV-2.
Similarly, in the Valid-SUCI variation (Figure 8c), the presence
of features F1-F5, and particularly F5, drives the model’s
output, again consistent with our threat insights (Section IV-3).

IX. BTS-BODYGUARD DEPLOYMENT

In An O-RAN Deployment the features listed in Table I
can be accessible through the O1 interface as vendor sup-
plied measurements [17] and handed directly to the BTS-
BodyGuard which can then be deployed as an rApp in the
Non-Real Time Radio Intelligent Controller of the RAN as
the data segmentation is performed every 3 seconds aligning
with non-real-time control loops of O-RAN.

In A Non-O-RAN Deployment where the RAN does not
have the O1 interface, the BTS-BodyGuard remains deploy-
able where the BTS-Stalker module becomes indispensable in
the setup to monitor the network and prepare the data for the
BTS-BodyGuard, ensuring seamless integration in the system.

X. CONCLUSION

We present BTS-Band, an XAI-based anomaly detection
solution that identifies BTS-RD attack variations with an
average F1-score of 92.4%. Using SHAP, it explains detection
results across three emulated attack scenarios. Experiments on
a 5G disaggregated testbed showed these attacks can cause
DU DoS, blocking benign UEs. As a future work, we aim at
extending the BTS-Band to also mitigate BTS-RD attacks.
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