2025 21st International Conference on Network and Service Management (CNSM)

OCTOPUS: a Scalable, Reliable and Cost-Efficient
Solver Orchestrator for Optimization Services

Mattia Oriani, Marco Giorgini, Roberto D’Elia, Federico Naldini, Nicola Di Cicco, Fabio Lombardi
OPTIT, Italy
E-mail: {mattia.oriani, marco.giorgini, roberto.delia, federico.naldini, nicola.dicicco, fabio.lombardi} @optit.net

Abstract—The ever-increasing automation of complex decision-
making processes through Operations Research (OR) raises the
need for specialized management systems. To support multiple
vertical industries, OR service providers must handle a diverse
portfolio of solvers having widely varying resource, computa-
tional, and availability requirements. To address this fundamental
challenge, we present OCTOPUS, a state-of-the-art cloud-native
solver orchestrator. Leveraging Kubernetes, OCTOPUS features
event-driven autoscaling to align resources with application
demand, dedicated queue management to meet service-level
agreements, and robust reliability mechanisms to prevent service
interruptions. This demonstration showcases OCTOPUS’s capa-
bilities in a production-like environment, illustrating its full end-
to-end workflow and commenting on its real-time performance.

Index Terms—Operations Research, Optimization, Kubernetes,
Microservices, Service Orchestration

I. INTRODUCTION

Operations Research (OR) is one of the cornerstones of
modern decision-making processes. OR optimization algo-
rithms, ranging from general nonlinear solvers to specialized
metaheuristics, are routinely being used to make critical busi-
ness decisions in multiple industries, such as logistics [1],
energy systems [2], telecommunications [3], and so on.

Cloud computing, with emphasis on microservices architec-
tures, plays a crucial role in the modern OR stack. An OR ser-
vice provider typically supplies APIs exposing multiple solvers
for high-level optimization problems (e.g., Google’s OR API
[4]). In this context, microservices architectures allow us to
abstract optimization algorithms and user-facing application
components as loosely-coupled services, making the OR-based
decision-making system suitable for cloud-native deployments.

However, the operational requirements of decision-making
systems introduce non-trivial technical challenges in the design
of a microservices architecture. For example, solvers for differ-
ent business use-cases might have vastly different requirements
in terms of, e.g., execution time (e.g., one minute vs. several
hours) and CPU/RAM consumption, which requires fine-
grained resource management. Moreover, the system should
guarantee near-zero interruptions or downtime for critical
API endpoints and active solvers, especially for long-running
executions. Finally, as cloud infrastructure is billed by usage,
the system should avoid resource over-provisioning while
guaranteeing the above-mentioned requirements.

Despite the availability of cloud-based OR solutions [4], [5]
and research on orchestrating predictive analytics [6], there

978-3-903176-75-1 ©2025 IFIP

is presently no off-the-shelf orchestration platform that can
seamlessly handle heterogeneous OR solvers while supporting
business-driven scalability and reliability requirements.

To address this challenge, we present OCTOPUS, a state-of-
the-art OR services orchestrator. Specifically, OCTOPUS is a
cloud-native application based on Kubernetes (K8s) for man-
aging, executing and monitoring a portfolio of optimization
algorithms, enabling full control and observability over the
complete OR lifecycle. In this paper, we illustrate OCTOPUS’s
design and demonstrate its end-to-end workflow.

II. OCTOPUS ARCHITECTURE

OCTOPUS is an orchestrator for the execution of business
optimization algorithms (henceforth, “solvers”) within a K8s
environment. It supports synchronous and asynchronous solver
execution requests via REST APIs, provides priority-based
queue management for each solver to ensure Service-Level
Agreement (SLA) compliance, and manages real-time commu-
nications throughout the full execution lifecycle. In the follow-
ing, we assume the reader is familiar with core K8s concepts
(Pod, Node, ReplicaSet, Deployment, Job, etc.). We refer to
the official K8s documentation for detailed explanations [7].

OcCTOPUS implements a microservices architecture. On the
infrastructure level, we containerize solvers as Docker images
and release them as K8s Deployments, thus treating solvers as
full-fledged services rather than one-off tasks (like K8s Jobs).
Adding new solvers to OCTOPUS is straightforward: we use
a dedicated library to wrap standardized I/O and messaging
interfaces on top of arbitrary solvers, allowing OCTOPUS
to register and expose them as services. Upon startup, each
solver microservice establishes a dedicated message queue for
processing execution requests. This allows the microservice in
charge of the execution strategy to identify all active solver
containers and assign a specific execution to be run on a
designated solver container instance. Figure 1 overviews the
main OCTOPUS components.

A. Execution workflow

The process begins when OCTOPUS receives an execution
request. After an information exchange that includes a speci-
fied solver and its inputs, the request is accepted. OCTOPUS
then identifies the target solver for execution and proceeds to
check for available container instances to serve the request. If
no instances are available or active, the event-driven autoscaler

2025 21st International Conference on Network and Service Management (CNSM)

—{ Cloud hosting platform (e.g., GCP) }

o Orchestration services .@??T??E?S. e .Ilft.e.r. i Syétem services Application server
El_______________] r- - ---------n--
vl |
: Front_end | Strategy&queue| | Database | Reverse Request handler
V services handler @I | @ proxy
P <> RESTAPI ~ Results handler
o Log | Request | 'l Event-driven | Message = (https)
) > I
Pl handler @ handler @I ! scaler broker g I
vl R | ! o
| —i v . REST API User

L L : (https) G &

, > g
u Solver 1 §| u Solver 2 §| e Solver N§ I\/

Fig. 1.
broker,

Overview of OCTOPUS. End-users or managed applications request solver executions via REST APIs. A reverse proxy forwards requests to a message
which manages the different service queues. The event-driven scaler signals the number of solver Pods to be instantiated, according to the current

request load. The orchestration services dispatch the solver execution, monitor the execution status, collect logs, and forward solver results.

(more details in Section II-B) detects the increased demand
for a specific solver and signals K8s to scale up the number
of Pod replicas for the corresponding Deployment. Then, a
new solver instance is launched. Once OCTOPUS recognizes
the availability of this new instance, it sends an asynchronous
message prompting it to start the new request. The instance
acknowledges its readiness to OCTOPUS, and following an
internal data exchange to pass the necessary inputs, it confirms
to OCTOPUS that the execution has started.

During execution, OCTOPUS receives real-time logs from
the solver instances and displays them to the relevant users in
the frontend interface. Each instance is capable of determining
whether the execution has completed with or without errors,
and sends a corresponding positive or negative status to
OCTOPUS, along with any output files generated. In the event
of an infrastructure-related failure where the entire container
is shut down or restarted, OCTOPUS will detect the instance’s
termination through its existing monitoring mechanisms and
recognize that the requested execution cannot be completed.

The workflow concludes by making the solver’s results
available to the requester, either through an application’s
user interface or by communicating them synchronously or
asynchronously. The requester can then retrieve the solver’s
output files and supplementary data to complete the request.

We now describe in detail how OCTOPUS addresses our
foundational requirements for a cloud-native decision-making
system: scalability, cost-efficiency and reliability.

B. Scalability and cost-efficiency

K8s’s Horizontal Pod Autoscaling (HPA) allows us to scale
a Deployment’s Pods according to resource usage (e.g., CPU,
RAM). Though useful, it does not allow for fine-grained
control of scaling events, which is necessary for SLA com-
pliance and cost-efficiency. Consider a scenario with many
concurrent long-running solver execution requests having low
resource consumption. This would not trigger HPA, leading to
all requests being assigned to the same replica, hampering not
only performance (long waiting times due to queuing), but also
reliability (a failure of that replica would cause all requests to
fail). Similarly, consider a single short-lived execution request

with high resource consumption: this would trigger HPA to
instantiate additional replicas even though there is a single
request in the system, leading to unnecessary costs.
Event-driven autoscaling. To overcome these limitations, we
leverage KEDA [8] for implementing autoscaling based on
application-level events. Specifically, to guarantee parallelism
and resource isolation, we dimension the number of solver
Pods based on the number of execution requests accepted in
the system, in accordance with solver-level SLAs. In this con-
text, we trigger KEDA by continuously monitoring a database
view returning the number of replicas required by a specific
solver. The database is polled every few seconds, to ensure
that scale-up requests are processed promptly. Conversely, we
introduce a larger waiting time before scale-down, ensuring
that resource deprovisioning does not introduce disruption and
avoiding repeated scaling events in the presence of fluctuat-
ing traffic. This implementation, which matches instantiated
resources with application-level demand, strikes a good trade-
off between SLA compliance and cost-efficiency.

C. Reliability

We focus on two aspects of reliability particularly relevant
for decision-making systems: a) API microservices must al-
ways be reachable and respond to user requests, and b) solver
microservices must not be migrated or terminated during
execution. These requirements cannot be guaranteed by the
default K8s configuration. Indeed, during a scale-down event,
K8s can move Pods between Nodes via pod eviction and
migration. As this process moves only the containers but
not their state, it will disrupt ongoing solver executions and
application-level communications. As such, to satisfy our re-
liability requirements, we implement the following measures.
Pod disruption budget. We explicitly enforce that critical
system and orchestration Pods must have at least one active
replica at all times. The absence of these replicas, even if for
a few milliseconds (e.g., due to migrations or restarts) can
disrupt communications and lead to service interruption.

K8s annotations. We leverage the safe-to-evict K8s annota-
tion to ensure that Pods with running solvers cannot be evicted
from their Node during a scale-down event. However, this

2025 21st International Conference on Network and Service Management (CNSM)

B Executions

O Project 1l
Fier

Q & 0P =

D Execution 0 Status. Created at Started at 10 Executiontime 1| Overalltime 1|

1

~ | [Fiter

1
Filte Filter
Routing

Routing

Scheduled
Scheduled
Scheduled
Scheduled

20250716 18:16:48
20250716 18:16:43
20250716 18:16:39
20250716 18:13:35
20250716 18:13:31
20250716 18:13:26

3s
37s

4275 | Routing - optitroutingalgorithm 1.0
4274 Routing - optitroutingalgorithm 1.0
Routing 4273 | Routing - optitroutingalgorithm 1.0 a1s
03:45
03:49
03:54
03:58
04:22
04:26
04:31
04:36
04:43
0447

Routing
Routing
Routing
Routing
Lbs3d
Lbs3d
Lbs3d
Lbs3d
Lbs3d
Lbs3d

4272 Routing - optitroutingalgorithm 1.0

4271 | Routing - optitroutingalgorithm 1.0 Running 20250716 18:17:18

20250716 18:17:18

26
4270 Routing - optitroutingalgorithm 1.0 Running
Running
Scheduled
Scheduled
Scheduled

20250716 18:13:22
20250716 18:12:56
20250716 18:12:52
20250716 18:12:47
20250716 18:12:42
20250716 18:12:35
20250716 18:12:31

4269 | Routing - optitroutingalgorithm 1.0 20250716 18:16:42 38s
4266 | Lbs3d - Ibs3d-model 1.0
4265 | Lbs3d - Ibs3d-model 1.0
4264 | Lbs3d - Ibs3d-model 1.0
4263 | Lbs3d - Ibs3d-model 1.0
4262 | Lbs3d - Ibs3d-model 1.0

4261 | Lbs3d - Ibs3d-model 1.0

Running 20250716 18:14:47
20250716 18:13:19

20250716 18:12:34

0231
03:59
04:45

Running

0O0ooOooooooooo

Running

(a) OctorUs GUI. Executions are sorted by request creation time.

Fig. 2. Using OCTOPUS for launching multiple solvers

B Up N Down
May 31

Jan 31 Feb 28 Mar 31 Apr 30 Jun 30

Fig. 3. Uptime (99.9%) of OCTOPUS’s orchestration services as of July 2025.

only controls the Node autoscaler, but not the Pod autoscaler
within an individual Node (i.e., KEDA). We therefore need
the following additional reliability mechanism.

PreStop hooks. We implement a set of actions that each solver
Pod must execute before stopping: /) notify OCTOPUS that the
Pod is about to be terminated, such that no further optimization
requests are forwarded to that Pod; 2) if the solver is currently
executing, we wait until it terminates. To ensure termination,
we set a worst-case timeout (profiled for each solver) after
which we stop the solver Pod irrespective of its state.

III. DEMONSTRATION

The demonstration showcases OCTOPUS in a production-
like scenario, illustrating the workflow described in Section II.
For the demo, we deploy OCTOPUS on Google Cloud Platform
(GCP). We consider two productionized solvers for real-world
use-cases from logistics: LBS3D and Routing, which solve
variants of the 3D Bin Packing Problem [9] and the Vehicle
Routing Problem [1], respectively. LBS3D must always have
one Pod active, while Routing is instantiated on-demand, illus-
trating OCTOPUS’s capability of handling diversified service-
level requirements. For both LBS3D and Routing, we assume
an SLA mandating up to three parallel solver executions.

The attendees will interact with OCTOPUS using a com-
modity laptop, either through a GUI application or by directly
querying the REST APIs. The GUI allows a user to request
one or multiple solver executions and monitor their status (e.g.,
scheduled, running) in real time. We also provide access to the
GCP admin dashboard, allowing attendees to monitor in detail
the internal status of OCTOPUS’s K8s cluster. For example,
attendees can observe in real time resource provisioning and
deprovisioning in specific Deployments in response to one
or multiple solver requests. Finally, we provide interactive
solution visualizers for both LBS3D and Routing, allowing
attendees to observe OCTOPUS’s workflow end-to-end.

Fig. 2a illustrates the GUI that attendees will use to launch
solver executions. In the screenshot, we observe six competing
execution requests for LBS3D and Routing. Fig. 2b shows

8 Solver
Routing scale-down to 1
— LBS3D after request completion
2 2 Routing
2 LBS3D scale-up at 18:12 LBS3D scale-down to 1
é‘ for 2nd and 3rd requests after request completion
81
Routing on-demand Routlng scale-down to 0
instantiation at 18:13 \ after a waiting time
0
16:00 16:30 17:00 17:30 18:00 18:30 19:00 19:30 20:00

(b) Pod allocation over time, with events from Fig. 2a.

in parallel and monitoring the K8s cluster’s resources.

Fig. 4. Interactive visualizer for LBS3D solutions.

the number of active Pods, extracted from GCP’s dashboard,
for LBS3D and Routing during the requests’ lifetime. As
Routing is an on-demand service, requests are queued and
a scale-up event is triggered. Conversely, LBS3D must always
be available: indeed, the earliest request is served in a few
seconds, while a scale-up event is triggered for handling the
others. For both solvers, in Fig. 2b we observe around 18:15
two rapid scale-up events which, as described in Section II-B,
promptly match the instantiated resources with application-
level demand, up to the maximum three parallel executions.
As requests are processed, OCTOPUS frees resources ac-
cording to the waiting time logic described in Section II-B.
For Routing, we can observe the waiting time elapsed before
completely deprovisioning the service, which would allow
us to serve intermittent demand without reprovisioning from
scratch. Conversely, LBS3D Pods are scaled down but never
deactivated, since by SLA we always have one active Pod.
Fig. 3 shows the uptime of OCTOPUS’s orchestration ser-
vices extracted from GCP’s dashboard. Thanks to the mecha-
nisms described in Section II-C, we suffered only one down-
time event (a GCP incident on 19/05) in the past six months.
Finally, Fig. 4 shows the interactive visualizer of LBS3D.
Attendees can inspect a 3D rendering of the item loading
configurations in the bins, and search for specific items.

REFERENCES

[1] P. Toth and D. Vigo, Vehicle Routing: Problems, Methods, and Applica-
tions. Society for Industrial and Applied Mathematics, 2014.

C. Bordin, A. Gordini, and D. Vigo, “An optimization approach for district
heating strategic network design,” European Journal of Operational
Research, vol. 252, no. 1, pp. 296-307, 2016.

Y.-F. Liu et al., “A survey of recent advances in optimization methods
for wireless communications,” IEEE Journal on Selected Areas in Com-
munications, vol. 42, no. 11, 2024.

“Google OR APL” https://developers.google.com/optimization/service.
“Gurobi cloud,” https://www.gurobi.com/solutions/gurobi-instant-cloud/.
V. Reddy Chintapalli et al., “Orchestrating edge- and cloud-based predic-
tive analytics services,” in 2020 European Conference on Networks and
Communications (EuCNC), 2020, pp. 214-218.

“Kubernetes documentation,” https://kubernetes.io/docs/home/.

“KEDA: Kubernetes event-driven autoscaler,” https://keda.sh/.

T. G. Crainic, G. Perboli, and R. Tadei, “Extreme point-based heuris-
tics for three-dimensional bin packing,” Informs Journal on computing,
vol. 20, no. 3, pp. 368-384, 2008.

(2]

(3]

(4]
(5]
(6]

(71
(8]
[9]

